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Abstract 
 

Many approaches have been suggested and 
various systems been modeled to detect intrusions from 
anomalous behavior of system calls as a result of an 
attack. Though these techniques have been shown to be 
quite effective, a key element seems to be missing – the 
inclusion and utilization of the system call arguments to 
create a richer, more valuable signature and to use this 
information to model the intrusion detection system more 
accurately. We put forth the idea of adopting a rule 
learning approach that mobilizes rules based upon system 
calls and models the system for normal traffic using 
system call arguments and other key attributes. We present 
variations of our techniques and compare the results with 
those from some of the well known techniques based upon 
system call sequences. The results show that system call 
argument information is crucial and assists to successfully 
detect U2R, R2L and Data attacks generating lesser false 
alarms. 
 
 
1. Introduction 
 

Motivation: The Internet has invariably been a medium 
for malicious purposes. Attacks on computers, be it some 
graduate students trying to hack systems to prove their 
mettle or intruders with more damaging intentions, is on a 
steady rise. Moreover, novel attacks and hacking schemes 
are developed all the time, making it hard for systems to be 
made immune to all these vulnerabilities. It has thus 
become imperative that these be checked early to minimize 
losses.  

 
Two different lines of approach have been adopted to 
detect intrusions. The first technique, misuse (signature) 
detection, is similar to pattern matching -- systems are 

modeled upon known attack patterns and the test data is 
checked for the occurrence of these patterns. These 
systems have a high degree of accuracy but fail to detect 
new attacks. The other method, anomaly detection, models 
normal behavior and significant deviations from this 
behavior are considered anomalous. The primary 
advantage of this approach is that it can detect novel 
attacks, the drawback being that it can generate a lot of 
false alarms. This is attributed to the fact that not all 
anomalies are necessarily attacks and will thus result in 
false positives. 
 
Intrusion Detection Systems (IDSs) can also be 
categorized as network-based and host-based. In the 
former, header fields of the various network protocols are 
used to detect intrusions. For example, the IP header fields 
- source IP address, destination IP address, source port 
number, destination port number and others can be used to 
check for malicious intent. In the latter approach (a host-
based IDS), the focus shifts to the operating system level. 
System call data is extracted from audit logs like the 
Solaris Basic Security Module (BSM) [16] and their 
behavior is studied to detect attacks. 
 
Most of the present techniques for host-based anomaly 
detection systems revolve around sequences of system 
calls. These techniques are based upon the observation that 
an illegitimate activity results in an abnormal (novel) 
sequence of system calls.  
 
Problem: The efficacy of such systems might be improved 
upon if more information is utilized. For system calls the 
most intuitive option lies in the system call arguments. 
Some other attributes related with system calls are the path 
for the object, the return value and the error status. Does 
adding these attributes assist in modeling a host-based 
anomaly detection system better? How do such systems 
fare (in terms of detections, false alarms, space and time 



requirements) as compared to the systems based only upon 
the sequence of system call information? These are some 
of the key issues we seek to explore in this paper. 
 
Approach: We extract system calls, their arguments, path, 
return value and error status from the Solaris BSM audit 
logs [16]. We then propose a host-based anomaly-
detection system using system calls and other 
aforementioned key attributes by using variants of LERAD 
(Learning Rules for Anomaly Detection) [14], which is a 
conditional rule-learning algorithm. We aim at forming 
rules for our anomaly detection system based upon the 
system calls and their attributes. We suggest that including 
these attributes to the system calls will result in learning 
more information, thereby enabling us to model our 
systems better and detecting more attacks. We propose 
three models – the first one modeling system call 
sequences using LERAD, the second modeling system call 
arguments and other attributes, and the third approach 
being a combination of the two. We juxtapose these 
techniques and also compare them with some of the 
previous well-known sequence-based techniques, namely 
tide, stide, t-stide [20]. 
 
Contributions: 

• We proposed the use of system call argument 
information to enrich the representation of program 
behavior in anomaly detection. 

• We proposed modifications to LERAD to learn rules 
that allow one of the attributes to be designated as a 
pivotal attribute (system call in our case -- explanation 
in Section 3.2.2) on which the rules are based. 

• As compared to tide, stide and t-stide, three well 
known sequence-based techniques (more details in 
Section 2), our argument-based systems are able to 
detect more attacks at lower false alarm rates.  

• Our method that uses both sequence and argument 
information generally detected the most attacks with 
different false alarm rates.  
 

