
Improving Efficiency of Maximizing Spread in the
Flow Authority Model for Large Sparse Networks

Philip K. Chan
School of Computing

Florida Institute of Technology
Melbourne, Florida 32901

Email: pkc@cs.fit.edu

Ebad Ahmadzadeh
School of Computing

Florida Institute of Technology
Melbourne, Florida 32901

Email: mahmadzadehe2012@my.fit.edu

Abstract—Given a network, finding a set of nodes that max-
imizes their spread of influence has a number of applications.
Based on the Flow Authority model, we propose the VSM (Vector-
based Spread Maximization) algorithm that estimates the SSS
(Steady-state Spread) objective function for multiple seeds based
on SSS values of individual seeds to reduce computation. Based
on three real-world large sparse networks, our empirical results
indicate that VSM is more effective than two existing algorithms,
and two orders of magnitude more efficient than one of them.

Index Terms—spread maximization; flow authority model;
large sparse networks; efficiency

I. INTRODUCTION

Given a network, a number of researchers in different
areas have studied how to find the set of most “important”
nodes in the network. In social networks, important nodes are
influential people [1]. For marketing purposes, the problem is
to decide whom to market first, who in turn influence others,
so that the spread of influence is maximized. In detecting
water contaminants, important nodes are sensor locations in
the water distribution network [2]. The problem is to identify
a set of sensor locations that minimizes the total cost of
detecting contaminants in the network. Other applications
include finding a small set of “leaders” who could coordinate
a network of distributed agents/robots.

Aggarwal et al. [3] introduce the Flow Authority (FA)
model, which specifies how information flows from nodes to
their neighbors. Given a graph, the main question is how to
efficiently find a set of nodes that initially has the information
and maximizes the expected number of nodes that will assim-
ilate the information. The authors define Steady-state Spread
(SSS) as the objective function and propose RankedReplace
as an algorithm to maximize SSS. RankedReplace repeatedly
calls the objective function to guide its search for the top set
of seeds, however, each SSS call can be time consuming.

We propose VSM that leverages spread information in the
initial SSS calls and estimates the SSS value for future calls
to reduce computation. Our main contributions include:

• an efficient method to estimate SSS of multiple seeds
from SSS of individual seeds,

• our proposed VSM algorithm is more effective than
two existing algorithms and two orders of magnitude

more efficient than RankedReplace in 3 large real-world
datasets, and

• a four orders of magnitude more efficient SSS algorithm.

We discuss related work in Sec. II. Sec. III provides
the problem statement and more background on the Ranke-
dReplace algorithm and the SSS function. Sec. IV introduces
our VSM algorithm. Sec. V discusses a more efficient SSS
algorithm for large sparse graphs. We evaluate our algorithms
in Sec. VI and conclude in Sec. VII.

II. RELATED WORK

Given a graph, Kempe et al. [1] discuss two diffusion
models: Independent Cascade (IC) and Linear Threshold (LT).
In the IC model, each node has only one chance to influence
its neighbors. In the LT model, each node has an activation
threshold; a node is active when the total influence from its
active neighbors exceeds the threshold. Aggarwal et al. [3]
introduce the Flow Authority model. Different from the two
models above, the expected number of active nodes is directly
estimated, instead of running (e.g. 10,000 [1]) Monte Carlo
simulations, which could be computationally expensive. The
key question of these three models is how to find the initial
seed set that maximizes the expected number of active nodes.

The methods used in related work can be categorized into
two general approaches. The first general approach uses an
evaluation function for a node or a set of nodes to find the
top set of nodes. Different sets of nodes are generated and
the evaluation function guides the selection. For example, the
Greedy [1] algorithm starts with sets, each containing only one
node, successively generates sets with one additional node, and
selects the set that maximizes the evaluation function, which
is the objective function for the problem. Kimura et al. [4] use
the Greedy algorithm and bond percolation as the evaluation
function. Based on the submodularity property of the objective
function, CELF [2] improves the Greedy algorithm with a
“lazy forward” evaluation technique, which prunes nodes that
cannot improve the set. Degree Discount [5] is similar except
the evaluation function is a heuristic based on the neighbors
of the node. PMIA [6] uses a tree of nodes with maximum
influence to construct a heuristic as the evaluation function.
CGA [7] first identifies communities in the graph and then

greedily selects nodes from the communities. SIMPATH [8]
estimates the spread from a set by exploring paths from the
set up to a threshold as the evaluation function. Jiang et al.
[9] initially select a set of random seeds then use simulated
annealing to evaluate neighboring seed sets by replacing one
of the seeds. IPA [10] evaluates each candidate by calculating
the spread from the current set and the candidate to the
descendants of the candidate. They store influence paths for
each node, but they limit the number of nodes to reduce
memory usage. Borgs et al. [11] propose a nearly-optimal-
time algorithm for the IC model that chooses a random set
of initial nodes and finds their ancestors, which are seed
candidates. The evaluation function of a seed candidate is
the number of times it is an ancestor. Recognizing the large
constant in the time complexity, TIM+ [12] improves Borgs
et al.’ algorithm by bounding the number of initial nodes to
a smaller number. IMM [13] further reduces the number of
initial nodes by a Martingale approach, which allows some
dependency between successive runs of finding ancestors to
determine the number of initial nodes. Based on the Flow
Authority model, Aggarwal et al. [3] propose Steady State
Spread (SSS) as the objective and evaluation functions for
a node in their algorithms. RankedReplace selects individual
nodes with the highest SSS as the initial set and successively
attempts to replace one in the set by one outside the set. Using
the DBLP data set, they illustrated that the top set of authors
found by their algorithms is more recognizable than sets found
by two other algorithms.

The second general approach propagates values according to
the graph structure and selects the top nodes with the highest
values. Bayes Traceback [3] starts with equal probability
for each node and back propagates probabilities to its in-
neighbors. At each iteration, a fraction of the nodes with the
lowest probabilities are removed and the probabilities of the
remaining nodes are redistributed.

In the first general approach, many algorithms greedily add
a node to the set and do not attempt to change previously
added nodes. The exceptions are the simulated annealing
approach [9] and RankedReplace[3]. Both approaches iter-
atively evaluate the neighboring seed sets, by replacing a
node in the seed set with another not in the seed set. If the
replacement improves the objective function, both approaches
keep the replacement. However, simulated annealing keeps a
replacement that does not improve with some probability. In
simulated annealing, the initial seed set is randomly selected.
However, RankedReplace creates the initial set by selecting
nodes based on their individual values of the objective function
in the Rank step. Since RankedReplace chooses the initial
seeds independently without considering their interactions,
more replacements might be needed in the Replace step. Also,
each attempt of replacement invokes the objective function
SSS, which could be expensive.

