
Scalable Function Call Graph-based Malware Classification

Mehadi Hassen
Florida Institute of Technology

150 W University Blvd
Melbourne, FL 32901, USA

mhassen2005@my.fit.edu

Philip K. Chan
Florida Institute of Technology

150 W University Blvd
Melbourne, FL 32901, USA

pkc@cs.fit.edu

ABSTRACT
In an attempt to preserve the structural information in mal-
ware binaries during feature extraction, function call graph-
based features have been used in various research works in
malware classification. However, the approach usually em-
ployed when performing classification on these graphs, is
based on computing graph similarity using computationally
intensive techniques. Due to this, much of the previous work
in this area incurred large performance overhead and does
not scale well.

In this paper, we propose a linear time function call graph
(FCG) vector representation based on function clustering
that has significant performance gains in addition to im-
proved classification accuracy. We also show how this rep-
resentation can enable using graph features together with
other non-graph features.

CCS Concepts
•Security and privacy → Malware and its mitiga-
tion; •Computing methodologies→ Supervised learning
by classification;

Keywords
Malware Classification, Graph Classification

1. INTRODUCTION
Anti-malware vendors receive large numbers of files to be

examined on a daily basis. For instance, Microsoft’s real-
time detection anti-malware products generate tens of mil-
lions of daily data points that need to be analyzed on a daily
basis. The reason behind this huge influx of malware sam-
ples is that in an effort to avoid detection, malware authors
constantly modify and/or obfuscate what would have been
otherwise similar malware samples so that they look like
many different files [3]. We refer to these similar samples as
belonging to a single malware “family”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY’17, March 22-24, 2017, Scottsdale, AZ, USA
c© 2017 ACM. ISBN 978-1-4503-4523-1/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3029806.3029824

The large amount of malware makes it impossible to have
human experts analyze all of these files. Hence, the use of
machine learning based approaches can be very helpful in
combating the malware epidemic.

One of the ways in which automated machine learning
based techniques can be used is to group malware samples
into groups and identify their respective families. Doing so
enables human analysts to focus their attention and analyze
fewer representative samples from each family. Hence, ma-
chine learning methods for categorizing these samples into
groups that contain similar malware samples are a necessity.

Various machine learning based approaches have been pro-
posed in past research works. Many of these approaches
rely on features extracted using static analysis of the mal-
ware samples. These features range from simple features,
such as the ones based on strings found in malware bina-
ries, to more complex features based on function call graph
(FCG) representation of the malware binaries. FCG based
features preserve the structural information in malware code
in the form of functions and the caller-callee relation between
them. Past research efforts that used FCG based features
incurred performance overheads introduced as a result of
evaluating the similarities between call graphs.

In this paper, we propose a malware classification method
that groups malware samples into malware families. Our
method is based on FCGs, but unlike past works, we over-
come the performance overhead associated with the FCG
based approach by using a novel technique to convert FCG
representation into a vector representation. Our proposed
approach has the following advantages:

• It is faster compared to previous works for FCG based
malware classification.

• It has a higher classification accuracy compared to pre-
vious works.

• The graph feature vector, extracted from FCGs, can
be easily combined with other non-graph features.

We will start by first reviewing related research works in
Section 2. In Section 3, we will describe the details of our
approach and implementation. And finally, we will evaluate
our approach and compare its efficiency and effectiveness
with previous research works in Section 4.

2. RELATED WORKS
Graph-based features have been used in many research

works for malware clustering and classification. The main



attraction of graph-based features is that they preserve in-
formation on how different parts of the malware code inter-
act.

There are many types of graph information that can be
extracted from malware samples: FCGs, control flow graphs
and system-call dependency graphs. FCG is a directed graph
representation of code where the vertices of the graph corre-
spond to functions (procedures), and the edges represent
the caller-callee relation between the functions (vertices)
[24]. FCGs are usually constructed from disassembled bi-
nary code using static analysis. Various research works [14,
17, 27, 19, 18] have used FCGs to extract features for mal-
ware classification, indexing and clustering.

When representing malware as FCGs, be it for classifica-
tion, indexing or clustering, the fundamental question that
needs to be addressed is that of measuring graph similar-
ity. Graph edit distance (GED) is one such metric that
is used in various domains for measuring the dissimilarity
between two graphs by providing a measure which quanti-
fies the minimum amount of edit operations that need to
be performed to transform one graph into the other. The
appealing aspects of this metric is its customizability (flex-
ibility), which it provides in the form of vertex and edge
related edit distance costs that can be defined to incorpo-
rate domain knowledge [23]. However, exact computation
of GED has exponential time complexity in the number of
vertices. Hence, approximations of the metric are used.

As mentioned earlier, one needs to define cost functions
to be used for calculating GED. In [17, 19], the authors
define GED in terms of three cost function: vertex inser-
tion/deletion cost, edge cost, and vertex relabeling cost. In
their approach, before computing GED, a filtering step is
applied to remove most similar function pairs from the two
graphs, based on the Jaccard Index of the function instruc-
tion frequency vector. Then a random bipartite graph map-
ping of the remaining vertices between the two graphs is
constructed. Simulated annealing [26] is then applied to
find a bipartite mapping to approximate graph edit distance.
Finally, the approximated GED is used in [17] to perform
malware clustering.