Organization: Section 2 describes the related work in the 
field of anomaly detection. In Section 3, we discuss the 
approach that we adopt for prepare the data set for our 
anomaly detection models. We give a brief explanation of 
LERAD on which our models are based. Then we describe 
the three variants of LERAD that are used to investigate 
different issues. Section 4 gives a brief description of 
evaluation data, procedure and criteria. Then we analyze 
the results obtained from the experiments we performed. In 
Section 5, we conclude and put forth some views for future 
endeavors. 

2. Related Work 
 
Forrest et al. [2] proposed an approach for host based 
anomaly detection called time-delay embedding (tide), 
wherein traces of normal application executions were 
noted. A sliding look-ahead window of a fixed length was 
used to record correlations between pairs of system calls. 
These correlations were stored in a database of normal 
patterns, which was then used to monitor sequences during 
the testing phase. Anomalies were accumulated over the 
entire sequence and an alarm was raised if the anomaly 
count exceeded the threshold. tide forms correlations 
between pairs of system calls within a certain preset 
window size. Some of the issues involved in their approach 
were:  using a small window does not help to form 
correlations over a long period of time. Similar sequences 
with minor variations could still be flagged as anomalous.  

 

Later work by Warrender et al [20] extended this 
technique in sequence time-delay embedding (stide), which 
memorized all contiguous sequences of predetermined, 
fixed lengths during training. An anomaly count was 
defined as the number of mismatches in a temporally local 
region. A threshold was set for the anomaly score above 
which a sequence is flagged anomalous, indicating a 
possible attack. stide memorizes all fixed length sequences 
from the training data, irrespective of the number of 
instances found in the dataset. An extension, called 
sequence time-delay embedding with (frequency) threshold 
(t-stide), was similar to stide with the exception that the 
frequencies of these fixed length sequences were also 
taken into account. Rare sequences were ignored from the 
normal sequence database in this approach. When 
encountered during the testing phase, they were also 
counted as mismatches and aggregated to the locality 
frame counts (anomaly counts). All these techniques 
modeled normal behavior by using fixed length patterns of 
training sequences. But there was no rationale in fixing the 
length to a predetermined constant value.  

 

Wespi et al. [21], [22] proposed a scheme to generate 
variable length patterns by using Teiresias [17], a pattern-
discovery algorithm in biological sequences. These 
techniques improved upon the fixed length pattern 
methods cited above. Some extensions to (fixed and 
variable length) sequence-based methods were also 
proposed in [6], [7] and [8]. Though all the above 
mentioned approaches use system call sequences, none of 
them make use of the system call arguments. Given some 
knowledge about the system being used, attackers can 
devise some methodologies to evade such intrusion 
detection systems. Wagner and Soto [19] made such an 



attempt to model a malicious sequence by adding "no-ops" 
(system calls having no effect) to compromise an IDS 
based upon the sequence of system calls. This brings to 
surface yet another shortcoming of sequence-based 
methods. Such attacks would fail if the system call 
arguments are also taken into consideration.  

 

Sekar and others [18] proposed a method to build a 
compact finite state automaton (FSA) in an efficient way to 
detect intrusive activities. But no frequency information is 
stored in the FSA. Again, there lies the inherent drawback 
that the system call arguments are not considered. In [3], 
Feng et al proposed a method that dynamically extracts 
return address information from the call stack and program 
counter information is recorded at each system call. This 
technique performs equally well as compared to the 
deterministic FSA approach in terms of detections, 
convergence and false positives.  

 

Artificial neural networks (ANNs) have been employed for 
both anomaly and misuse (signature) detection. Ghosh and 
Schwartzbad [4] expressed the idea of a process-based 
intrusion detection system that can generalize from 
previously observed behavior to recognize future unseen 
behavior. But their system ignores isolated anomalies.  

 

Machine learning approaches have also been used to 
model intrusion detection systems. Lee at el. [11] verified 
the feasibility of rule-learning approaches by using an 
algorithm called RIPPER [1]. Mahoney and Chan [14] 
introduced a machine-learning algorithm called LERAD 
(Learning Rules for Anomaly Detection) to detect network 
intrusions. This technique extended the network traffic 
model to include a larger number of attributes. They also 
introduced and used the concept of a non-stationary model 
in [13], [14] and [15], in which the probability of an event 
depends upon its most recent occurrence and not on the 
frequency. LERAD is a conditional rule-learning algorithm 
that selects good rules from a vast rule space. This paper 
uses variants of LERAD for a host-based anomaly 
detection system. 
 
