Malware Classification Using
Static Analysis Based Features

Mehadi Hassen
School of Computing
Florida Institute of Technology
Melbourne, Florida, USA - 32901
Email: mhassen2005 @my.fit.edu

Abstract—Anti-virus vendors receive hundreds of thousands
of malware to be analysed each day. Some are new malware
while others are variations or evolutions of existing malware.
Because analyzing each malware sample by hand is impossible,
automated techniques to analyse and categorize incoming samples
are needed. In this work, we explore various machine learning
features extracted from malware samples through static analysis
for classification of malware binaries into already known malware
families. We present a new feature based on control statement
shingling that has a comparable accuracy to ordinary opcode
n-gram based features while requiring smaller dimensions. This,
in turn, results in a shorter training time.

I. INTRODUCTION

According to AV-Test [1] over 300,000,000 malware were
registered in 2014 alone, more than half of which were
variations of already existing malware. The sheer volume of
the problem makes it impossible for a human expert to analyze
each malware. Hence, automated classification of malware
samples is needed.

In recent years various research projects [8], [10], [11] have
focused on developing classification or clustering techniques
to automatically categorize malware into malware families.
However, there are many challenges, such as scalability and
resilience to code obfuscation techniques, faced by these
systems.

In our work we explore the use of different features,
extracted using static analysis, for classifying malware into
different families. We also propose a new feature based on con-
trol statement shingling which has comparable classification
accuracy with ordinary opcode n-gram based features. These
new features also result in shorter training time.

Before presenting our work, we review past researches in
this area in Section II. Background about the machine learning
algorithm used in this work is presented in Section III. In
Sections IV and V we discuss our solution, and we present
our experimental results in Section VI.

II. RELATED WORK

Malware Classification can refer either to classification of
binaries as malicious or benign, or classification of malware
samples into different known malware families. Our work deals
with the later one. However, for the sake of completeness we
will look at past research in both.

Marco M. Carvalho
School of Computing
Florida Institute of Technology
Melbourne, Florida, USA - 32901
Email: mcarvalho@fit.edu

Philip K. Chan
School of Computing
Florida Institute of Technology
Melbourne, Florida, USA - 32901
Email: pkc@fit.edu

In [15], the authors evaluate the effectiveness of different
data mining techniques in classifying new unseen binaries
as malicious or benign. They extract features based on DLL
imports, printable strings and program byte sequence. Then
they use Naive Bayes and RIPPER, a rule learning algorithm,
to learn models that can be used for classification of new
samples. Other works, such as [12], also use program printable
string feature in addition to function length features to training
machine learning models.

The problem with using program byte sequence feature,
as done in [15], is that it is easy to obfuscate program byte
sequence using various binary packing techniques such as UPX
[4]. One way to address this is to examine the opcode or
instruction sequence after disassembling the binary program.
X. Hu et.al. [11] use opcode sequence, n-gram, features for
clustering malware samples.

To get a better understanding of the semantics of a program,
other works such as [13], [18], [10], [9] investigate function
call graphs. A call graph provides an abstract representation
of a program in the form a directed graph. In this graph, the
vertices correspond to functions, and the edges correspond to
one or more calls made from one function to another [14].

Hu et. al. [10] implement a database management system,
SMIT, to support malware lookups. In SMIT, a malware
sample is represented using a call graph. SMIT builds a two-
level indexing scheme. The first level uses a B+ tree where
the keys are the total number of instructions, total number of
control instructions, total number of functions, and the median
number of instructions per function. The second level index
is an Optimistic Vantage Point Tree(VPT), which takes the
similarity of the malware call graphs into account when placing
malware into storage buckets. The similarity measure used here
is an approximate graph edit distance on the malware sample
call graphs.

In SMIT, each function, vertex of the call graph, is rep-
resented in terms of the function name, assembly instruction
mnemonics sequence, and a CRC of the instruction sequence
to speed up exact matching between functions. Local, statically
linked and dynamically linked functions are considered. When
matching two vertices from two call graphs, a match based on
function name is used if the functions are statically linked or
dynamically linked. In case of local function, CRC is first used
for exact matching; if that fails, then sequence edit distance is
used as a measure of the similarity between the two functions’



instruction sequences.