Algorithm 1 SSS(S, P)
1: ∀i ∈ S, q0(i)← 1
2: ∀i /∈ S, q0(i)← 0
3: t← 0
4: repeat
5: ∀i ∈ S, qt+1(i)← 1
6: ∀i /∈ S, qt+1(i)← 1−

∏
j∈N(i)(1− Pji · qt(j))

7: Ct+1 ←
∑

i/∈S |q
t+1(i)− qt(i)|

8: t← t+ 1
9: until Ct < 0.01 · C1

10: return
∑

i/∈S q
t(i)

III. PROBLEM STATEMENT AND BACKGROUND

Flow authorities are the nodes that cause maximum spread
of information in social networks. We use the same formu-
lation as Aggarwal et al. [3]. Consider a directed network
G = (V,E), where V is a set of nodes and E is a set of
edges. Each edge e = (i, j) of the network is associated with
a propagation probability Pij which specifies the probability
by which the information propagated by node i is absorbed at
the destination node j. This is based on the assumption that if
node i has the information, all its neighbors are automatically
exposed to the information, and the assimilation probability
is Pij for each neighbor node j. Given a set S of k nodes,
we define π(i) to be the steady-state probability that node i
assimilates the information. The expected number of nodes, or
Steady-State Spread (SSS), which assimilates the information
is: SSS(S) =

∑
i∈V π(i). The goal is to find S of size k such

that SSS(S) is maximized.

A. Steady-state Spread and RankedReplace

Aggarwal et al. [3] proposed RankedReplace to find S such
that the objective function SSS(S) is maximized. They first
calculate π(i), which is the steady-state probability that node
i assimilates the information (is activated). The basic idea is
that node i is activated if it receives the information from at
least one of its neighbors. Then, π(i) is calculated as:

π(i) = 1−
∏

j∈N(i)
(1− π(j)pji), (1)

where N(i) is the set of in-neighbors of node i, and pji is the
propagation probability from node j to i. Given an initial set
S and a propagation probability matrix P , Alg. 1 calculates
SSS. qt(i) is the estimate of the steady state probability of
node i having the information at time t. Initially, the value of
q(i) is set to 1 where i∈S, and 0 where i/∈S. Then qt(i) is
iteratively updated by calculating the probability that at least
one of i’s neighbors spreads the information to i (line 6) until
the total spread converges. The Rank step in RankedReplace
performs SSS for each node in the graph and the top k nodes
form the initial S. In the Replace step, a node in S is replaced
with a node in V \S if the SSS value improves. The algorithm
stops if no replacement was made after r trials.

Algorithm 2 Greedy(f, k)
1: S ← ∅
2: for i← 1 to k do
3: u← argmaxc∈V \S(f(S ∪ {c} − f(S)) . gain
4: S ← S ∪ {u}
5: return S

IV. VECTOR-BASED SPREAD MAXIMIZATION

The Replace step in RankedReplace calls the expensive
SSS (Alg. 1) for different seed sets. Also, the Rank step
does not consider seed interactions to create the initial seed
set, which could result in more replacements in the Replace
step. Our VSM (Vector-based Spread Maximization) algorithm
efficiently estimates SSS and considers seed interactions.

A. Greedy Algorithm

For the IC and LT models, Kempe et. al. [1] show that the
problem of finding a seed set S of size k that maximizes the
total spread is NP-Hard. They also prove that if the objective
function f is non-negative, monotone, and submodular, a gen-
eral greedy approach, shown in Alg 2, guarantees a solution to
be at least 1 - 1/e (63%) of the optimal solution. It iteratively
finds new seed nodes that yield the highest spread gain, and
it stops when k such seed nodes are found. Given the seed
set S, spread function f, and a candidate node c, the gain is
calculated as: f(S∪{c})−f(S). SSS (Alg. 1) is an option for f,
however, it is relatively computationally expensive. To improve
efficiency, we propose estimating SSS without running Alg. 1
for seed sets with more than one seed.

B. Estimating SSS

To estimate SSS from multiple seeds, we store and use the
last vector qt from SSS (Algorithm 1) with seed set of size 1.
This vector, which we call SSS-vector, contains the influence
spread value of the given seed set on every node in the graph.
Consider v is a seed, we denote the SSS-vector of v as qv and
qv(i) as the spread from v to i. By storing the SSS-vectors, we
can calculate the estimated spread, called eSSS, much faster.
For example, for a set of nodes v1, v2, ..., vn, if we calculate
and store the SSS-vectors for each of them, then in order to
calculate SSS(v1, v2) we do not need to run SSS. Instead,
we could find the estimated SSS (eSSS) by aggregating the
stored SSS-Vectors of v1 and v2. To aggregate the SSS-vectors
(or “vectors” when the context is clear) from two seeds, we
calculate the probability that the information is spread to i
from the first seed or the second seed. This probability is the
probability complement of neither the first seed nor the second
seed spread the information to i. Consider qx is the vector from
seed x, qy is the vector from seed y, and qx(i) and qy(i) are
the spread probabilities at node i from the two seeds. We use
⊕ to denote the aggregate operator for two vectors:

q{x,y} = qx ⊕ qy
q{x,y}(i) = 1− (1− qx(i))× (1− qy(i)),

= qx(i) + qy(i)− qx(i)qy(i),
(2)

where vector q{x,y} is the result of aggregating vectors qx
and qy , and q{x,y}(i) is the aggregated spread to node i. The
general case for aggregating vectors is:

qS = qv1 ⊕ qv2
⊕ ...⊕ qvk

qS(i) = 1−
∏k

j
(1− qvj (i)),

(3)

where S =
⋃k

j {vj}. The aggregate operator is “cumulative:”

qS∪{c} = qS ⊕ qc

since:

qS∪{c}(i) = 1−
(∏k

j
(1− qvj (i))

)
(1− qc(i))

= 1−
(
1−

(
1−

∏k

j
(1− qvj (i))

))
(1− qc(i))

= 1− (1− qS(i))(1− qc(i))

That is, we can aggregate the SSS-vector of candidate c and
the SSS-Vector of S without using Eq.3. We note that Eq.2 (or
similarly Eq.3) is only needed when qx(i) and qy(i) are both
positive, which means that both x and y influence i. Otherwise,
if one of them is zero, qS∪{c}(i) is updated to be the non-zero
value (which is mathematically equivalent to Eq.2). Similarly,
if both qx(i) and qy(i) are zero, qS∪{c}(i) is not updated.
We next discuss seed interactions (common paths and blocked
seeds) and techniques that improve the estimation.