In [14], a malware database management system is imple-
mented that indexes malware samples based on their FCG
similarity using on approximate GED. Similar to previously
discussed works, they also approximate GED by finding min-
imum cost bipartite graph mapping between the vertices of
the two graphs. In their case, however, they used the Hun-
garian Algorithm to find this mapping. The Hungarian algo-
rithm finds the minimum cost of a bipartite mapping based
on an input cost matrix. This matrix specifies the cost of
mapping a vertex (function) in one graph to a vertex in a
second graph. In their implementation this cost is composed
of Relabeling Cost, which accounts for the cost of matching
functions, and Neighborhood Cost, which takes into consid-
eration matches between the neighboring vertices as well.
Because of the time complexity of the Hungarian algorithm,
they filter out highly similar functions based on names for
external functions, and based on the similarity of instruction
mnemonic sequences for local functions.

There are other research works that do not use GED for
measuring graph similarity. For example, [27] uses the nor-
malized number of common edges between two graphs as
a measure of similarity. The authors begin by first match-
ing external functions based on their function names. Local

functions are first matched based on their external function
calls, and matching functions (vertices) are removed. The
remaining functions are next matched based on their instruc-
tion opcode. Then, they match the still remaining functions
based on whether the neighboring vertices are matched. Fi-
nally, the similarity metric is calculated as the number of
common edges between the two graphs and normalized by
the sum of number of edges in both graphs over two.

[11] is another example that used a different metric than
GED to measure graph similarity. They approximate graph
similarity via fixed point propagation. A fixed point be-
tween two graphs is defined as a two nodes (one each from
graph) that can be determined to represent the same item
in both graphs. Their algorithm starts from an initial fixed
point and propagates to more fixed points by considering
the neighboring nodes.

In [18], the authors use FCGs to extract new features
to compute the similarity between two graphs. They start
by extracting FCGs, where each function is represented in
terms of size types of initial features. They proceed to learn-
ing a distance metric for each attribute type and an optimal
vertex matching matrix that maximizes between-class dis-
tance while minimizing within-class distance. Finally, they
train classifiers for each feature type and combine the results
in an ensemble classifier.

In [12], the authors propose a way to map function call
graphs (FCGs) to vector form inspired by linear-time graph
kernel[13]. First, FGSs are extracted from android APK
files. To label the graph vertices, instructions are grouped
into 15 categories. A 15-bit vector is used to label the ver-
tices, which indicates the presence or absence of these in-
structions. This label is further changed to the neighbor-
hood hash[13], which is computed as bit-wise XOR of the
vertices 15-bit vector and all of it’s successors vertices. Fi-
nally, the neighborhood hash of the complete graph is ob-
tained by calculating hashes for each node individually and
replacing the original labels with the calculated hash values.
The graphs are represented as multiset of these hash values.
This work presents a way of representing these graphs as
feature vectors such that the inner product between the two
feature vectors is equal to the multi-set intersection of the
two graphs.

The difference between [12] and our work arises primarily
from the way we label the FCG. In our case, we label ver-
tices by cluster-id of the function clusters. This allows us to
represent functions in more detail because all instructions,
as well as the sequence of the instructions, are encoded. It
also allows us to control the granularity of this labeling by
controlling the number of clusters. Secondly, our vector rep-
resentation explicitly encodes graph edges, hence preserving
more information.

System-call dependency is another type graph representa-
tion of a malware. A system-call graph is a graph represen-
tation where the vertices correspond to system calls made
during the execution of the malware, and edges represent
data-flow dependency between system calls, usually deter-
mined by dynamic taint analysis. In [20], the authors extract
this graph from a malware sample using dynamic taint anal-
ysis and then convert it into a smaller graph where the ver-
tices represent a group of system-calls that serve a similar
purpose and the edges represent the dependency between
these groups based on the dependency between individual
system calls. Once this representation is extracted, they



define different similarity metrics for detection and classifi-
cation.

3. APPROACH
There are various ways to extract features through static

analysis, for the purpose of classifying malware using ma-
chine learning. Previous research works have extracted fea-
tures from printable strings in malware binaries [25, 16],
from the length of the functions in disassembled file [16],
from instruction n-grams [15, 28, 21], FCGs [14, 17, 27, 19,
18], or a combination of different features [4].

In this paper we chose to focus on features generated from
function call graphs (FCGs). The main reason for this is
that FCGs better preserve structural information in bina-
ries, for instance, compared to n-gram features. In addition
to containing information about the malware code in the
form of functions and their code, they also contain infor-
mation about the interaction between the functions. The
details of FCG extraction are discussed in Subsection 3.1.

One of the challenges with using FCG is that the names of
the local functions (the functions written by the program au-
thor) are lost during compilation; hence, the vertices of FCG
corresponding to these functions are unlabeled. This makes
it difficult to compare two functions in different FCGs. Our
solution to this problem is to cluster functions based on their
instruction sequence and use these cluster-ids as labels for
the functions. One of the concern we had about clustering
functions was that we would lose some information as multi-
ple functions get hashed to same cluster. Even thought this
is true, our results show that classification accuracy is still
very high. Function clustering is discussed in Subsection 3.2.

There are multiple ways of comparing the labeled FCGs,
such as graph edit distance [17, 14], fixed point propaga-
tion [11], etc. In our approach, in addition to being able
to efficiently compare FCGs, we also wanted to be able to
have the capability for integrating non-graph features when
needed. So unlike many past research efforts that classify
FCGs, our approach first converts a FCG into a feature vec-
tor and then applies machine learning algorithms on these
vectors, as discussed Subsection 3.3.

A high level view of our approach is shown in Figure 1.
Our system starts by first extracting FCG representations
from disassembled malware binaries. Once a FCG is ex-
tracted, the functions (which are the graph vertices) are
clustered using Locality Sensitive Hashing(LSH) based on
the function’s instruction opcode sequence. The FCG ver-
tices are then labeled using the cluster-ids. After labeling
the FCG, our system extracts a vector representation from
the call graph, which will serve as the feature vector of the
malware sample.