3. Approach 
 
Rule learning techniques have been shown that they can be 
successfully adapted to model systems for intrusion 
detection [14]. Since our goal is to detect host-based 
intrusions and we are dealing with BSM audit data, system 
calls are instrumental in our system. We thus extend upon 
the machine learning approach and incorporate the system 
calls with its arguments to generate a richer set of rules and 

measure the performance on the basis of number of 
detections and the false alarm rate. We study and evaluate 
three different variations of modeling a system using 
LERAD: sequence of system calls, system calls and their 
arguments, and a fusion of the previous two 
methodologies. We compare and contrast the results from 
these three models of our approach with tide, stide and t-
stide. 

 

3.1. Learning Rules for Anomaly Detection 
(LERAD) 
 

LERAD is an efficient conditional rule-learning algorithm 
that picks up attributes in a random fashion. LERAD is 
briefly described here. More details can be obtained from 
[14].  LERAD learns rules of the form: 

                                               
,....},{,..., 21 xxXbBaA ∈�==                       (1)                                         

 

where A, B, and X are attributes and a, b, x1, x2 are values 
to the corresponding attributes.  The learned rules 
represent the patterns present in the training data that 
consist of normal behavior.  The set {x1, x2, …} in the 
consequent constitutes all unique values of X when the 
antecedent occurs in the training data.  (These rules are 
different from typical classification rules or association 
rules.)   

 

Records that match the antecedent but not the consequent 
of a rule are considered anomalous.  The degree of 
anomaly is based on a probabilistic model.   For each rule, 
from the training data, the probability, p, of observing a 
value not in the consequent is estimated by: 

                                        
nrbBaAxxXp /,...),|...},{Pr( 21 ===∉=     (2) 

 

where ‘r’ is the cardinality of the set, {x1, x2, …}, in the 
consequent and ‘n’ is the number of records that satisfy the 
antecedent.  This probability estimation of novel (zero 
frequency) events is due to Witten and Bell [23].  Since p 
estimates the probability of a novel event, the larger p is, 
the less anomalous a novel event is.  Hence, during 
detection, when a novel event is observed, the degree of 
anomaly, or Anomaly Score, is estimated by: 

                                                        
rnpreAnomalySco //1 ==                     (3) 

 



The rule generation phase of LERAD comprises of three 
main steps: 

(i) Candidate rules are generated from patterns observed in 
randomly selected pairs of training examples: Training 
samples are picked up at random and then an initial set of 
rules is generated based upon common attributes between 
the samples. The conditional rules formed are of the type 
depicted in Equation (1) above.  

(ii) The rule set is minimized by removing rules that do not 
cover/describe additional training examples:  Redundant 
rules are discarded and a minimal set of rules is generated. 

(iii) A subset of the training set is chosen as a validation 
set on which no training is performed: Rules learnt so far 
are used to test the data in this validation set. Rules are 
removed if they cause a false alarm in the validation set. 
This is due to the fact that the validation data set comprises 
of clean data (no attacks) and any anomaly implies a false 
alarm. 

 

The rule generation methodology of LERAD is described 
next using Table 1. 

 

Table 1: LERAD rule generation example: S1 – S6 
are training samples with attributes A, B, C and D.  

Training 
Sample 

A B C D 

S1 1 2 3 4 

S2 1 2 3 5 

S3 6 7 8 4 

S4 1 0 9 5 

S5 1 2 3 4 

S6 6 3 8 5 

 

Step (i) Samples, say S1 and S2, are picked at random to 
create an initial rule set. Rules are generated by selecting 
matching attributes in a random order. In this example, the 
S1 and S2 have the matching attributes A, B and C. 
Selecting them in the order B, C and A, we get the 
following 3 rules: 
 

Rule1: * �  B ∈  {2} 

Rule 2: C=3 �  B ∈  {2} 

Rule 3: A=1, C=3 �  B ∈{2} 
 

A rule so generated implies that the attribute in the 
consequent can have a value from a set of values only if 

the conditions in the antecedent are satisfied. It may so 
happen that there is a consequent but no antecedent in a 
rule formed by LERAD. This means that an attribute can 
take any value from its set of values without the need to 
satisfy any other condition. Such a situation is presented in 
Rule 1 where the antecedent is represented by a wildcard 
character *.  