Similar to SMIT, [13] also uses graph edit distance as a
measure of similarity between two malware call graphs. Vertex
insertion/deletion, unpreserved edge and vertex relabelling cost
are considered when calculating approximate edit distance. Un-
like SMIT, where vertices corresponding to local functions are
matched based on their instruction sequence when considering
relabelling cost, they consider matching of external functions
only when calculating vertex relabeling cost. They then apply
Kmeans and DBSCAN clustering algorithms to cluster similar
malware samples together.

An alternative call graph similarity metric, that is based
on the number of matching edges, is proposed in [18] for
discovering similar malware variants. Vertices of a call graph,
which represent functions, are first matched. Similar to the
previous two works, vertices representing external functions
are matched based on name; however, local functions are
matched based on the external functions they call, the cosine
similarity of their instruction frequency, or neighboring match-
ing functions. Once the vertices are matched then matching
edges are identified and a similarity metric of two call graphs
is computed.

Call graph based techniques incur performance overhead
due to graph comparison operations. For instance, k nearest
neighbour query in SMIT, with k equal to 5, takes more
than 100sec. Considering the large number of malware that
are released each day, these techniques face difficulty scaling.
There are been research efforts to address this. Hassen et al.[9],
for instance, try to address this by proposing a technique based
on Locality Sensitive Hashing to create vector representations
of function call graphs.

III. BACKGROUND

Random Forest is an ensemble learning technique which
uses decision trees as the base classifiers. In general, ensemble
learning techniques improve prediction accuracy by combining
predictions from multiple classifiers. The individual classifiers
can be built by [17]:

e  Manipulating the training set. For example, bagging,
boosting, random forest.

e  Manipulating the input feature. For example, random
forest.

e  Manipulating class labels.

e  Manipulating the learning algorithm. For example,
varying the initial weights in neural networks.

Random Forest algorithm manipulates both the training set
and input features. The general algorithm for random forest is
shown in Algorithm 1. The algorithm builds 7" decision trees.
For each tree, training samples are randomly selected, based on
some distribution, from the original training dataset. The new
training set D, is equal in size to the original D. An unpruned
decision tree is then trained on D;. When building the indi-
vidual trees, instead of considering all available features for
splitting at each tree node, only F' randomly selected features
are considered. Finally, during classification, a majority vote
is taken among all the trees.

There are various advantages to using Random Forests for
the dataset and features explored here.

1) Random Forest tend to perform better when the set
of feature to select from is large. This allows the
construction of de-correlated individual trees, which
in turn, improves the prediction performance of ran-
dom forests. In our case for instance, opcode 4-gram
feature after hash trick with 14-bit hash has a feature
vector size of 2% = 16384.

2)  Speed of training is fast because at any given tree
node, random forest only considers a randomly se-
lected subset of features that are much smaller in
number than our entire feature space. Hence, reducing
the training time.

3)  Prediction accuracy was better than or comparable to
other techniques we looked at for Microsoft Malware
Classification Challenge Dataset, such as logistic re-
gression, backpropagation artificial neural networks,
and decision tree.

Algorithm 1: General Random Forest Algorithm

Input : D: Training data,
T: Number of decision trees in the random
forest,

F: Number of randomly selected features
considered at each tree node.

Output: Random Forest with T decision trees base

classifiers.
1fort=11t T do
2 - Create bootstrap sample D; data from original

training data D by randomly selecting elements
from D where |Dy| = |D|.

3 - Train an unpruned decision tree on D,. At each
tree node consider only F' randomly selected
features for splitting.

IV. SYSTEM OVERVIEW

Our malware classification pipeline consists of three compo-
nents:

e  Feature extraction
e [Learning Classification Model

e (lassification of Unseen Binaries

Feature extraction, discussed in detail in Section V, is the
first component in the pipeline. Here, static analysis of a
disassembled malicious binary is performed to extract different
features that will be used by the machine learning algorithm to
learn models to be used for classification of malicious binaries.