1) Multiple Seeds via a Common Path: One source of error
in the estimation of SSS is when multiple seeds influence a
node via a common path. We show this issue with an example
illustrated in Fig. 1(A) where two seeds a and b share a
common path to influence node y. In this case, SSS({a, b})
to node y is αγ + βγ − αβγ. Because, according to Alg. 1,
at the first iteration, SSS({a, b}) is zero on y, but it is
α+β−αβ on x. At the second iteration SSS({a, b}) becomes
αγ + βγ − αβγ to y. However, the estimation, using Eq.2,
would yield αγ + βγ − αβγ2. Because qa(y) = αγ and
qb(y) = βγ. This estimation could be corrected by dividing
the third term by γ. Our second example shown in Fig. 1(B)
depicts a longer common path from the two seeds to node z.
In this case, similar to the previous one, SSS(a, b) to node z
is αγλ+βγλ−αβγλ. However, the estimation using Eq.2 is
αγλ+ βγλ− αβγ2λ2. The weights γ and λ in the common
path should be discounted from the third term. Generally, the
estimation could be corrected by dividing the third term by
the product of the weights on the common path.

Our last example illustrated in Fig. 1(C), shows a case where
more than one common path exist from the seeds to a node
like z. However, in this case, we cannot correct the estimation
based on the vector entries and the common path weights, as
the terms are not easy to decompose unless we store more
information. So, we only consider to address situations like
cases A and B. Another reason for this decision is that finding
all such common paths can be computationally expensive.
Calculating a single common path seems to be an appropriate
balance between accuracy and efficiency.

Fig. 1. 3 Examples showing common paths in which 2 seeds flow (Seeds are
green, other nodes are white).

Hence, Eq. 2 is updated as:

q{x,y}(i) = qx(i) + qy(i)− [qx(i)qy(i)]/cpwxy(i), (4)

where cpwxy(i) is the product of common path weights from x
and y to i. To find a common path in aggregating two vectors,
we use depth-first search as shown in Alg. 3. The algorithm
finds a common path from the seed set S and candidate c
to targetNode, where targetNode is the starting node for the
depth-first search. qc is the SSS vector for the candidate c, and
qS is a vector representing all seed vectors aggregated. We note
that qS can represent one or more seeds, where S in qS denotes
the set of seeds. hopLimit is the maximum hop parameter. The
output is the product of the weights on a common path from
the seeds to the target node, or 1.0 if a common path does not
exist. The algorithm starts by getting the in-neighbors (Nin)
of the target node (e.g. node z in Fig. 1). It does not consider
a neighbor that is not a descendant of both c and nodes in S
(line 7). Otherwise, if the neighbor is a descendant of both,
currentNode is updated by the node ID of the neighbor (line
9). The while loop has two stopping criteria (line 4). First,
the number of hops is limited to hopLimit, which we discuss
further in Section V. Second, we stop when the candidate
node c is reached because the effect of previous seeds on the
common path has already been calculated. The break statement
(line 10) limits the search to finding only a single common
path to balance accuracy and efficiency.

As we discussed in Section IV-B, when targetNode (node i)
is not influenced by either or both c (node x) and S (node y),
we do not need Eq.2 and Alg. 3 is not called to adjust Eq.2. If
targetNode is influenced by both c and S, adjustment to Eq.2
might be needed and Alg. 3 is called. When a common path
is not found, the algorithm returns 1.0 and adjustment is not
applied to the estimation.

2) Ancestor Checking for Blocked Seeds: Before we ag-
gregate SSS-vectors, we need to check whether any seed
is blocked by another seed and update the SSS-vectors if
necessary. PMIA [6] and IPA [10] for the IC model also
consider blocked seeds. Node v is an ancestor of node u if
there exists a path from v to u in the graph. Similarly, u is
considered a descendant of v. Since if a path from node v
to node u exists, the spread from v to u is larger than zero.
Hence, to check if v is an ancestor of u, we check if qv(u) is

Algorithm 3 CommonPathWeights(targetNode, c, qc, qS ,
hopLimit)

1: hopCount← 0
2: cpw ← 1.0
3: currentNode← targetNode
4: while hopCount < hopLimit and c /∈ Nin(currentNode) do
5: hopCount← hopCount+ 1
6: for u,w ∈ Nin(currentNode) do . w is the weight from

an in-neighbor to currentNode
7: if qc(u) > 0 and qS(u) > 0 then . u is a descendant of

c and the seeds in S
8: cpw ← cpw ∗ w
9: currentNode← u

10: breakreturn cpw

Fig. 2. Examples of Blocked seeds (seeds in green, candidates in yellow,
blocked nodes in stripes, modified spread of blocked nodes in dashed paths)

positive. Given a seed s, a candidate seed c, and a non-seed
node v, s is considered blocked by c with respect to v if s
is an ancestor of c, and there exists a path from s to v that
passes through c. Similarly, c is considered blocked by s with
respect to v if c is an ancestor of s, and there exists a path
from c to v that passes through s.

When a seed s is blocked with respect to a node v, the
spread to v from s is reduced. Not considering the blocked
nodes can lead to eSSS overestimating the actual SSS. We
discuss how to update the SSS-vectors of blocked nodes with
five examples depicted in Fig. 2.

Example 1: Consider S contains a single seed a, and candi-
date c is being added. Here we aim to calculate eSSS({a, c}).
Suppose that a is blocked by c (w.r.t u). Since c becomes a
seed (c contains the information), a cannot influence c and a
cannot influence u via c any more. However, a can influence u
via other paths not containing c, which is a discounted spread
from a to c. That is, we need to update the spread to u in the
SSS-Vector of a to the discounted spread.

Before c becomes a seed, let ω be the spread from a to u,
which is qa(u). ω is the aggregate of two components: spread
from a via c and spread from a not via c. Let α be the spread
from a to c, which is qa(c), and β be the spread from c to u,
which is qc(u). We estimate the first component by αβ. Let
γ be the second component, which is the discounted spread
when c becomes a seed. Figure 2 depicts this example. Since

ω is the aggregate spread of the two components, from Eq. 2:

ω = 1− (1− αβ)× (1− γ) = αβ + γ − αβγ

γ =
ω − αβ
1− αβ

(5)

That is, we update qa(u) to the discounted spread γ when
c becomes a seed. Since the transmission probabilities are
usually less than 1, α and β are generally less than 1 and
the denominator in Eq. 5 generally cannot be zero. If α and
β are both 1, the value of qa(u) is not important since qc(u)
(spread from c to u) is 1 and the total spread from all nodes
to u cannot exceed 1.

To generalize the calculation, ω represents the spread from
a blocked seed to a node u before considering candidate c.
α denotes the spread from the blocked seed to the blocking
seed and β the spread from the blocking seed to v. γ is the
spread from the blocked seed to u via paths not involving the
blocking seed and is hence the updated (discounted) spread
from the blocked seed to u after considering candidate c.

Example 2: Seed a is an ancestor of candidate c in Example
1, we now consider the opposite case when c is an ancestor
of a. That is, c is blocked by a and the SSS-vector of c need
to be updated. The blocked node is c and the blocking node
is a. Hence, ω is qc(u), α is qc(a), β is qa(u), and qc(u) is
updated to be γ in Eq. 5.