During function clustering, some functions that are similar
might be grouped into different clusters due to the random-
ized nature of LSH functions. To address this shortcoming,
during function clustering, graph labeling and extraction of
vector representation is done K times. Each of these vector
representations, extracted in parallel, are given as input to
a separate classifier, which we refer to in Figure 1 as a base
classifier. This is done both during training and test. The
predictions of the base classifier are further used as input
features for the meta-classifier. We will describe the func-
tionality of each module in the following subsections.

3.1 FCG Extraction

There is much structural information that gets lost when
features are extracted from a malware binary. For example,
when extracting features, such as instruction n-gram, the
organization of malware code into different functions, and
the interactions between these functions is not captured in
the extracted feature. So in an attempt to preserve the
structural information, we use FCGs to represent malware
binaries.

A FCG is a directed graph representation of code where
the vertices of the graph correspond to functions and the
directed edges represent the caller-callee relation between
the functions (vertices) [24]. The vertices in this graph can
represent local functions defined in the malware code or ex-
ternal functions imported from libraries.

As shown in Figure 1, the first module of our system takes
disassembled malware binaries and extracts FCG represen-
tations. When extracting FCG, we label vertices of external
functions with the function names. The original names of lo-
cal functions are not preserved during compilation and even-
tually disassembly. Even if they were, these names may not
represent well the instruction sequences that the function
implements. Therefore, we leave the vertices corresponding
to local functions unlabeled for now. Vertices representing
local function also contain the instruction opcode sequence
of that function. We represent the caller-callee relation be-
tween functions as directed, unweighted edges. After ex-
tracting FCG we pass this graph to the next module for
clustering the local functions (vertices) and relabeling them
with their cluster-id.

To help explain the different modules, we will use a toy
example shown in Figure 2. In this example, we assume we
have two disassembled binary files. These files are given as
an input to the FCG Extraction module, which converts the
two samples into a FCG representation. The first sample
has FCG consisting of 4 functions: UF11, UF12, UF13 and
UF14. The second sample has 3 functions UF21, UF23 and
UF24. The function names, for the local function, at this
point are arbitrary names. Hence, it is difficult to compare
the two graphs. We will discuss our solution to make the
comparison easier in the next section.

3.2 Function Clustering
As discussed in the previous section, local functions in

FCG are unlabeled. This makes comparing two FCGs very
difficult. Our solution to this problem is to cluster the func-
tions (vertices) of FCG and label them with a cluster-id.
To perform clustering, we need to have a way of identify-
ing similar functions. In [14], for instance, researchers use
the instruction mnemonic sequence edit distance to calculate
the similarity between functions which do not have similar
names or CRC values of their mnemonic sequence. Even
though edit distance might be a good measure of similarity,
it has O(n2) time complexity in the number of instructions.
In our work, we try to alleviate this bottleneck using Locality
Sensitive Hashing(LSH) for computing an approximate edit
distance between the instruction sequences of two functions.

The challenge here is that there are no locally sensitive
family of hashes, that we know of, for approximating the
edit distance. To address this, we explored the possibility of
approximating edit distance with Jaccard Index. We eval-
uated the effectiveness of Jaccard Index in approximating
edit distance by carrying out experiments where we com-
puted the similarity between opcode sequences of functions



FCG Extraction 

Function 
Clustering 1 

Function 
Clustering 2

Function 
Clustering K

Vector 
Extraction 1

Vector 
Extraction 2

Vector 
Extraction K

Base 
Classifier 1

Base 
Classifier 2

Base 
Classifier K

Meta-Classifier

Figure 1: System overview with K pipelines

Disassembled 
Binary 1

UF11

UF12

UF14

UF13FCG 
Extraction

C2

C3

Vector 
RepresentationC1

1

2

1
Function 

Clustering
Vector 

Extraction
Vertex 
Weights

Edge Weights

2, 1, 1 1, 2, 1,0,0,0,0,0,0

Disassembled 
Binary 2

UF21

UF24

UF23FCG 
Extraction

Vector 
Representation

1

1
Function 

Clustering
Vector 

Extraction
Vertex 
Weights

Edge Weights

1, 1, 1 0, 1, 1,0,0,0,0,0,0

C1

C2

C3

(a) Sample 1

(b) Sample 2

Figure 2: Example

using edit distance as well as Jaccard Index and computed
the Pearson’s correlation coefficient between the two. For
Jaccard Index, we represent the functions as a set of uni-
gram, bi-gram, or trig-ram opcode. Out of the three, Jac-
card Index of uni-gram opcodes had the highest Pearson’s
correlation coefficient with edit distance at 0.957.

Using Jaccard Index to approximate edit distance, how-
ever, is still not fast enough. Fortunately, there is a family of
locality sensitive hash functions, commonly known as Min-
hash [7], that can be used to approximate Jaccard Index,
allowing us to efficiently approximate the similarity between
functions.

Minhash is a LSH technique based on the idea that a hash
of a set is the index of the first element under a random per-
mutation. Then the probability that two sets will have the
same index value of the first element is equal to the Jac-
card similarity between the two sets. However, generating
these permutations is computationally expensive. Hence,
in practice, the random permutations are approximated by
computing the Minhash of a set S as:

h(S) = min
∀x∈S

((c1 ∗ x+ c2) mod P ) (1)

where

• x is the index of an element in set S w.r.t. the super
set of S;

• c1 and c2 are constants and chosen at random for each
hash function;

• P is a prime much larger than the size of the universal
set of all sets [22].

To improve the precision of the Minhash signature, L hash
functions in Equation 1 are used together to generate a sin-
gle Minhash signature by concatenating the values from the
different hash functions. However, it is still possible to have
false negatives (i.e. sets that are highly similar but declared
to be not similar by Minhash). Multiple runs of Minhash
can be used to address this [10].