 

Step (ii) Coverage test is applied to a subset of the training 
set (say S1-S3) and rules are modified as follows: 
 

Rule1: * �  B ∈  {2, 7} 

Rule 2: C=3 �  B ∈  {2} 

Rule 3: A=1, C=3 �  B ∈{2} 
 

Once we have the extended rule set, the probability p -- 
described in Equation (2) above -- is associated with every 
rule. The rules are then sorted in increasing order of the 
probability p: 
 

Rule 2: C=3 �  B ∉  {2} [p = 1/2] 

Rule 3: A=1, C=3 �  B ∉{2} [p = 1/2] 

Rule 1: * �  B ∉  {2, 7} [p = 2/3] 
 

When the probabilities are equal, the rule with lesser 
number of conditions in the antecedent is given higher 
priority (Rule 2 is higher in priority than Rule 3 in our 
example). Next, we desire a minimal set of rules. This is 
achieved by removing those rules that do not give any new 
information. In our example, Rule 2 is satisfied by samples 
1 and 2. Rule 3 does not add any new value to the attribute 
B and is thus deemed as redundant and is removed from 
the rule set. The last rule (Rule 1) covers sample 3 as well 
and is kept in the rule set. 

 

Extending the two rules to the entire training (minus 
validation) set (samples S1-S5 in our example), we get 
 

Rule 2: C=3 �  B ∉  {2} [p = 1/3] 

Rule 1: * �  B ∉  {2, 7, 0} [p = 3/5] 
 

Step (iii): The last step comprises of testing the above set 
of rules on the validation set, which is a subset of the 
training data for which rules have not been generated. Any 
rule which produces anomaly in the validation set is 
removed. In our example, sample S6 forms the validation 
set. Rule 1 is violated since attribute B has a novel value 3 
in this sample. Thus, we are left with the following rule: 



C=3 �  B ∉  {2} [p = 1/3] 
 

A non-stationary model is assumed for LERAD – 
frequency is made irrelevant and only the last occurrence 
of an event is assumed important. Since novel events are 
bursty in conjunction with attacks, a ‘t’ factor was 
introduced to capture the non-stationary characteristic, 
where ‘t’ is the time interval since the last novel 
(anomalous) event.  When a novel event occurred recently, 
or t is small, a novel event is more likely to occur at the 
present moment.  Hence, the anomaly score is measured by 
t/p.  Since a record can deviate from the consequent of 
more than one rule, the total anomaly score of a record is: 

                                            

ii
i

ii
i

i rntptlyScoreTotalAnoma // �� ==               (4)                           

where ‘i’ is the index of a rule from which the record has 
deviated. The anomaly score is aggregated over all the 
rules to combine the effect from violation of multiple rules. 
The more the violations, more critical the anomaly is, and 
the higher the anomaly score should be. LERAD yields 
successful results for network-based anomaly detection 
systems. This paper extends the algorithm for host-based 
anomaly detection systems.  

 

3.2. Variants of LERAD 
 

Our goal is to create a system that can detect any anomaly 
across any application/program. We developed a 
taxonomy of the entire data set from the BSM audit log. 
We classified the data into various applications/programs 
and generated a model for each of them.  

 

3.2.1. Sequence of system calls: S-LERAD 
 

Using sequence of system calls is a very popular approach 
for anomaly detection. We performed experiments wherein 
we extracted system calls from the data. We used a 
window of fixed length 6 (as this is claimed to give best 
results in stide and t-stide [20]) and fed these sequences of 
six system call tokens as input to LERAD. We called this 
technique as S-LERAD since we are trying to capture 
system call sequences by using LERAD. 

For input to LERAD, we thus have a set of following 
attributes: date and time when system call information 
logged, the last two bytes of the destination IP address 
used for identifying the hosts during the evaluation, a 
system call and the previous five system calls, thereby 
making it a sequence of 6 system calls. LERAD uses these 

attributes at random to generate rules as described in 
Section 3.1. 

 

The purpose of performing this experiment was to explore 
whether LERAD would be able to capture the correlations 
among system calls in a sequence. Also, this experiment 
would assist us in comparing results by using the same 
algorithm for system call sequences as well as system call 
arguments. Since stide and t-stide report best results for 
sequences of length 6, we increased the maximum number 
of allowed attributes in the antecedent of the rules 
generated by LERAD from 3 to 5, keeping the consequent 
fixed at 1 attribute. 