Example 3: A more complicated case is when there are
multiple seeds in S, and c can be ancestor/descendant of
multiple of them. Consider set S containing nodes a, b and
candidate node c. Also, a was added to S before b. Here we
aim to calculate eSSS({a, b, c}). Suppose that a is an ancestor
of b and b is an ancestor of c. That is, a is blocked by b,
and b is blocked by c (w.r.t u). Since a is blocked by b, the
spread from a to u has been updated to the spread via paths
not involving b when b was a candidate previously. When c
becomes a candidate, we need to further update the spread of
a to u via paths not involving c — ω is qa(u), α is qa(c), β
is qc(u), and qa(u) is updated to be γ in Eq. 5. Similarly, we
need to update the spread of b to u via paths not involving c
— ω is qb(u), α is qb(c), β is qc(u), and qb(u) is updated to
be γ in Eq. 5.

Example 4: Consider a is an ancestor of b as in Example 3,
but now c is an ancestor of a. That is, c is blocked by a and a
is blocked by b. Since a is blocked by b, the spread from a to u
has been updated to the spread via paths not involving b when
b was a candidate previously. When c becomes a candidate,
we need to update the spread of c to u via paths not involving
a — ω is qc(u), α is qc(a), β is qa(u), and qc(u) is updated
to be γ in Eq. 5. Though a is an ancestor of b, c might have
paths to u via b but not a. Hence, we also need to update the
spread of c to u via paths not involving b — ω is qc(u), α is
qc(b), β is qb(u), and qc(u) is updated to be γ in Eq. 5.

Example 5: Consider a is an ancestor of b as in Example
3, but now c is “between” a and b. That is, a is blocked by
c and c is blocked by b. Similar to Examples 3 and 4, the
spread from a to v has been updated to the spread via paths

not involving b when b was a candidate previously. When
c becomes a candidate, there might be paths from a to u
involving c, so we need to update the spread of a to u via
paths not involving c — ω is qa(u), α is qa(c), β is qc(u),
and qa(u) is updated to be γ in Eq. 5. Also, we need to update
the spread of c to u via paths not involving b — ω is qc(u),
α is qc(b), β is qb(u), and qc(u) is updated to be γ in Eq. 5.
We update qa(u) and qc(u), but qc(u) is used to update qa(u).
Based on some experiments, we choose to update qa(u) using
the original qc(u), not the updated qc(u), to reduce error.

The above five examples help illustrate the general case,
where we check if candidate c is an ancestor or descendant of
each seed in S. If so, we use Eq. 5 to update the SSS-Vector of
each blocked seed. This process helps increase the accuracy of
eSSS. Alg. 4 illustrates how SSS-vectors are modified when
blocking exists between the seeds and candidate. Parameter c
is the candidate, S is the seed set, qS is the aggregated vector
for S, and q has the vector of each node in the graph. If the
candidate is blocked by a seed, we update the vector for the
candidate according to Eq. 5 (lines 4-8). If a seed is an ancestor
of the candidate, we update the vector for the seed similarly
(lines 9-13). Note that a cycle could exist that involves c and
v, so we check for ancestors both ways in lines 4 and 9. When
a seed or a candidate is not blocked, their vectors need not be
modified (lines 15 and 17). Vectors for the seeds and candidate
are returned.

In summary, our approach to estimating SSS is to first find
blocked seeds and then update the SSS-Vectors of the blocked
seeds (Eq. 5). Next, the vectors are aggregated (Eq. 3), with
adjustments from common path weights (Eq. 4). The resulting
SSS-Vector (qS) is summed over all elements to obtain the
eSSS value: eSSS(S) =

∑n
i qS(i).

We note that eSSS might not estimate SSS perfectly. We
check ancestors and update vectors only once before ag-
gregating two vectors. However, in case of cycles involving
seeds, the vectors should be updated multiple times until
convergence. However, the likelihood of cycles is small within
3 hops. Also, we find the weights of only one common path,
but multiple common paths might exist. Although additional
computation can yield a more accurate estimation, we aim at
a more efficient and relatively accurate estimation.

C. Improving efficiency of the Greedy Algorithm

The greedy algorithm calculates eSSS (S∪{c}) for each
candidate c and the gain efficiently: gain(c, S) = eSSS(S ∪
{c}) − eSSS(S). Because of the submodularity property of
eSSS, we can improve the efficiency by not updating the gain
of every candidate [2]. The submodularity property states:
gain (c, S∪{x})≤gain(c, S), where x is an additional seed
(the newly added seed in our case) and c is a candidate. That
is, the gain for candidate c cannot be larger than the gain
obtained from the previous level(s). (We consider the greedy
algorithm conducts a tree-like search and selects one seed at
each level.)
Theorem 1. eSSS is submodular.

Algorithm 4 BlockedVec(c, S, qS , q)
1: c.blocked← false
2: for v ∈ S do
3: v.blocked← false
4: if c is an ancestor of v then . c is blocked by v
5: c.blocked← true
6: for u ∈ {i|qc(i) > 0} do
7: αβ ← qc(v) · qv(u)
8: q′c(u)← (qc(u)− αβ)/(1− αβ)
9: if v is an ancestor of c then . v is blocked by c

10: v.blocked← true
11: for u ∈ {i|qv(i) > 0} do
12: αβ ← qv(c) · qc(u)
13: q′v(u)← (qv(u)− αβ)/(1− αβ)
14: if v.blocked = false then
15: q′v ← qv
16: if c.blocked = false then
17: q′c ← qc
18: return [q′v1 , ...q

′
v|S| , q

′
c]

Proof. First, the additional seed in S can block other seeds,
and hence can reduce the spread in their SSS-vectors. Second,
from Eq.3, the gain of adding c to S at node i is:

gain(c, S, i) =

(
1− (1− qc(i))

∏k

j

(
1− qvj (i)

))
−
(
1−

∏k

j
(1− qvj (i))

)
= qc(i)

∏k

j
(1− qvj (i)).

Similarly, the gain of adding c to S∪{x} at node i is:

gain(c, S ∪ {x}, i) = qc(i)(1− qx(i))
∏k

j
(1− qvj (i))

Since 0 ≤ (1− qx(i)) ≤ 1:

gain(c, S ∪ {x}, i) ≤ gain(c, S, i).
After summing the gain at each node i:

gain(c, S ∪ {x}) ≤ gain(c, S).

To utilize the submodularity property of eSSS for reducing
computation, we use a priority queue to store the gain of each
candidate and the level number when the gain was updated
[14]. If the largest updated gain at the current level is larger
than the largest non-updated gain, we prune the gain updates
for the rest of the candidates, which cannot yield a larger
updated gain. Hence, if the candidate at the head of the priority
queue has been updated at the current level, we select it and
add it to the seed set.