In our systems case, instead of using Minhash to directly
calculate the similarity between functions, we use it to clus-
ter functions (vertices) of the given graph. Unlike normal
clustering where we would have needed to calculate the sim-
ilarity between each pair of functions, using LSH we can
simply hash the functions into buckets which represent clus-
ters. Logically, we can consider this process as if we are
clustering all functions of all FCGs. In reality, however, our
use of LSH allows us to cluster the vertices in one FCG
without the need to look at other FCGs in an efficient way.

The pseudo-code for our implementation is shown in Al-
gorithm 1. For each vertex, we compute the cluster-id by
first generating a Minhash signature for the n-gram opcode
sequence. The function minhashSignature, in line 2, takes



Algorithm 1: Function Clustering

Input : G: Function call graph. Where functions are
represented in terms of their instruction
opcode sequence.
[h1, . . . , hL]: L hash functions, in Equation 1,

for generating Minhash signature.
Output: Function call graph labeled with function

cluster ids

1 foreach internal function v in G.vertices do
2 signature ←

minhashSignature(v.ngramOpcodeSequence,
[h1, . . . , hL]);

3 clusterId ← hash(signature);
4 v.label ← clusterId;

5 return G;

the n-gram opcode sequence and a list of hash functions,
defined in Equation 1, as input and generates the Minhash
signature. We represent this signature as an array of L hash
values for the n-gram opcode sequence computed using the
given L hash functions. Note that Minhash operates on set
inputs rather than a sequence, as is the case in line 2, where
the input to Minhash is an opcode n-gram sequence. One
way to convert the n-gram sequence into a set representa-
tion is to have a universal set that contains all the n-grams
observed in our training samples, and then the individual
functions represented as subsets of this universal set. How-
ever, to speed up computation in our implementation we
take the hash of an opcode n-gram and use this value as the
index of the opcode n-gram when calculating the Minhash.
The hash function used to compute the index value can be
any hashing function with uniform value distribution and
a large range of hash values to minimize collisions. In our
case, we use murmurhash [5].

Next, these Minhash signatures are further hashed using
an ordinary hash function to compute the cluster-id for that
vertex (function) and this cluster-id value is used to label
the vertex, as shown in lines 3-4. This secondary hashing
also allows us to control the number of clusters.

During our implementations, we also experimented with
the use of different hash functions for the secondary hash.
As mentioned earlier, a hash function that uniformly dis-
tributes its keys across buckets is used. However, we thought
it might make better sense to have hash collisions when
the Minhash hash signatures closely match. So we exper-
imented with using Simhash [9] as the secondary hash func-
tion. Our experiments, however, revealed that although
using Simhash did improve the classification accuracy of
a single base classifier, the hash function which uniformly
distributes its keys achieves better accuracy on the overall
meta-classifier. Therefore, we decided to use an ordinary
hash function for the secondary hash.

At this point the FCGs, labeled by the cluster-ids, can be
logically viewed as a graph where the vertices are clusters
and the edges are calls made from functions in one cluster
to a function in another cluster, or even in the same cluster.
This logical representation is shown in Figure 2. However,
in actual implementation we simply label the the vertices of
input FCG with the cluster-ids.

In our running example in Figure 2, the FCGs extracted

by the FCG Extraction module are given as input to the
current module. In this module a Minhash signature is gen-
erated for each function in the input FCG, a cluster-id is
determined using this signature and the function (vertex) is
labeled by this id. In case of sample 1, we assume, functions
UF11 and UF12 are hashed to cluster C1, UF13 is hashed
to cluster C3, and UF14 is hashed to cluster C2. In the case
of sample 2, we assume functions UF21, UF23 and UF24
are hashed to clusters C1, C3 and C2, respectively.

The resulting graphs shown in Figure 2 are logical view
of FCG after labeling. This view shows a graph where the
vertices are clusters and the edges are calls made from func-
tions in one cluster to a function in another cluster, or even
the same cluster. Now the labeled graphs of sample 1 and 2
are much easier to compare.

3.3 Vector Extraction
In past research works, techniques used for computing

graph similarity have been a source of performance bottle-
neck on FCG based malware classification. Not only were
these a performance bottlenecks, but they also made it dif-
ficult to integrate non-graph features with graph features.
Motivated by these two aspects, we proposed a vector rep-
resentation of FCGs.

Algorithm 2: Creating Vector Representation

Input : G: Function call graph labeled with function
cluster ids;

Output: Graph vector representation

1 Initialize vertexWeight with zero vector;
2 Initialize edgeWeight with zero vector;
3 foreach v in G.vertices do
4 vertexWeight [v.label ] += 1;

5 foreach e in G.edges do
6 index ← EdgeIndex(e.source.label, e.target.label);
7 edgeWeight [index] += 1;

8 graphVector ← concatenate vertexWeight with
edgeWeight;

9 return graphVector;

We extract vector representation from a FCG labeled us-
ing the cluster-ids. This representation consists of two parts,
vertex weight and edge weight. The vertex weight specifies
the number of times a vertex with a given label (cluster-id)
is found in a FCG, or in other words the number of vertices
in each cluster for that FCG. The edge weight specifies the
number of times an edge is found from a vertex in one clus-
ter to a vertex of another cluster or a vertex within the same
cluster.