 

A sample rule learned in a particular run of S-LERAD is: 
 

()}{3()6(),2(),1 munmapSCopenSCmmapSCcloseSC ∈�===   

n/r value = 455/1 

 

This rule is analogous to encountering close() as the first 
system call (represented as SC 1), followed by mmap() and 
munmap(), and open() as the sixth system call (SC 6) in a 
window of size 6 sliding across the audit trail. Each rule is 
associated with an n/r value, as explained in Section 3.1. 
The number 455 in the numerator refers to the number of 
training instances that comply with the rule (n in Equation 
3). The number 1 in the denominator implies that there 
exists just one distinct value of the consequent (munmap() 
in this case) when all the conditions in the premise hold 
true (r in Equation 3 of Section 3.1).  

 

3.2.2. System call arguments and other key attributes: 
A-LERAD 
 

We propose that argument and other key attribute 
information is integral to modeling a good host-based 
anomaly detection system. In this experiment, we extracted 
arguments, object path, return value and error status of 
system calls from the Solaris BSM audit log and examined 
the effects of learning rules based upon system calls along 
with these attributes.  

 

We built models per application using LERAD with the 
modification that the rules were forced to have system call 
in the antecedent since it is the key attribute in a host based 
system. The generic version of LERAD could have been 
used to generate rules, but the motivation behind this is 
that ours is a host-based system and is centered upon 
system calls. We term the system call as a pivotal attribute 



since our rules are based upon it. Thus, the system call will 
always be a condition in the antecedent of the rule. 

 

This model is given the nomenclature A-LERAD since our 
motive here is to generate rules for various attributes given 
the system calls. Any value for the other arguments (given 
the system call) that was never encountered in the training 
period for a long time would raise an alarm. A sample rule 
is of the form: 
 

}1240,2110,0102,1340{1() xxxArgmunmapSC ∈�=
 n/r value = 500/4 

 

In the above rule, 500/4 refers to the n/r value for the rule 
(Equation 3 in Section 3.1), that is, the number of training 
instances complying with the rule (500 in this case) 
divided by the cardinality of the set of allowed values in 
the consequent. This rule gives the 4 different values 
encountered for the first argument when the system call is 
munmap(). 

 

The maximum number of arguments has been chosen as 5 
since most of system calls do not take more than 5 
arguments. Considering more number of arguments results 
in more null values for the same and may cause formation 
of not-so-important rules thereby degrading the system 
performance. Thus only the high frequency arguments 
were selected from the data set. There may be several other 
approaches that can be adopted in this regard. Ours is just 
one intuitive approach.  

 

3.2.3. Merging argument information and sequence of 
system calls: M-LERAD 
 

The third set of experiments we conducted was to combine 
the techniques discussed in Sections 3.3.1 and 3.3.2. The 
first is a well acclaimed technique based upon sequence of 
system calls and is known to be an effective technique; the 
second one takes into consideration the attributes 
(arguments, path, return value and error status), whose 
efficacy we claim in this paper; so fusing the two to study 
the effects was an obvious choice. We call this technique 
as M-LERAD (short form for the merged system), as we 
desire to combine system call sequences and the related 
key attributes. Merging is accomplished by adding more 
attributes in each tuple before input to LERAD. Each tuple 
now comprises of the system call, arguments, object path, 
return value, error status and the previous five system 
calls. The n/r values obtained from the all rules violated 

are aggregated into an anomaly score, which is then used 
to generate an alarm based upon the threshold.  

 
4. Experimental Evaluation 
 
Our goal is to study if the rule-learning algorithm LERAD 
can be modified to determine as many attacks with least 
number of false alarms in a host-based anomaly detection 
system.  

 

4.1. Evaluation Data and Procedures 
 

We evaluated out techniques using the 1999 DARPA 
Intrusion Detection Evaluation Data Set [12]. The test bed 
involved a simulation of an air force base that has 
machines that are under frequent attack. These machines 
comprised of Linux, SunOS, Sun Solaris and Windows 
NT. Various intrusion detection systems were evaluated 
using this test bed, which comprised of three weeks of 
training data obtained from network sniffers, audit logs, 
nightly file system dumps and BSM logs from Solaris 
machine that trace system calls. Training was performed 
on week 3 data (around 2.1 million system calls) and 
testing on weeks 4 and 5 data (comprising over 7 million 
system calls) from the BSM audit log. A total of 51 attacks 
during weeks 4 and 5 were targeted at the Solaris machine, 
from which the BSM log was collected. 