In our experiments, Weka’s implementation of Random
Forest is used both to learn the classification models and clas-
sifying samples. Weka [5] is an open source implementation
of a collection of machine learning algorithms. The algorithms
can be accessed from the command line tool, GUI interface,
or from a Java code.

When classifying new samples into the known malware
families, we first extract features. Then, we use Weka by giving



the trained model and feature vectors of the new samples as
input.

V. FEATURE EXTRACTION

The features discussed here are all extracted using static
analysis of the disassembled malicious binaries. Static analysis
is not the only way to perform analysis of malicious binaries.
In dynamic analysis, a malicious binary is run in a sandbox
environment while monitoring different aspects of its execu-
tion, such as system call, file, network, and registry activities.
Despite all the advantages of dynamic analysis, its main
shortcoming is its performance overhead. When considering
large datasets with thousands of binaries, dynamic analysis
does not scale well. Since scalability is one of the requirements
of the current work, static analysis is used to extract features
from disassembled files of malicious binaries.

To extract features discussed in the next sections, malware
binaries need to be unpacked, if packing tools were used to
obfuscate the binaries, and then disassembled using unpacking
tools.

In the next subsections, we will discuss features that have
been used in the past, such as Instruction frequency, opcode
n-grams, DLL features, as well as a new control statement
shingling based feature proposed in this work.

A. Assembly Instruction Mnemonics Frequency

The first feature considered is instruction mnemonics fre-
quency. Each malware sample is represented as a vector, where
the elements of the vector represent frequency of occurrence
of an assembly instruction in that specific malware. The
frequency values are then normalized by the total number of
instructions in that malware.

B. Instruction Opcode N-Grams

The second set of features extracted from disassembled
files of malicious binaries consider instruction opcode n-
gram frequencies. We decided to use opcode n-grams instead
of instruction mnemonic n-grams because opcodes are more
specific, hence, providing more discriminating features. For
example, there are several opcode values that represent an
instruction mnemonic mov based the operand’s location and

type.

When extracting opcode n-grams, first a malware file is
represented as a sequence of instruction opcodes. Then, n-
grams of the instruction opcode sequence are created, and their
frequencies are counted and normalized by the total number
of opcode n-grams in the malware binary.

Ideally, we would want to represent the occurrence fre-
quency of each possible opcode n-gram as a value in the
feature vector. However, there are two challenges associated
with that:

e  The number of unique n-grams grows exponentially
in the number of distinct instructions and the length
of n-grams. This impacts both on the learning speed
and prediction performance of the machine learning
model.

e  Sparseness of observed n-grams. In practice, not all
of the possible opcode n-grams are observed in a
given malware. This results in many opcode n-gram
frequencies having zero values.

One way, to address the these problems is to use feature
reduction techniques to reduce the feature space into lower
dimensions. One such technique is using hashing. Previous
works, both in the malware classification domain [11] and
other domains [7], have used feature hashing for dimension-
ality reduction and have shown that it does not result in loss
of classification performance, given a sufficiently long hashing
bit. In fact, dimensionality reduction tends to reduce overfitting
[16].

The hashing used here works as follows: Opcode sequences
are extracted from a disassembled malware binary, and a
sliding window, of size n, is moved over the sequence to get the
n-grams. In the example shown in Figure 1, a sliding window
of size 2 to get 2-grams, such as 2B-8B, 8B-B8, B8-2B,
etc., are extracted. Then a non-crypto hashing function, which
uniformly distributes the keys, is used to hash the opcode n-
grams into buckets. The feature vector has one feature for each
bucket, where each feature value corresponds to the observed
frequency of opcode n-grams hashed to that bucket. In our
example, for instance, the 2-gram 2B-8B is observed twice
so the frequency vector cell that corresponds to the bucket it
hashes to has a count of two. This frequency vector is further
normalized by scaling its values to have the same range, say
[-1,1] or [0, 1]. In the experimental results section the effect
of different number of buckets, which is the result of the bit
length of hashing, is discussed in more detail.