As shown in Algorithm 2, we start by initializing vertexWeight
and edgeWeight vectors to zero vectors. In lines 3-4, we it-
erate over all the vertices in the input graph and count the
number of vertices labeled with each cluster-id. Next, in
lines 5-7 we compute edge weights for the edges between
cluster-ids (i.e., an edge from a vertex labeled with one
cluster-id to a vertex labeled with another cluster-id) or
within a cluster (i.e. an edge between two vertices labeled
with the same cluster-id). To do so we iterate over each edge
in the input graph and update the frequency of occurrence
edges. In our implementation, we use the EdgeIndex func-
tion to perform a simple lookup for the index representing



the edge type. Finally, we concatenate vertexweight and
edgeWeight vectors to form one vector representing the in-
put FCG.

As mentioned in the Section 3.1, vertices of the FCG cor-
responding to external functions are already labeled by the
name of the external functions. While computing the ver-
tex weight we can use a lookup table to map the external
function names to index values in the vertex weight vec-
tor that correspond to that external function. This requires
first identifying all external functions observed in training
dataset samples and adds an additional processing. To avoid
this, we simply use an arbitrary hash which uniformly dis-
tributes its keys to relabel the external functions with this
value and use this to as the labels refereed in lines 4 and
6 in Algorithm 2. The same applies for the edge weights.
Through our experiment we didn’t notice significant de-
crease in classification accuracy as a result of this hashing.
Therefore, we decided to use this approach to avoid process-
ing overhead.

We acknowledge that our vector representation does not
preserve every detail of a graph structure. For instance, it
is possible to have slightly different graphs with the same
vector representation. However, we believe that this can
have its own advantage in the field of malware classification
by making this representation less susceptible to obfusca-
tion techniques that might change function calling patterns.
That is because small variations in the graph structure might
not get expressed in the vector representation as long as the
edge and vertex frequencies are not changed. Hence, this
representation becomes more resilient to changes such as re-
ordering of function calls.

In our running example, in the case of sample 1 for in-
stance, the labeled FCG contains two functions that are
labeled C1, one C2, and one C3. The vector representa-
tion of the vertex weight part will be 2, 1, 1. The second
part represents edge weights. In sample 1, we have one edge
C1−C1, two C1−C2 and one C1−C3. The vector repre-
sentation of the edge weight part will be 1, 2, 1, 0, 0, 0, 0, 0, 0.
The zeros in the edge weight show that there are no edges,
for example, C2 − C2. The final vector representation will
be a concatenation of these two vectors.

Once the vector representation of all instances is created,
the next step is to train models for classification of the mal-
ware samples.

3.4 Base Classifiers
The function clusters generated as discussed in Section 3.2

has high precision but lower recall. That is, each cluster has
similar functions, but some similar functions may be hashed
into different clusters. Recall can be improved by repeating
this clustering step. In our system, K repeated clustering
steps are run independently and in parallel. For each run, a
separate vector representation is computed. Then separate
base classifiers are trained using the output of each run.

Each of our base classifier is a Random Forest classifier
[6]. The inputs to a base classifier are the vector represen-
tations for the malware FCGs. As shown in Algorithm 3,
the input dataset, which is a list of vector representations
for the malware FCGs, is segmented into T parts (line 2).
Then for each data segment, a classifier is trained on the
remaining data segments and used to predict, in the form of
a probability distribution of over all classes, for each sample
in the segment (lines 3-7). This is used to reconstruct the

Algorithm 3: Training base classifier and creating train-
ing data for meta-classifier

Input : D: Training set containing FCGs vector
representation

Output: Dnew: The training set represented in terms
of class distributions.

1 Initialize Dnew to empty list;
2 Segment D into T parts;
3 for t = 1 to T do
4 Train classifier C on D −Dt;
5 foreach Sample d in Dt do
6 distributiond ← C.predict(d);
7 Add distributiond to Dnew;

8 return Dnew;

Base
Classifier 1

Base 
Classifier K

Meta-Classifier 

Class 1 Class 2 … Class N

0.6 0.2 ... 0.01

Class 1 Class 2 … Class N

0.55 0.1 ... 0.3

Class 1 Class 2 … Class N … Class N

0.6 0.2 ... 0.01 ... 0.3

Class 1 Class 2 … Class N

0.7 0.2 ... 0.05

Figure 3: The meta-classifier

data set in terms of the predictions of the based classifier.

3.5 Meta-Classifier
The meta-classifier combines the predictions of the indi-

vidual base classifiers to output a final prediction. It first re-
ceives the predictions for each data instance from the based
classifiers. These predictions are in the form of probability
distribution over the class labels. Then for each instance,
these probability distributions are concatenated to form a
single feature vector. In other words, the prediction from
the base classifiers serve as an input feature to the meta-
classifier. The meta-classifier is then trained on this vector.
The output of the meta-classifier is a predicted class label
for each data instance as illustrated in Figure 3.

3.6 Enhancements
For a meta-classifier to be effective, we need the base clas-

sifiers to be sufficiently different from each other [8]. In the
case of our original design presented so far, the difference
between the base classifiers comes as a result of the false neg-
atives introduced by function clustering with LSH. Through
our experiments, we were able to determine that the dif-
ferent runs of the Function clustering using a same number



of Minhash functions(L) were not producing enough varia-
tion to take full advantage of ensembling. So to introduce
more variation, we used different values for L in Function
clustering for the K different runs.

4. EXPERIMENTAL EVALUATION

4.1 Dataset
For the purpose of evaluating our proposed approach for

classifying malware into families, we will be using the Mi-
crosoft Malware Classification Challenge (BIG 2015) dataset
[3]. The original dataset consists of 10,867 labeled malware
samples. Our disassembled file parser were able to properly
parse 10,260 of the samples. Hence, we will be using these
in the following evaluations. The class distribution of these
samples are shown in Table 1.