 

Data from the Basic Security Module (BSM) [16] audit log 
has to be preprocessed before it can be fed as input to 
LERAD. This was important from the point of view that we 
want to model process behavior for application. We 
divided the entire data set into various applications. For 
each application, we grouped the data on the basis of the 
process ID. For a given process id, all the data from the 
exec system call to the exit system call comprised the data 
for that particular process. Data for which we could not 
trace the start of the process was excluded from our 
experiments. The fork system call was dealt in a special 
way. A parent process spawns a child process with the fork 
system call, that is, a copy of the parent process is created. 
Unless fork is followed by exec, the child performs the 
same tasks as the parent process. Therefore, all the system 
calls for a child process are for the same application as the 
parent process until it encounters its own exec system call. 
In this way, we divided the data into applications, and 
further into processes belonging to the various 
applications/programs. 

 

All the system calls (with their arguments) pertaining to a 
single process were thus differentiated from the set of 



system calls (and arguments) for another process 
belonging to the same application. In a similar manner, 
sequences of system calls for various processes of different 
applications were differentiated from one another and were 
ready to be used for our rule-based learning models.  

 

The parameters for S-LERAD were the 6 contiguous 
system calls; for A-LERAD they comprised of the system 
call, its return value and error status besides other 
arguments; and for M-LERAD it was a combination of the 
two techniques. For tide, the parameters were all the pairs 
of system calls within a window of fixed size 6; stide 
comprised all contiguous sequences of length 6, and t-stide 
added frequency information to the same. These sequence-
based methodologies have been discussed in Section 2.  In 
all models, alarms are accumulated for the applications and 
then evaluated for true detections and false positives.  

 

4.2. Evaluation Criteria   
 

The performance metrics used in this 1999 DARPA 
evaluation were the attack detection rate and the number of 
false alarms generated. We have adopted the same for the 
purpose of evaluating our system. As per the evaluation 
criteria, a system is considered to have successfully 
detected an attack if it generates an alarm within 60 
seconds of the occurrence of the attack. We also follow the 
same criterion for evaluating our schemes. 

 

The attacks in the 1999 DARPA evaluation are classified 
as probes, DoS, R2L, U2R and Data. These are based 
upon the classification by Kendell[10]. The taxonomy is as 
follows: 

 

(i) Probes or scan attacks are attempts by hackers to collect 
information prior to an attack.   Examples include 
illegalsniffer, ipsweep, mscan, portscan amongst others. 

(ii) DoS (Denial of Service) attacks are the ones in which a 
host or a network service is disrupted. For example, 
arppoison, selfping, dosnuke and crashiis are all DoS 
attacks. 

(iii) R2L (Remote to Local) – In these attacks, an 
unauthorized user gains access to a system. Examples of 
R2L attacks are guest, dict, ftpwrite, ppmacro, sshtrojan 
and framespoof. 

(iv) U2R (User to Root) / Data attacks are those in which a 
local user is able to execute non-privileged commands, 
which only a super user can execute. Examples are eject, 
fdformat, ffbconfig, perl, ps and xterm. 

Some attacks are combinations, such as a U2R attack that 
enables the attacker to steal secret data and are therefore 
categorized as Data-U2R attacks. Similarly, there are also 
Data-R2L attacks. 

 

Lippmann et al [12] lists poorly detected attacks as the 
ones even half of whose instances were not detected by the 
any of the IDSs in the 1999 DARPA Evaluation. For the 
Solaris host, these were all DoS attacks. Host-based 
systems that use Solaris based audit data are more inclined 
to detect R2L, U2R and Data attacks than network-based 
intrusion detection systems. 

 

As we are using more information (in the form of system 
call arguments) for our models, another important criterion 
is the space and the CPU time requirements, which is 
discussed in Section 4.4. 

 

4.3. Results and Analysis of Detection Rates   
 

We built training models for various applications. We 
reiterate our motivation for forcing rules based on system 
calls, as they are the pivotal attributes for our model. We 
trained our system on week 3 of the DARPA data and 
tested on weeks 4 and 5. Putative detections were 
considered as true positives if they occurred within 60 
seconds of the attack segment for the correct destination 
(victim) IP address, which in our case was a single Solaris 
host. 
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Figure 1: Number of detections with 10 false 
alarms per day for different attack categories.  