C. Proposed Opcode N-Grams with Control Statement Shin-
gling

Naturally, code is structured into functions, control blocks,
and so on. However, the opcode n-gram feature discussed in
the previous subsection does not take the structure of code into
account. In an attempt to address this, we borrow the idea of
word shingling from text document classification, where stop-
words are considered as delimiters in the document ,and n-
grams of characters, words, or phrases are constructed starting
at the delimiter. In the case of disassembled malware code,
we consider the opcode of control statements, such as JMP,
LOOP, CALL, as stop-words. These control statements delimit
the different control blocks in the opcode sequence.

Properly representing control blocks in the extracted fea-
ture presents a new challenge, such as how many n-grams to
consider to represent each block and whether or not to include
the stop-words(control statements) when constructing n-grams.
Both of these impact the classification accuracy and feature
dimensionality, which in turn affects model training speed.
Considering stop-words as part of the n-gram, for instance,
results in fewer numbers of unique n-grams, and hence smaller
numbers of features. Similarly the smaller number of n-grams
considered in each control block also results in fewer unique
n-grams.

Giving dimensionality reduction more consideration, we
decided to consider only one n-gram, including the stop-
words, from each control block. We start by extracting opcode
sequences from the disassembled binary. The shingles are



Disassembled Binary

2B 3514 8567 00 sub
8B 0D 10 86 67 00 mov
B8 28 0A 00 00 mov
2B 1558 86 67 00 sub
8B 0D 5C 87 67 00 mov
33 F6 xor

esi, dword_678514
ecx, dword_678610
eax, 0A28h

edx, dword_678658
ecx, dword_67875C

esi, esi

\_/

Opcode Sequence

2B, 8B, B8, 2B, 8B, 33, ...

N-grams

N-gram Frequency Vector

Fig. 1. Extracting opcode n-grams and hashing to reduce dimensionality

then constructed as opcode n-grams starting with a stop-word.
For example, in Figure 2 JNZ is a stop-word and n-gram
is extracted including JNZ. We then use feature hashing to
reduce dimensionality of our feature vector. The feature vector
after hashing presents the frequency of n-gram shingles in the
corresponding bucket.

Besides taking the structure of the code into account, these
features have the added advantage of resulting in a fewer
number of unique opcode n-grams. This translates to a smaller
number of hashing collisions and hence, requires fewer hash
bits, resulting in a lower dimensional feature vector, as shown
in Section VI-B.

D. Import Address Table(DLL) Feature

Features discussed so far depend on a successful disassem-
bling of the malware binaries. However, this is not always the
case, as some advanced malware packers out there make it
very difficult to unpack and disassemble the malware binaries.
In such cases, we need to look for other features that can be
obtained without the need for disassembling. On such feature
is the import table information. The import address table is
one of the sections of a PE file. It contains information about
external libraries and the function in those libraries that are
imported by a program [3].

As a machine learning feature, first all the imported li-
braries(DLLs) in all of the malware samples in the training set
are listed. Once this is done, then a binary vector is constructed
for them. A cell in this vector is 1 if that library is imported

TABLE I DATASET CLASS DISTRIBUTION

Malware Family Name | Number of Samples
Ramnit 1541
Lollipop 2478
Kelihos ver3 2942

Vundo 474

Simda 42

Tracur 751

Kelihos verl 398
Obfuscator. ACY 1228

Gatak 1013

by the malware sample under consideration; it is O otherwise.
Each malware sample will be represented by this binary vector.

VI. EXPERIMENTS AND RESULTS
A. Dataset

The dataset used in this paper was obtained from the the
Microsoft Malware Classification Challenge [6]. It has 10,867
labelled malware samples, which belong to 9 malware families.
Table I shows the class distribution for the nine malware
families. For each malware sample, the disassembled file,
generated using IDA pro [2], and its binary file, without a
PE header, are given.