To compare our work with Adagoi [12], we will use a sec-
ondary dataset consisting of 1,113 benign android apps and
1,200 malicious android apps. The malicious samples are
from the Android Malware Genome Project [2]. A colleague
at our university provided us with the benign samples, down-
loaded from the Google Play Store.

Table 1: Microsoft malware dataset class distribution

Malware Family Name Number of Samples
Ramnit 1513
Lollipop 2470
Kelihos ver3 2936
Vundo 446
Simda 34
Tracur 294
Kelihos ver1 387
Obfuscator.ACY 1168
Gatak 1012

4.2 Parameter Selection
The first two parameters of our algorithm that need to be

configured experimentally are the length of instruction op-
code n-grams, and the number of function (vertex) clusters.
N-gram length determines how many instructions are used
in each n-gram when representing local functions as sets of
n-grams; in other words it determines the n in n-gram. Clus-
ter number determines the number of buckets functions are
hashed into.

Figure 4 shows the classification accuracy results when us-
ing uni-gram, in both the n-gram length and cluster number
experiments, only a single base classifier was used. In the
Figure 4, using uni-grams results in better accuracy than
both bi-grams and trig-rams and that using bi-grams re-
sults in better accuracy than tri-gram. This result can be
explained by going back to the distance function (we are
trying approximate function similarity in our approach.) As
discussed in Section 3.2, we are trying to approximate edit
distance using Jaccard Index, which we in turn approximate
using Minhash. When computing edit distance, the insertion
and deletion operations work on uni-grams. So the longer
the n-gram we use when approximating edit distance with
Minhash, the less accurate our approximation.

When it comes to the number of function clusters, we ex-
pect the classification accuracy to increase as the number

1 2 3
N in N-gram

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy

16 function clusters
64 function clusters
256 function clusters

Figure 4: Effect of n-gram length on classification accuracy

8 16 32 64 128 256 512 1024
Number of Clusters

0.930

0.935

0.940

0.945

0.950

0.955

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy

ngram length 1

Figure 5: Effect of number of function clusters on classifica-
tion accuracy

of function clusters increases. This expectation can be un-
derstood by considering the fact that by hashing function
into smaller number of clusters, we increase the likelihood
of dissimilar functions being hashed into the same cluster.
Obviously, this in turn results in lower classification accu-
racy. The results in Figure 5 agree with our expectations.
The experiments to determine the number of function clus-
ters were carried out using uni-gram opcode sets to repre-
sent functions and clustering the functions (vertices) into
the specified number of clusters before converting to vector
representation.

The other parameters that need to be tuned experimen-
tally are the number of base classifiers(K), and the number
of Minhash functions used for computing the Minhash Sig-
nature (L). In our experiments, we evaluated various values
of K. We observed that in the case the current evaluation
dataset increasing the value of K above 6 didn’t result in
much improvement. As discussed in Section 3.6, using dif-
ferent values for L for the K different runs, results in more
variation among the K base classifiers and results in better
meta-classifier performance. In our experiments we evalu-
ated a couple of L value combinations and picked the one



that resulted in better performance.

4.3 Classification Accuracy Comparison
We evaluate our approaches accuracy by comparing it

with our implementation of Kinable et.al. [17, 19] work
on FCG classification. In [17], they use an approximate
GED to measure the similarity between FCGs. GED dis-
tance is approximated using Simulated Annealing (SA) to
find a bipartite graph mapping between the vertices of the
two graphs that minimizes the GED. Since this is a com-
putationally intensive task, functions in the two graphs that
have instruction edit distance greater than some threshold τ
are filtered out before creating the bipartite graph mapping.
Then the FCGs are clustered based on GED.

Since using SA to approximate GED was computationally
intensive, we evaluated both our proposed method and our
implementation of Kinable et.al. work on a smaller sub set
of the dataset consisting of 1000 malware samples. In our
implementation of Kinable et.al. research, we filtered out
most similar functions between pairs of graphs by setting
the filter threshold τ to 0.9 and then created bipartite map-
ping on the remaining functions (vertices). We cluster the
malware samples using k-medoids and then assigned a class
label to each cluster based on the majority class. Hence, we
determined every element of a cluster whose class label is
different from the majority class as being misclassified. Fig-
ure 6 shows the confusion matrix of classifying the thousand
samples in this way.

Next we evaluated our approach on the same 1000-malware
sample with 10-fold cross validation to predict the labels on
the thousand samples. Our system is set-up using six base
classifiers(i.e. K = 6), which means that there are six paral-
lel pipelines consisting of the Function clustering, Call graph
vector extraction, and Base classifier modules. In all the of
Function clustering modules, we represented functions (ver-
tices) with uni-gram opcode sequence and clustered them
into 64 clusters. To make the base classifiers more decorre-
lated, the Minhash signatures are generated using varying
number of hash functions (i.e. value of L in Algorithm 1).
In first two of the six pipelines L = 1, in the next two L = 3
and in the last two L = 5.

As can be seen from the results in Figures 6 and 7, our
approach clearly out performs the SA based method with
an overall accuracy of 0.979 versus the 0.840 of the previous
works on the smaller dataset. Our system has high accu-
racy for almost all of the malware families, apart from the
malware family Simda. The reason behind the poor accu-
racy in the case of Simda is the very small number of train-
ing samples. In the entire evaluation dataset there are only
34 instances, and in the case of the sampler 1000 instance
dataset used in this section there were only 4 samples.

Figure 8 shows the classification accuracy of our approach
when applied on the entire dataset using a 10-fold cross val-
idation. Again we see that our system gets near perfect
classification accuracy for all families except Simda. Which
is again due to the smaller number of training samples.