D. VSM Algorithm

Our VSM (Vector-based Spread Maximization) algorithm
uses the Greedy algorithm (Alg. 2) with eSSS as the evaluation
function f . Alg. 5 illustrates our VSM algorithm. VSM finds
the SSS values for each vertex using Alg. 6 (an improved
version of SSS, which is discussed in Sec. V), saves the SSS-
vectors, and populates the priority queue (lines 1-4). We ini-
tialize the seed set, aggregated SSS-vector of the seed set, and

eSSS value of the seed set (lines 5-8). While the candidate’s
level is less than the current level, its gain is not up to date
(line 13). If the candidate is an ancestor or descendant of any
seed in the seed set, the SSS-vectors are modified and the
aggregated vector is updated (line 15-18). Otherwise, vectors
of the seeds and candidate are not modified, we update the
aggregated vector by aggregating existing aggregated vector of
the seed set and vector of the candidate (line 20). We update
the gain and level of the candidate in the priority queue and
heapify the priority queue (lines 21-23). If the candidate is still
at the head of the priority queue, the updated candidate is the
best candidate and we do not use the previously saved vectors
(lines 24-25). Otherwise, if the candidate’s gain is larger than
the largest gain so far, we save the modified vectors so that
we do not need to recalculate them if the candidate eventually
becomes the best candidate (lines 26-28). We remove the best
candidate from the priority queue, update the vectors from the
modified versions if needed, update the eSSS value of the seed
sets, and add the best candidate to the seed set (lines 30-38).

1) Improving space and time: Alg. 5 generates a vector for
each node (lines 1 - 4). For a graph with n nodes, the space
complexity is O(n2), which could be prohibitive for large
graphs. Based on initial experiments, we observe that many
of the vectors are not used because of pruning in Sec. IV-C.
Generally, fewer than 2k (k is the seed set size) vectors are
used. Hence, an improved VSM generates vectors for only 2k
nodes initially to reduce space and time. To select the initial
2k nodes, we find the nodes with the highest spread to their
immediate out-neighbors. If needed (when the priority queue is
exhausted), vectors for additional nodes are generated in the
order of spread to their immediate neighbors. IPA [10] for
the IC model similarly reduces space by limiting the priority
queue to be of size 3k. However, their approach does not allow
further expansion of the priority queue if additional candidate
nodes can improve gain. Moreover, IPA stores paths from each
node, which requires more space than spread values from each
node in VSM.

To calculate qS′ for the updated S, line 18 of Alg. 5
aggregates all the seed vectors. However, not all seed vectors
are updated since some seeds are not blocked by another seed.
If the number of updated seed vectors is small, we can reduce
computation. We use 	 to denote the deaggregate operator
and follow Eq 2:

qx = q{x,y} 	 qy
qx(i) = (q{x,y}(i)− qy(i))/(1− qy(i)).

(6)

Since the transmission probabilities are usually less than 1,
qy(i) is generally less than 1 and the denominator in Eq. 6
generally cannot be zero. If qy(i) is 1, the value of qx(i) is
not important since qy(i) (spread from y to i) is 1 and the
total spread from all nodes to i cannot exceed 1.

Consider only seed v is blocked by candidate c, qv is
the vector before adding c, and q′v is the updated vector
afterwards. We can calculate qS′ as: qS	qv⊕q′v⊕qc, instead
of aggregating all the seed vectors from scratch. Let b be

Algorithm 5 VSM(V, P, k)
1: for v ∈ V do
2: [qv, v.gain]← SSS2({v}, P) . Alg. 6
3: v.level← 1
4: PQ.insert(v) . priority queue wrt gain
5: v ← PQ.remove()
6: S ← {v} . seed set
7: qS ← qv . aggregated vector of seed set
8: eSSSofS ← v.gain . eSSS value of seed set
9: for level← 2 to k do . k seeds

10: bestGain← 0
11: bestV ec← ∅
12: c← PQ.head() . candidate c
13: while c.level < level do . c’s gain is not up to date
14: c.blockedSeeds← false
15: if c is ancestor/descendant of v, v ∈ S then
16: c.blockedSeeds← true
17: [q′v1 ...q

′
v|S| , q

′
c]← BlockedV ec(c, S, qS , q)

18: qS′ ← q′v1 ⊕ ...⊕ q
′
v|S| ⊕ q

′
c

19: else
20: qS′ ← qS ⊕ qc
21: c.gain← eSSS(qS′)− eSSSofS
22: c.level← level
23: PQ.heapify()
24: if PQ.head() = c then . updated gain of c is best
25: bestV ec← ∅
26: else if c.gain > bestGain then
27: bestGain← c.gain
28: bestV ec← [q′v1 , ..., q

′
v|S| , q

′
c, qS′]

29: c← PQ.head()

30: c← PQ.remove() . best candidate is found
31: if bestV ec 6= ∅ then
32: [qv1 , ..., qv|S| , qc, qS]← bestV ec
33: else if c.blockedSeeds = true then
34: [qv1 , ..., qv|S| , qc, qS]← [q′v1 , ..., q

′
v|S| , q

′
c, qS′]

35: else
36: qS ← qS′

37: eSSSofS ← eSSSofS + c.gain
38: S ← S ∪ c
39: return S

the number of blocked seeds. Aggregating the seed vectors
from scratch needs |S| − 1 aggregations. Deaggregating and
aggregating the updated seed vectors needs b deaggregations
and b aggregations. If |S| − 1 < 2b, VSM aggregates vectors
from scratch; otherwise, it de/aggregates updated vectors.

E. Optimality, Time, and Space Complexity of VSM

Since VSM uses the Greedy algorithm (Alg. 2) with eSSS,
which is non-negative, monotone, and submodular (Theo-
rem 1), VSM guarantees that the found solution is at least
1−1/e (63%) of the optimal solution based on eSSS (Theorem
2.1 in [1]). Though eSSS is an estimate of SSS, which is the
objective function, our empirical results indicate that eSSS is
within 0.12% of SSS (Sec. VI-H).

To select k nodes from a graph of n nodes (k � n),
the nested loop starting on line 9 dominates VSM’s time—
outer loop runs O(k) times and inner loop runs O(n) time
[but O(k) in practice due to pruning (Sec.IV-C)]. At each
iteration of the inner loop, O(kn) for BlockedV ec(), O(kn)

Algorithm 6 SSS2(S, P, hoplimit)
1: ∀i ∈ S q0(i)← 1
2: ∀i /∈ S q0(i)← 0
3: t← 0
4: A← outNeighbors(S) . activated nodes
5: Anew ← A . newly activated nodes
6: Aold ← ∅ . activated in previous iteration
7: repeat
8: ∀i ∈ S, qt+1(i)← 1
9: if t > 0 then

10: Aold ← A
11: A← (Aold ∪ outNeighbors(Anew))\S
12: Anew ← A\Aold

13: ∀i ∈ A, qt+1(i)← 1−
∏

j∈N(i)(1− Pji · qt(j))
14: Ct+1 ←

∑
i∈A |q

t+1(i)− qt(i)|
15: t← t+ 1
16: until Ct < 0.01 · C1 or t ≥ hoplimit
17: return

∑
i∈A q

t(i)

for aggregating vectors, O(log n) for heapify(), and O(kn)
for copying into savedV ec. Hence, VSM’s time complexity is
O(k ·n ·kn) or O(k2n2) [but O(k3n) in practice]. Since VSM
stores vectors for 2k nodes (the dominant data structure), the
space complexity is O(kn).