B. Hash bit length when using feature hashing with n-gram
features

The number of bits used to represent the hash values
determines the total number of buckets to which the keys get



Disassembled Binary

8D 8B D7 90 FE FF lea ecx, [ebx-16F29h]

3B F9 cmp edi, ecx

7511 jnz  short loc_4014BB

B9 39 78 00 00 mov ecx, 7839h

2B 0D 8C 84 67 00 sub ecx, dword_67848C

81 C32A 43 FF FF add ebx, OFFFF432Ah

3B FB cmp edi, ebx

75 0A jnz  short loc_4014D9

C7 05 44 84 67 00 64 D3 00 00 mov dword_678444, 0D364h
29 05 98 84 67 00 sub  dword_678498, eax

Fig. 2. Extracting opcode n-grams and hashing to reduce dimensionality

hashed. The hash bits greatly affect the performance of the
machine learning algorithm. If too small, there will be a lot of
collisions and many n-gram features will be hashed into the
same bucket, hindering descriptiveness of the reduced feature
vector. Large values, on the other hand, fail to reduce the
dimension of our original opcode n-gram feature which results
in the machine learning algorithm taking longer training time,
and being susceptible to overfitting. Therefore, it is important
to determine the appropriate hash bit length.

To determine the hash bit length that is appropriate for
both the opcode n-gram and opcode n-gram with control
statement shingling, we conducted experiments by varying
both the length of the n-gram and the hash bit length. For
these experiments we used Random Forest with 100 base
classifier trees (i.e. the 7" in Algorithm 1). These experiments
were conducted on a smaller subset of the original data, with
946 samples and 10 fold cross validation. The results of these
experiments are shown in Figure 3.

For a fixed value of n in n-gram, we expect the prediction
accuracy to increase with an increase in the number of bits
used to represent the hash value. This is because the larger
number of hash bits results in smaller hash collisions. On the
other hand, for a fixed hash bit length, we expect the prediction
accuracy to decrease as the length of the n-gram increases.
This is because the number of possible n-grams increase as n
increases, and this will result in higher number of collisions.

The results in Figure 3 agree, for the most parts, with
our expectation. For the opcode n-gram features, Figure 3a,
3-gram and 4-gram accuracy increases as the number of hash

Opcode Sequence

8D, 3B, 75, B9, 2B, 81, 3B, 75, C7, 29, ...

- J - J
N-grams

with control
statement
shingling

\ \/

N-gram Frequency Vector

bits increase. In the case of 2-grams, however, accuracy for
the 14-bit hash is less than accuracy at the 12-bit. For 2-
gram opcode sequence there are I? distinct 2-gram opcode
sequences, where I is the number of distinct x86 opcodes. And
a 14-bit hash results in a feature vector of size 2'4=16384,
resulting in 12/16384 collision on average, if the hashing
function uniformly distributes the keys across the 24 buckets.
However, the original 2-gram features are very sparse, so even
though we expected I%/16384 collisions per bucket, most of
the 2-gram frequencies have zero values, thus resulting in the
hash buckets also having zero values. This is exactly what
we found out when we looked at the feature vector for 14-
bit hashed 2-grams. When this sparse feature vector is given
as input to our algorithm, Random Forest, it is possible that
many of the F' features that are considered by the algorithm at
each tree node are zero and do not help in distinguishing the
malware class. Hence, we see that in the case of 2-gram with
14-bit hashing, the prediction accuracy does not improve. One
of the results that we haven’t been able to explain has to do
with the slight decrease in accuracy in case 4-gram when hash
bits are increased from 8-bit to 10-bit in Figure 3a. In spite of
this decrease, the over all trend of increasing in accuracy with
increase in hash-bits is still evident in 4-grams for 12-bit and
14-bit hash.

Opcode n-gram with control statement shingling feature,
Figure 3b, also exhibits similar behavior. In this case, the
optimal hash length for 2-gram is at 10-bit. It is mainly due to
the fact that our proposed features resulted in a smaller number
of distinct n-grams. This, in turn, results in a fewer number of
hash collisions, achieving good classification accuracy even at



a) Opcode n-gram

! !
9B s Kb
e T T : : _q
PR : : : -
-7 | | | e
97?" """"""""" A AR A S N
: : gl
9) | Phs
o : “ :
S 9Bt T I TR S S 1
o ‘ ‘
o . 7 .
< - 3
c -7 :
ie] 95 -7 : A
© R LR L LR PP PO PP PP T TERTR z. ]
e f | 7
‘» ; 7
(] : 7
Y : -
O 94 R .
+*
- ‘
. ~
‘ ‘ L
: : P * =< 2-gram
93 s AT IS :
el : e - 3-gram
: : * —% 4-gram
92 L L L i i
8 9 10 11 12 13 14
Number of hash bits
Fig. 3. Effect of hash bit length on prediction accuracy using Random Forest

a smaller hash bit length.