Figure 1 plots the result based on a leeway of 10 false 
alarms per day of testing week, making a total of 100 false 
alarms for the two weeks of testing. The best technique 
using sequence-only information was t-stide, detecting 2 
probes, 5 DoS, 5 R2L, 5 U2R, 1 Data and 1 Data-U2R 
attacks. Both stide and t-stide were able to find more 
probes than our argument-based technique, but our claim 
lies in finding more R2L, U2R and data attacks. A-LERAD 
was able to detect 10 R2L, 5 U2R, 3 Data, and both the 
Data-U2R attacks, apart from a probe and 6 DOS attacks. 
On the other hand, S-LERAD was not able to detect many 
of these attacks. The better performance of A-LERAD over 
S-LERAD can be attributed to the inclusion of argument 
information in the former model. The graph depicts no 
improvement by adding sequence information to argument 
information since A-LERAD and M-LERAD had exactly 
the same detections for the given false alarm rate. This also 
suggests that argument information is sufficient for 
detecting anomalies and there is no need for adding 
sequence information to A-LERAD. 

 

Our techniques were also able to detect some poorly 
detected attacks quoted in [12]. For the Solaris host, these 
were DoS attacks, some of which we were able to capture 
accurately. There was only one instance of tcpreset, which 
our system detected successfully. We were also able to 
detect 2 instances of warezclient, both of which were not 
detected by the best system for that attack in the 1999 
DARPA Evaluation. 
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Figure 2: Detections for the 6 techniques at variable 
false alarms rates (for a total of 51 attacks in 2 weeks 
of data).  

Figure 2 plots the total attacks detected by various 
techniques at 1, 5, 10, 50 and 100 false alarms per day 
respectively. t-stide maintained to be the best sequence-
based technique, followed by stide, S-LERAD and tide. A-
LERAD fared better than S-LERAD and the other 
sequence-based techniques, suggesting that argument 
information is more useful than sequence information. The 
M-LERAD curve is usually at or above the other curves, 
indicating that M-LERAD usually detects more attacks at 
various false alarm rates than the remaining five methods.  

 

It can also be seen that the A-LERAD curve closely follows 
the curve for M-LERAD. This may imply that the sequence 
information is redundant; it is not adding substantial 
information to what we already have from the arguments. 
In other words, the attacks detected by using sequence 
information were also detected by using argument 
information, thereby giving similar results for M-LERAD 
and A-LERAD. A key point to observe is that even though 
the number of detections is almost same for the two 
techniques, M-LERAD has a faster convergence than A-
LERAD. 

 

We also observe that the significant difference in the 
performance of M-LERAD and t-stide is only at 10 false 
alarms per day. The reason for this is that the ROC curve is 
plotted on the basis of 5 discrete points only. For lower 
false alarm rates (1 and 5 per day), similar number of 
attacks was easily detected by both techniques. This can be 
attributed to the fact that these attacks contained both 
sequence and argument based anomalies. But as we 
increase the acceptable false alarm rate, we see that 
sequence anomalies do not necessarily correspond to an 
attack, whereas the argument anomalies are a good 
representation of an occurrence of an attack.  By relaxing 
the allowed false alarm rate further (50 or 100 false alarms 
per day), we certainly expect to get more detections. We 
notice from the figure that we do get similar performance 
for M-LERAD and t-stide in such cases, but it is 
accompanied with a huge cost in terms of the number of 
false alarms, which is unacceptable for real-time systems. 

 

By performing the comparison of the various techniques, 
we were also able to determine the effectiveness of the 
anomaly scoring function. Amongst the most effective 
techniques, A-LERAD and M-LERAD use a time based 
probabilistic estimation and t-stide incorporates frequency 
information. The way these techniques score anomalies is 
also a crucial factor in such anomaly detection systems. 

 



One of the issues we investigated was whether to force 
LERAD to form rules based upon a system call as a 
condition in the antecedent or let it formulate rules without 
pivoting on a system call (as discussed in Section 3.2.2). 
We performed some experiments using A-LERAD with and 
without the enforcement of system call as a condition in 
the antecedent. Based upon the empirical evidence, we 
concluded that this enforcement resulted in the detection of 
at least as many attacks as in the relaxed case with the 
generation of fewer false alarms. 

 

4.4. Results and Analysis of the CPU Time and 
Space Requirements 
 
Compared to sequence-based methods, our techniques 
extract and utilize more information (system call 
arguments and other attributes), making it imperative to 
study the feasibility of our techniques in terms of space 
and time requirements.  
 