V. MORE EFFICIENT SSS AND GREEDYSSS

The SSS method in Alg. 1 updates the q value for all nodes
except the seeds, however, many of them will remain zero,
particularly in a large sparse graph. To improve the efficiency
of SSS for large sparse graphs, we only update nodes that will
have positive spread. We call these nodes “activated” nodes.
We use the out-going edges of the activated nodes of the
previous iteration to find the activated nodes of the current
iteration. Also, we keep track of newly activated nodes in
the previous iteration so that we only need to add their out-
neighbors as activated nodes in the current iteration, otherwise
we unnecessarily add out-neighbors that have been added in
the previous iterations. We only consider activated nodes for
updating q, total spread, and change in total spread. Moreover,
the number of activated nodes can grow exponentially. To
prevent finding a large number of activated nodes and not
using them in the last iteration, we find activated nodes at the
beginning of the loop for the current iteration rather than at
the bottom of the loop for the next iteration.

Alg. 6 shows the improved algorithm called SSS2. We
initialize the sets for activated nodes, newly activated nodes
and old ones (lines 4-6). The activated nodes are updated to
be the union of the old ones and out-neighbors of the newly
activated nodes from the previous iteration. We then exclude
the seeds and find the newly activated nodes (lines 10-12). We
update q and C, and return the total spread considering only the
activated nodes (lines 13, 14 and 17). [For further efficiency,
we initialize q on line 2 based on the activated nodes in the
previous SSS2 call on a subset of S (not included in Alg. 6
for simplicity).]

From seed s to a node i, the more hops there are between
s and i, the smaller the spread is from s to i because of the

TABLE I
RUNNING TIME OF SSS2 VS. SSS (SECONDS) ON 100,000 NODES

Alg. DBLP LAST.FM Twitter
SSS (Alg. 1) 16524.74 18512.06 12006.22
SSS2 (Alg. 6) 0.87 1.38 0.57

discount from propagation probability in each hop. Goyal et al.
[8] observe that much of the spread is within 3 or 4 hops from
the seeds. For efficiency, we stop updating q if the hop limit
is exceeded (line 19). Note that when there is a hop limit,
the return value might not closely estimate the steady state
value since the convergence criterion of less than 1% change
might not have met. Hence, when SSS is used as the objective
function for evaluating and comparing different algorithms, we
do not use a hop limit.

Since SSS2 is faster than SSS, we propose GreedySSS,
which is the same as VSM, except that it calls SSS2 (Alg. 6)
instead of estimating SSS from SSS-vectors. We would like
to see if GreedySSS is more effective (but slower) than VSM
because SSS values are not estimated.

VI. EXPERIMENTAL EVALUATION

A. Experimental Criteria

The main evaluation criterion is effectiveness as measured
by SSS2 (Alg. 6) without a hop limit. To evaluate efficiency,
we measure the CPU running time. To evaluate the accuracy
of eSSS, we measure the % difference, which is (eSSS −
SSS)/SSS ∗100%. To evaluate the amount of storage for the
SSS-vectors, we measure the number of (positive) entries in
the SSS-vectors.

B. Experimental Data and Procedures

We use three datasets: DBLP, Last.fm, and Twitter from
Aggarwal el. al [3]. DBLP has 684,911 authors and 7,764,604
edges. Last.fm has 818,800 users and 3,340,954 friendships.
Twitter has 1,994,092 users and 6,450,193 edges.

We evaluate our proposed VSM (Sec. IV) and GreedySSS
(Sec. V), and compare them with RankedReplace [3] and
Bayes Traceback [3]. For VSM, we evaluate two versions: with
or without ancestor checking for blocked seeds. We varied k
from 20 to 100, with an increment of 20 as in [3]. VSM,
GreedySSS and RankedReplace need to calculate SSS and
we use our faster SSS2 algorithm (Alg. 6) for a comparison
that focus on differences not contributed by the improvement
due to SSS2. The hop limit for SSS2 is 3. The replacement
factor r is 10 for RankedReplace. The discard fraction f for
Bayes Traceback is 0.25, 0.2, and 0.3 for DBLP, Last.fm and
Twitter respectively (the parameters were selected to maximize
effectiveness). The algorithms were implemented in Python.
The implementations were run on a 128GB, 8-core virtual
machine running on ESXi 6.0.0 on a Dell PowerEdge M620
containing 2x Intel Xeon E5-2630 V2 @ 2.6 GHz with Ubuntu
Linux 14.04.

TABLE II
HOP LIMIT VS. SSS VALUES (30K NODES)

Hop AC k=20 k=40 k=60 k=80 k=100
DBLP

1 false 36.51 66.94 95.52 122.8 149.2
2 false 36.54 67.04 95.47 122.8 149.2
3 false 36.54 67.04 95.46 122.8 149.1

no limit false 36.54 67.04 95.46 122.8 149.1
1 true 36.51 66.81 95.52 122.7 149.2
2 true 36.56 67.04 95.58 122.8 149.2
3 true 36.56 67.04 95.57 122.8 149.2

no limit true 36.56 67.04 95.57 122.8 149.2
LAST.FM

1 false 61.8 101.7 136.9 170.6 203.5
2 false 61.8 101.8 137.2 171.0 203.7
3 false 61.8 101.8 137.2 171.0 203.7

no limit false 61.8 101.8 137.2 171.0 203.7
1 true 61.8 101.7 136.9 170.6 203.5
2 true 61.8 101.8 137.2 171.0 203.8
3 true 61.8 101.8 137.2 171.0 203.8

no limit true 61.8 101.8 137.2 171.0 203.8
Twitter

1 false 33.86 62.10 89.54 116.1 141.9
2 false 33.87 62.23 89.57 116.1 142.0
3 false 33.87 62.23 89.57 116.1 142.0

no limit false 33.87 62.23 89.57 116.1 142.0
1 true 33.86 62.10 89.54 116.1 141.9
2 true 33.87 62.23 89.57 116.2 142.0
3 true 33.87 62.23 89.57 116.2 142.0

no limit true 33.87 62.23 89.57 116.2 142.0

C. Efficiency of SSS2

To compare the efficiency of our improved SSS2 (Alg. 6)
with SSS (Alg. 1), we sampled 100,000 nodes from the three
datasets and measured the running time of the two algorithms
calculating SSS (without a hop limit) for all vertices in the
subsets. The results in Table I indicate that our proposed
improvement is about 4 orders of magnitude faster.