4.4 Speed Comparison
We will now empirically compare the speed of our ap-

proach with that of SA based approach. For our approach,
we timed the execution in the components starting with Call
Graph Extraction to Call graph Vector representation (in-
clusive). We excluded the time taken by the learning al-

gorithm. For the SA based approach we timed the process
starting with Call Graph Extraction up to the GED com-
putation between all pairs of malware samples, using SA.
Similarly here, we excluded the time taken by the learning
algorithm.

Table 2: Speed comparison

Approach Average Time (min)
All pair similarity SA and GED 2006
Graph Vector Representation 7

The results in Table 2 show these time measurements, av-
eraged over three runs, on a smaller subset of the evaluation
data set consisting of 1000 samples. As we expected, our
approach is significantly faster than the SA based technique
making FCG classification scalable. These experiments were
carried out on a machine with 2.3 GHz quad code CPU with
8 GB memory.

Time Complexity Comparison: To compare the train-
ing time complexity of these two approaches we will only
consider the feature extraction phase in both methods and
exclude the machine learning algorithms.

For the Simulated Annealing based approach, we consider
the time complexity of graph similarity computation and
exclude the clustering part when looking at the time com-
plexity. As shown in [19], the time complexity of running
Simulated Annealing to approximate Graph Edit Distance
between two graphs is O(|Vmax|2 · dmax), where |Vmax| is
the number of vertices of the largest graph, and dmax is
the maximum value of degree for any node. For N graphs
then O(N2) distance (similarity) computations are going to
be required. Therefore, for N graphs the worst case time
complexity becomes O(N2 · |Vmax|2 · dmax).

In case of our system we consider time complexity of the
Function clustering and Vector extraction modules. When
we look at the Function clustering module, it is clear from
Algorithm 1 that given an input graph G = (V,E), it has
time complexity of O(|V |). For N graphs then the worst
case time complexity becomes O(N · |Vmax|), where |Vmax|
is the number of vertices of the largest graph in the training
dataset. For the Vector extraction module, we visit each
vertex and each edge only once. Hence, the complexity of
the module for a given input graph G = (V,E) is O(|V | +
|E|). For N graphs then, the worst case time complexity
becomes O(N · (|Vmax| + |Emax|)). Finally, the total worst
case time complexity of the two modules together for N
graphs is O(N · (|Vmax|+ |Emax|)). So it can be clearly seen
here that our approach compares favorably to the one based
on Simulated Annealing.

4.5 Classifying benign and malware applica-
tions

In this section we will compare our approach with an-
other closely related work, Adagoi [12]. We used the authors
implementation of Adagoi [1], which performs classification
between benign and malicious Android apps. To work with
android apk files, we modified the implementation of the
FCG Extraction module, in our system.

The evaluation was performed by randomly splinting the
initial dataset to use 80% as training data and the remaining
as test data. This was repeated 10 times, and the resulting
average ROC curve is shown in Figure 9. As seen in the



R
am

ni
t

Lo
llip

op

Ke
lih

os
_v

er
3

Vu
nd

o

Si
m

da

Tr
ac

ur

Ke
lih

os
_v

er
1

O
bf

us
ca

to
r.A

C
Y

G
at

ak

Predicted label

Ramnit

Lollipop

Kelihos_ver3

Vundo

Simda

Tracur

Kelihos_ver1

Obfuscator.ACY

Gatak

Tr
ue

 la
be

l
Overall Accuracy = 0.840

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 6: Confusion matrix for using Simulated
Annealing on 1000-sample dataset

R
am

ni
t

Lo
llip

op

Ke
lih

os
_v

er
3

Vu
nd

o

Si
m

da

Tr
ac

ur

Ke
lih

os
_v

er
1

O
bf

us
ca

to
r.A

C
Y

G
at

ak

Predicted label

Ramnit

Lollipop

Kelihos_ver3

Vundo

Simda

Tracur

Kelihos_ver1

Obfuscator.ACY

Gatak

Tr
ue

 la
be

l

Overall Accuracy = 0.979

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 7: Confusion matrix using meta-classifier on
1000-sample dataset

R
am

ni
t

Lo
llip

op

Ke
lih

os
_v

er
3

Vu
nd

o

Si
m

da

Tr
ac

ur

Ke
lih

os
_v

er
1

O
bf

us
ca

to
r.A

C
Y

G
at

ak

Predicted label

Ramnit

Lollipop

Kelihos_ver3

Vundo

Simda

Tracur

Kelihos_ver1

Obfuscator.ACY

Gatak

Tr
ue

 la
be

l

Overall Accuracy = 0.993

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 8: Confusion matrix using meta-classifier on entire
dataset

figure, our approach performs better than Adagoi. For in-
stance, at 0.01 false positive rate, the area under the curve
for our approach is 0.0099 where as for Adagoi it is 0.0091.

4.6 Combining with Non-graph Features
The former FCG based techniques, which relied solely

on graph representation and on measuring graph similarity,
were not easy to use together with other non-graph based
features. Our proposed approach, on the other hand, ex-
tracts feature vectors from FCGs that can be easily used
with other features by simply concatenating the feature vec-
tors.

To demonstrate this, we use binary byte bi-gram frequency
features. These features are extracted by computing the fre-

0.000 0.002 0.004 0.006 0.008 0.010

False positive rate

0.80

0.85

0.90

0.95

1.00
T
ru

e
 p

o
si

ti
v
e
 r

a
te

Our approach

Adagio

Figure 9: ROC curve

quency of byte bi-grams in malware sample raw binary files.
We take these feature vectors and concatenate a random
subset of them with the graph vectors before passing them
to the base classifiers. The reason for taking a random sub-
set of these features is to help make the base classifiers more
decorrelated.