During training, for t-stide, all contiguous system call 
sequences of length 6 along with their respective 
frequencies are stored in a database. For M-LERAD, 
system call sequences and other attributes are stored. In 
both the cases, space complexity is of the order of O(n), 
where ‘n’ is the total number of  system calls, though the 
M-LERAD requirement is more by a constant factor k since 
it stores additional argument information. During 
detection, M-LERAD uses only the learned set of rules (in 
the range 14-35 at an average of 25.1 rules per application 
in our experiments). t-stide, on the other hand, still 
requires the entire database of fixed length sequences 
during testing, which incur larger space overhead during 
detection. We conducted experiments on the tcsh 
application data. The entire week 3 training data set 
comprises of over 2 million system calls and the test data 
(weeks 4 and 5 combined) has over 7 million system calls. 
For tcsh, system calls alongwith their arguments form a 33 
MB input file for M-LERAD. The rules formed by M-
LERAD require less than 1.5 KB space, apart from a 
mapping table to map strings and integers. For the same 
application, the memory requirements for storing a system 
call sequence database for t-stide were over 5 KB plus a 
mapping table between strings and integers. The results 
suggest that M-LERAD has better memory requirements 
during the detection phase. We reiterate that the training 
can be done offline. Once the rules are generated, M-
LERAD can be used to do online testing with lower 
memory requirements. 

 
The time overhead incurred by M-LERAD and t-stide in 
our experiments is given in Table 2. The CPU times have 

been obtained on a Sun Ultra 5 workstation with 256 MB 
RAM and 400 MHz processor speed. We can infer from 
the results that M-LERAD is slower than t-stide. During 
training, t-stide is a much simpler algorithm and processes 
less data than M-LERAD for building a model and hence t-
stide has a much shorter training time.  During detection, t-
stide just needs to check if a sequence in the database, 
which can be efficiently implemented with a hash table.  
On the other hand, M-LERAD needs to check if a record 
matches any of the learned rules.  Also, M-LERAD has to 
process additional argument information.  Run-time 
performance of M-LERAD can be improved with more 
efficient rule matching algorithm. Also, t-stide will incur 
significantly larger time overhead when the stored 
sequences exceed the memory capacity and disk accesses 
become unavoidable – M-LERAD does not encounter this 
problem as easily as t-stide since it will still use a small set 
of rules. More importantly, M-LERAD’s time overhead is 
about tens of seconds for days of data, which is reasonable 
for practical purposes. 

 

Table 2: Comparison of CPU times during training 
and testing phases for t-stide and M-LERAD for top 8 
applications in terms of total number of system calls 
(not necessarily in that order). 

Application Training Time 
(seconds) 

[on 1 week of data] 

Testing Time    
(seconds) 

[on 2 weeks of data] 

 t-stide M-LERAD t-stide M-LERAD 

ftpd 0.19 0.99 0.19 0.96 
telnetd 0.96 7.87 1.05 9.79 

ufsdump 6.76 33.33 0.42 1.78 
tcsh 6.32 32.85 5.91 37.58 
login 2.41 16.75 2.45 19.86 

sendmail 2.73 15.09 3.23 21.63 
quota 0.20 3.48 0.20 3.79 

sh 0.21 3.25 0.40 5.63 

 

5. Concluding Remarks 
 
Even though system call sequences are beneficial in 
modeling normal process behavior, they are not 
omniscient. In this paper, we portrayed the efficacy of 
incorporating system call argument information and used a 
rule-learning algorithm to model a host-based anomaly 
detection system. Our argument-based model, A-LERAD, 
detected more attacks at lower false alarm rates than the 
sequence-based techniques on the 1999 DARPA 
evaluation dataset. Combining the two lines of approach 



(argument and sequence information) resulted in creating a 
richer and, more importantly, more accurate model for 
anomaly detection, as illustrated by the empirical results of 
M-LERAD. Though our techniques incur higher time 
overhead due to the complexity of our techniques as well 
as more information to be processed, they build more 
succinct models that incur much less space overhead--our 
techniques aim to generalize from the training data, rather 
than simply memorize the data. 

 

Our techniques can be easily extended to monitor audit 
trails in continuum. Since we model each application 
separately, some degree of parallelism can also be 
achieved to test process sequences as they are being 
logged. S-LERAD fares poorly as compared to stide and t-
stide. We are currently trying to analyze and rectify its 
shortcomings, which might have an impact on the 
performance of M-LERAD as well. Also, we were able to 
see from our experiments that the time based probabilistic 
estimation of anomaly score as proposed in LERAD and 
the frequency component of t-stide are effective ways to 
flag data as anomalous. These two functions can be 
combined to give a more appropriate anomaly score. It 
would be interesting to see how this would affect the 
results. We might perform experiments and publish results 
for the same in the near future.  
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