D. Selecting Hop Limit for SSS2 with Smaller Datasets

Our experiments with smaller datasets of 30K nodes indi-
cate that VSM with hop limits of 2 and 3 achieves the same
SSS as VSM with no hop limits (Table II). Interestingly, with
and without ancestor checking for blocked seeds also yield
the same SSS when the hop limit is 2, 3, or none. In terms of
running time (not shown due to space limitation), raising the
hop limit increases computation. As k increases, computation
grows faster with ancestor checking than without ancestor
checking. Interestingly, the increase in computation from a
hop limit of 3 to none is much smaller than the increase from
a hop limit of 2 to 3. For Last.fm and Twitter, the increase in
computation from a hop limit of 3 to none is quite small. This
indicates that a hop limit of 3 is close to convergence, which
is used as a stopping criterion when hop limit is none. In
summary, a hop limit of 2 or 3, with less computation, yields
the same effectiveness as no hop limit for datasets with 30K
nodes. We conservatively choose 3 as the default hop limit.

E. Effectiveness of Algorithms

Table III displays the effectiveness of different algorithms.
Generally, VSM with ancestor checking for blocked seeds is

TABLE III
SSS OF ALGORITHMS BOLD: HIGHEST, UNDERLINE: ≤ 0.1% FROM

HIGHEST)

Algorithm k=20 k=40 k=60 k=80 k=100
DBLP

RankedReplace 97.8 170.9 236.6 297.8 355.3
BayesTraceback 67.8 123.7 170.7 224.9 298.8
GreedySSS 97.8 171.0 236.6 297.9 355.6
VSM ac=false 97.7 170.2 236.4 298.2 355.9
VSM ac=true 98.2 171.5 237.3 298.7 356.0

LAST.FM
RankedReplace 568.4 816.8 1024.2 1210.6 1377.9
BayesTraceback 332.6 545.8 708.1 816.2 952.1
GreedySSS 568.4 816.8 1024.2 1210.6 1377.9
VSM ac=false 571.6 822.4 1033.0 1221.5 1389.7
VSM ac=true 571.6 822.4 1031.6 1221.5 1390.1

Twitter
RankedReplace 314.9 489.0 625.0 742.9 847.6
BayesTracekback 189.7 311.0 414.6 522.5 595.9
GreedySSS 314.9 489.0 625.1 742.9 847.6
VSM ac=false 315.2 489.7 625.9 743.8 848.7
VSM ac=true 315.3 489.7 626.0 744.0 849.7

more effective than without ancestor checking. For DBLP,
VSM with ancestor checking outperforms the other algo-
rithms consistently. For Twitter, VSM with ancestor checking
outperforms the other algorithms. For Last.fm, VSM with
ancestor checking outperforms the others, except when k=60.
Interestingly, GreedySSS is generally less effective than VSM
with ancestor checking, even though VSM estimates SSS, and
GreedySSS measures SSS. One reason might be SSS with a
low hop limit has not converged, while eSSS is more accurate
in adjusting SSS-vectors for blocked seeds. Overall, VSM with
ancestor checking is more effective than the other algorithms
across the three datasets.

Some of the SSS values are similar to the highest value—
at most 0.1% difference from the highest value. For DBLP,
when k=100 VSM without ancestor checking is similar to the
most effective algorithm. For the Twitter dataset, VSM without
ancestor checking has similar SSS values as the most effective
algorithm at k= 20, 60, 80. For Last.fm, the two versions
of VSM are similar to the most effective algorithm, except
for VSM with ancestor checking at k=60. Overall, compared
to VSM, BayesTraceback is significantly less effective, while
the other algorithms are within 1% difference in effectiveness
across the three datasets.

F. Efficiency of Algorithms

Figure 3 plots the running time of different algorithms.
VSM with ancestor checking (hop=3) is about an order of
magnitude faster than RankedReplace and VSM without an-
cestor checking (hop=3) is about 2 orders of magnitude faster.
VSM without ancestor checking (hop=3) is generally faster
(and more effective) than Bayes Traceback. Since GreedySSS
measures SSS instead of estimating SSS, it is generally slower
than VSM as expected. Note that we use our proposed SSS2
algorithm (Alg. 6) in RankedReplace in all our experiments. If
we use the original SSS (Alg. 1), the original RankedReplace

TABLE IV
SSS VS HOP LIMIT AND ANCESTOR CHECKING

Hop AC k=20 k=40 k=60 k=80 k=100
DBLP

2 false 97.7 170.7 236.5 298.0 354.8
3 false 97.7 170.2 236.4 298.2 355.9
2 true 98.0 171.5 237.2 297.4 355.5
3 true 98.2 171.5 237.3 298.7 356.0

LAST.FM
2 false 571.6 822.0 1030.8 1220.6 1388.5
3 false 571.6 822.4 1033.0 1221.5 1389.7
2 true 571.6 821.9 1030.8 1220.0 1388.5
3 true 571.6 822.4 1031.6 1221.5 1390.1

Twitter
2 false 315.2 489.7 625.5 743.7 848.4
3 false 315.2 489.7 625.9 743.8 848.7
2 true 315.3 489.7 626.0 743.7 848.7
3 true 315.3 489.7 626.0 744.0 849.7

will be much slower (Sec. VI-C) [we did not wait for the
original RankedReplace to complete after a few days].

G. Effectiveness, Efficiency, and Space in VSM

The effectiveness of VSM with hop limits from 2 to 3
is displayed in Table IV. Generally, increasing the hop limit
increases the effectiveness. The difference between hop limits
of 2 and 3 is at most 0.2% and sometimes non-existent,
which is similar to our earlier experiments with smaller data
sets. Checking ancestors for blocked seeds generally yields
higher SSS. However, the improvement is at most 0.1% for
Twitter and Last.fm. For DBLP, the improvement can be as
high as 0.8%. This relatively small improvement is unexpected
because checking ancestors for blocked seeds should improve
the accuracy of eSSS. However, with small hop limits, the SSS
vectors are less accurate, which might degrade the effective-
ness of ancestor checking and adjusting the SSS-vectors for
blocked seeds.

Figure 3 plots the CPU times. Computation grows with
k and hop limit. Generally, increasing the hop limit by one
could increase the computation by an order of magnitude due
to more (positive) entries in the vectors (Table V) governed
by out-degrees. Checking ancestors for blocked seeds could
be 1 to 4 times slower. We also observe that the number
of blocked seeds are generally small (data not shown) and
deaggregating/aggregating updated vectors when appropriate,
instead of always aggregating vectors, reduces computation
(Sec. IV-D1). For k > 80 GreedySSS runs faster than VSM
on DBLP, and for k > 100 it is expected to be slightly faster on
Twitter and LAST.FM. However, its accuracy is consistently
lower than VSM on all three data sets.