Combining these features with the graph features, our
overall classification accuracy slightly increased to 0.9933
from 0.993. This can be explained by the fact that both
the graph and the n-gram frequency features are have over-
laps in that they both are extracted based on the content of
malware binary. As a future work we would like to examine
combining our FCG features with the various features used
in [4].

5. CONCLUSIONS
In this paper we presented a fast and effective malware

classification system based on extracting feature vector from



FCG representation. Our approach was able to address two
bottlenecks in previous malware classification systems that
were based on FCG features. First, we were able to speed up
the process of measuring similarity between functions using
Minhash, an Locality Sensitive Hashing technique. Second,
we avoided the major bottleneck of computing graph sim-
ilarity by converting the graph representation into vector
representation using function clustering based on the Min-
hash signatures of the functions.

6. REFERENCES
[1] Adagio. https://github.com/hgascon/adagio.

[2] Android malware genome project.
http://www.malgenomeproject.org/.

[3] Microsoft malware classification challenge (big 2015).
https://www.kaggle.com/c/malware-classification,
2015. [Online; accessed 27-April-2015].

[4] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov,
and G. Giacinto. Novel feature extraction, selection
and fusion for effective malware family classification.
In Proceedings of the Sixth ACM Conference on Data
and Application Security and Privacy, pages 183–194.
ACM, 2016.

[5] A. Appleby. Murmurhash3.
https://github.com/aappleby/smhasher, 2008.

[6] L. Breiman. Random forests. Machine learning,
45(1):5–32, 2001.

[7] A. Z. Broder. On the resemblance and containment of
documents. In Compression and Complexity of
Sequences 1997. Proceedings, pages 21–29. IEEE, 1997.

[8] P. Chan. An Extensible Meta-Learning Approach for
Scalable and Accurate Inductive Learning. PhD thesis,
Department of Computer Science, Columbia
University, New York, NY, 1996.

[9] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In Proceedings of the thiry-fourth
annual ACM symposium on Theory of computing,
pages 380–388. ACM, 2002.

[10] A. S. Das, M. Datar, A. Garg, and S. Rajaram.
Google news personalization: scalable online
collaborative filtering. In Proceedings of the 16th
international conference on World Wide Web, pages
271–280. ACM, 2007.

[11] T. Dullien and R. Rolles. Graph-based comparison of
executable objects (english version). SSTIC, 5:1–3,
2005.

[12] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck.
Structural detection of android malware using
embedded call graphs. In Proceedings of the 2013
ACM workshop on Artificial intelligence and security,
pages 45–54. ACM, 2013.

[13] S. Hido and H. Kashima. A linear-time graph kernel.
In 2009 Ninth IEEE International Conference on Data
Mining, pages 179–188. IEEE, 2009.

[14] X. Hu, T.-c. Chiueh, and K. G. Shin. Large-scale
malware indexing using function-call graphs. In
Proceedings of the 16th ACM conference on Computer
and communications security, pages 611–620. ACM,
2009.

[15] X. Hu, K. G. Shin, S. Bhatkar, and K. Griffin.
Mutantx-s: Scalable malware clustering based on

static features. In USENIX Annual Technical
Conference, pages 187–198, 2013.

[16] R. Islam, R. Tian, L. Batten, and S. Versteeg.
Classification of malware based on string and function
feature selection. In Cybercrime and Trustworthy
Computing Workshop (CTC), 2010 Second, pages
9–17. IEEE, 2010.

[17] J. Kinable and O. Kostakis. Malware classification
based on call graph clustering. Journal in computer
virology, 7(4):233–245, 2011.

[18] D. Kong and G. Yan. Discriminant malware distance
learning on structural information for automated
malware classification. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1357–1365. ACM,
2013.

[19] O. Kostakis, J. Kinable, H. Mahmoudi, and
K. Mustonen. Improved call graph comparison using
simulated annealing. In Proceedings of the 2011 ACM
Symposium on Applied Computing, pages 1516–1523.
ACM, 2011.

[20] S. D. Nikolopoulos and I. Polenakis. A graph-based
model for malware detection and classification using
system-call groups. Journal of Computer Virology and
Hacking Techniques, pages 1–18, 2016.

[21] S. Pai, F. Di Troia, C. A. Visaggio, T. H. Austin, and
M. Stamp. Clustering for malware classification.
Journal of Computer Virology and Hacking
Techniques, pages 1–13, 2016.

[22] A. Rajaraman, J. D. Ullman, J. D. Ullman, and J. D.
Ullman. Mining of massive datasets, volume 1.
Cambridge University Press Cambridge, 2012.

[23] K. Riesen and H. Bunke. Approximate graph edit
distance computation by means of bipartite graph
matching. Image and Vision computing,
27(7):950–959, 2009.

[24] B. G. Ryder. Constructing the call graph of a
program. Software Engineering, IEEE Transactions
on, (3):216–226, 1979.

[25] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo.
Data mining methods for detection of new malicious
executables. In Security and Privacy, 2001. S&P 2001.
Proceedings. 2001 IEEE Symposium on, pages 38–49.
IEEE, 2001.

[26] L. Xu and E. Oja. Improved simulated annealing,
boltzmann machine, and attributed graph matching.
In Neural Networks, pages 151–160. Springer, 1990.

[27] M. Xu, L. Wu, S. Qi, J. Xu, H. Zhang, Y. Ren, and
N. Zheng. A similarity metric method of obfuscated
malware using function-call graph. Journal of
Computer Virology and Hacking Techniques,
9(1):35–47, 2013.

[28] G. Yan, N. Brown, and D. Kong. Exploring
discriminatory features for automated malware
classification. In Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 41–61. Springer,
2013.