We also conducted experiments to justify our decision to
include stop-words (control statements), such as JMP,CALL,
etc., when representing each control block in terms of n-grams.
The classification accuracy including the stop words using 10-
bit feature hashing is 97.89%, whereas, classification accuracy
when excluding stop-words using 10-bit feature hashing is
lower at 97.04%. The optimal hash bit length when excluding
stop-words occurs at 12-bits due to the larger number of
unique n-grams. Therefore, not only does including stop-
words in the n-grams improve accuracy, it also reduces the
number of unique n-grams which, in turn, reduces the feature
dimensionality as well as improving model training speed.

C. Evaluating Features

We now compare the prediction accuracy of the features
discussed in Section V. In addition to the individual features,
we also look at some of their combinations. Table II shows
the prediction accuracy on the training set using 10 fold cross
validation.

The last column in the Table shows the number of data
instances considered for each feature. One of the problems
we faced when applying n-gram based features to this data
set was that not all of the malware samples were properly
parsable by our feature extractor. Hence, we see that when
using only instruction mnemonics or opcode based features, we
are only able to classify 10,260 instances. To take advantage of
the high prediction accuracy of n-gram based features and all

b) Opcode n-gram
with control statement shingling

OB g SRR AN 1
: - : T~ . - - == b
- : : i G
- . . . -
-7 : : Y
K . . .
Q7 ot SRR :****r"/”': """"""""""" 1
. .~
. -
. _ -
> L
[5) : : : :
S . P . . . .
5 96 R e s R :
3 e 1 1 e
< - -
c 2 : : : s : :
o : : 7 . .
|95 s RO s R :
Q : : s : :
= X
‘n : 7
» Lz
© : 2 : : :
= ‘ — % : : :
O 94*"";';‘1"'"’ """ R s R st 1
- - : : : : :
: : : % =< 2-gram
O3t R e .
: : : e - 3-gram
: * — 4-gram
92 L L L i i
8 9 10 11 12 13 14
Number of hash bits
TABLE II. PREDICTION ACCURACY USING RANDOM FOREST
Features Accuracy Instances
Asm instruction frequency 97.71 10260
Opcode 2-gram 99.21 10260
Opcode 2-gram using control stmt shingling 99.11 10260
DLL boolean feature 83.41 10867
DLL with Opcode 2-gram 98.25 10867
DLL with Opcode 2-gram using control stmt shingling 97.98 10867

inclusiveness of DLL boolean features, we combined the two
features. Results are shown in the last two rows with prediction
accuracy of 98.25% and 97.98% for opcode 2-gram features
with 12-bit hashing and opcode 2-gram feature with 10-bit
hashing and control statement shingling, respectively.

The new control statement shingling feature proposed in
this paper, opcode n-gram using control statement shingling,
performs very well at 99.11% almost equivalent to normal
opcode n-gram feature which has accuracy 99.21%. Since this
new feature encounters a smaller number of unique n-grams, it
has the added advantage that it needs a fewer number of hash
bits to represent, hence having a smaller space requirement. In
the results shown here, opcode n-gram using control statement
shingling is represented using 10-bit hash, compared to the
normal opcode n-gram feature which requires 12-bits, hence
resulting in almost 4 times as many features.

D. Training Time

The smaller number of features that result from our new
feature also translates to a faster training time. As shown in



TABLE III. TRAINING TIME

Training Time (sec)

Feature Random Forest | Logistic Regression
12-bit opcode n-gram 1.52 2169.72
10-bit control stmt shingling 1.28 67.03

Table III, this is less evident with Random Forest because
it works on a random subset of features when evaluating
the the features for each tree node. The average training
time for Random Forest using the control statement shingling
features with 10-bit hash is 1.28 seconds, whereas using n-
gram frequency features with 12-bit hash it was 1.52 seconds.