Table V displays the number of (positive) entries in SSS
vectors that VSM stores for calculating eSSS with k=100.
The needed memory is less than 1 GB, demonstrating the
effectiveness of space reduction in Sec. IV-D1. When the hop
limit increases, the number of entries grows rapidly due to the
space complexity of O(bh), where b is the branching factor
of a node and h is the hop limit. However, as we discussed
above, we do not need a hop limit beyond 3. Table VI displays

Fig. 3. Efficiency versus k

TABLE V
NUMBER OF ENTRIES (×106) IN VECTORS (k=100)

Hop limit DBLP LAST.FM Twitter
2 0.65 1.40 2.97
3 5.30 10.23 26.59

TABLE VI
NUMBER OF UNIQUE NODES EVALUATED FOR SEED SET

Dataset k=20 k=40 k=60 k=80 k=100
DBLP 25 48 73 102 133
LAST.FM 21 41 68 81 112
Twitter 22 43 66 84 116

the number of unique nodes VSM (with ancestor checking)
evaluates for the seed set. Generally, VSM evaluates a small
number of nodes beyond k, which make space reduction in
Sec. IV-D1 and pruning in Sec. IV-C effective.

In summary, our results indicate that a hop limit of 2 or
3 and storing vectors for 2k nodes are reasonable. However,
a hop limit of 2 is preferable to improve speed with a small
loss of effectiveness. The additional computation for ancestor
checking with a small hop limit might not be worthwhile for
some datasets.

H. Accuracy of eSSS in VSM

Table VII shows the error rates of eSSS of the found seed
set. When the hop limit increases, the SSS-vectors are more
accurate and the error generally decreases. When we check
ancestors for blocked seeds, the error generally decreases.
Overall, eSSS with a hop limit of 3 and ancestor checking
is within 0.12% of SSS.

VII. CONCLUDING REMARKS

We propose estimating SSS (eSSS) from SSS-vectors with-
out running the more expensive SSS algorithm (Alg. 1 or 6)
in our VSM algorithm. eSSS allows us to efficiently evaluate
interactions among seeds and hence effectively select seeds.
Also, eSSS is non-negative, monotone, and submodular, which
allows VSM to guarantee (1 − 1/e) optimality with respect
to eSSS. We further propose considering only the top 2k
candidates to reduce time and space, without affecting VSM’s
effectiveness for 3 real-world datasets. Our empirical results

TABLE VII
ESSS ERROR IN PERCENTAGE

Hop AC k=20 k=40 k=60 k=80 k=100 Avg. of
Abs(err)

DBLP
2 false -2.14 -2.71 -3.03 -2.58 -1.88 2.47
3 false 1.70 2.41 2.01 1.80 1.06 1.80
2 true -3.22 -1.84 -1.09 -1.80 -1.12 1.81
3 true -0.17 -0.04 -0.13 0.13 0.11 0.12

LAST.FM
2 false -2.44 -1.67 -1.23 -1.45 -2.11 1.78
3 false -0.09 -0.08 -0.24 -0.11 0.03 0.11
2 true -1.10 -1.10 -1.39 -1.56 -1.21 1.27
3 true -0.06 -0.08 -0.05 -0.21 -0.09 0.10

Twitter
2 false -0.71 -0.45 -0.41 -0.38 -0.64 0.52
3 false 0.33 0.08 0.21 0.21 0.27 0.22
2 true -0.40 -0.37 -0.26 -0.51 -0.54 0.42
3 true -0.05 0.00 0.00 0.00 0.00 0.01

on the datasets indicate that VSM is more effective than
existing algorithms, but about two orders of magnitude more
efficient than RankedReplace with our SSS2. Without SSS2,
the original RankedReplace is much slower.

REFERENCES

[1] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proc. SIGKDD, 2003, pp. 137–
146.

[2] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance, “Cost-effective outbreak detection in networks.” in Proc.
SIGKDD, 2007, pp. 420–429.

[3] C. Aggarwal, A. Khan, and X. Yan, “On flow authority discovery in
social networks,” in Proc. SDM, 2011, pp. 522–533.

[4] M. Kimura, K. Saito, and R. Nakano, “Extracting influential nodes for
information diffusion on a social network,” in Proc. AAAI, 2007, pp.
1371–1376.

[5] W. Chen, Y. Wang, and S.Yang, “Efficient influence maximization in
social networks,” in Proc. SIGKDD, 2009, pp. 199–208.

[6] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization
for prevalent viral marketing in large-scale social networks,” in Proc.
SIGKDD, 2010, pp. 1029–1038.

[7] Y. Wang, G. Cong, G. Song, and K. Xie, “Community-based greedy
algorithm for mining top-k influential nodes in mobile social networks,”
in Proc. SIGKDD, 2010, pp. 1039–1048.

[8] A. Goyal, W. Lu, and L. Lakshmanan, “Simpath: An efficient algorithm
for influence maximization under the linear threshold model,” in Proc.
ICDM, 2011, pp. 211–220.

[9] Q. Jiang, G. Song, C. Gao, Y. Wang, W. Si, and K. Xie, “Simulated
annealing based influence maximization in social networks,” in Twenty-
Fifth AAAI Conference on Artificial Intelligence, 2011, pp. 127–132.

[10] J. Kim, S. Kim, and H. Yu, “Scalable and parallelizable processing of
influence maximization for large-scale social networks,” in Proc. ICDE,
2013, pp. 266–277.

[11] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing social
influence in nearly optimal time,” in Proc. Symp. Discrete Alg., 2014,
pp. 946–957.

[12] Y. Tang, X. Xiao, and Y. Shi, “Influence maximization: Near-optimal
time complexity meets practical efficiency,” in Proc. SIGMOD, 2014,
pp. 75–86.

[13] Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-linear
time: A martingale approach,” in Proc. SIGMOD, 2015, pp. 1539–1554.

[14] A. Goyal, W. Lu, and L. Lakshmanan, “CELF++: optimizing the greedy
algorithm for influence maximization in social networks,” in Intl. conf.
companion on World wide web, 2011, pp. 47–48.

	Introduction
	Related Work
	Problem Statement and Background
	Steady-state Spread and RankedReplace

	Vector-based Spread Maximization
	Greedy Algorithm
	Estimating SSS
	Multiple Seeds via a Common Path
	Ancestor Checking for Blocked Seeds

	Improving efficiency of the Greedy Algorithm
	VSM Algorithm
	Improving space and time

	Optimality, Time, and Space Complexity of VSM

	More efficient SSS and GreedySSS
	Experimental Evaluation
	Experimental Criteria
	Experimental Data and Procedures
	Efficiency of SSS2
	Selecting Hop Limit for SSS2 with Smaller Datasets
	Effectiveness of Algorithms
	Efficiency of Algorithms
	Effectiveness, Efficiency, and Space in VSM
	Accuracy of eSSS in VSM

	Concluding Remarks
	References