The training time difference becomes very significant when
using machine learning algorithms that consider all features for
model training. For example, using Logistic Regression, the
average training time with our new feature which only needs
10-bit hash is 67.03 seconds, whereas when using normal n-
gram features with 12-bit hash is 2169.72 seconds.

These experiments were carried out on a smaller subset of
the original dataset consisting of 946 samples. We used Weka’s
implementation Random Forest and Logistic Regression ran on
a machine with 2.6GHz 8-core cpu and 100GB main memory.

VII. LIMITATIONS

The machine learning features used in this paper rely on
the correct disassembly of the malware binary. The use of
more advanced binary packers by malware authors can make
disassembling difficult. One way to handle this is to use
dynamic analysis to run the packed program and dump process
memory image once the malware has unpacked itself. This is
then given to the disassembler.

The proposed classification technique is for identifying the
malware family of a given malware. This requires the malware
to belong to, or to be a variation of, one of the already known
malware families. Identifying new malware families is beyond
the scope of of this work. Clustering techniques can be used
for this purpose.

VIII. CONCLUSION

In this work we investigated the problem of classifying
malware samples into known malware families. This is an
important problem because more than half of the malware
released each year are variations of existing malware. By clas-
sifying malware samples into families, representative samples
of a given family can be analysed by human experts and
defensive measures can be taken.

We evaluated various static analysis based features for
malware classification. We also proposed a new feature which
performs n-gram shingling with control statements as stop-
words. We showed that the new feature performs comparably
with opcode n-gram feature while requiring smaller feature
vector and shorter training time.

REFERENCES

[1] Av-test malware statistics. http://www.av-test.org/en/statistics/malware/.
[2] 1da pro. https://www.hex-rays.com/products/ida.

[3] An in-depth look into the win32 portable executable file format.
https://msdn.microsoft.com/en-us/magazine/cc301808.aspx.

(4]
(5]
(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Ultimate packer for executables(upx). http://upx.sourceforge.net.
Weka 3. http://www.cs.waikato.ac.nz/ml/weka/.

Microsoft ~ malware  classification
https://www.kaggle.com/c/malware-classification,
accessed 27-April-2015].

J. Attenberg, K. Weinberger, A. Dasgupta, A. Smola, and M. Zinkevich.
Collaborative email-spam filtering with the hashing trick. CEAS, 2009.

D. H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Faloutsos.
Polonium: Tera-scale graph mining and inference for malware detection.
In SIAM International Conference on Data Mining, volume 2, 2011.

challenge  (big
2015.

2015).
[Online;

M. Hassen and P. K. Chan. Scalable function call graph-based malware
classification. In Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy, pages 239-248. ACM,
2017.

X. Hu, T.-c. Chiueh, and K. G. Shin. Large-scale malware indexing
using function-call graphs. In Proceedings of the 16th ACM conference
on Computer and communications security, pages 611-620. ACM,
2009.

X. Hu, K. G. Shin, S. Bhatkar, and K. Griffin. Mutantx-s: Scalable
malware clustering based on static features. In USENIX Annual
Technical Conference, pages 187-198, 2013.

R. Islam, R. Tian, L. Batten, and S. Versteeg. Classification of malware
based on string and function feature selection. In Cybercrime and
Trustworthy Computing, Workshop, page 917. IEEE, 2010.

J. Kinable and O. Kostakis. Malware classification based on call graph
clustering. Journal in computer virology, 7(4):233-245, 2011.

B. G. Ryder. Constructing the call graph of a program. Software
Engineering, IEEE Transactions on, (3):216-226, 1979.

M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo. Data mining
methods for detection of new malicious executables. In Security and
Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on,
pages 38-49. IEEE, 2001.

F. Sebastiani. Machine learning in automated text categorization. ACM
computing surveys (CSUR), 34(1):1-47, 2002.

P.-N. Tan, M. Steinbach, V. Kumar, et al. Introduction to data mining,
volume 1. Pearson Addison Wesley Boston, 2006.

M. Xu, L. Wu, S. Qi, J. Xu, H. Zhang, Y. Ren, and N. Zheng. A
similarity metric method of obfuscated malware using function-call

graph. Journal of Computer Virology and Hacking Techniques, 9(1):35—
47, 2013.



