
Learning Rules from System Call Arguments and Sequences for
Anomaly Detection

Gaurav Tandon and Philip Chan
Department of Computer Sciences

Florida Institute of Technology
Melbourne, FL 32901

{gtandon, pkc}@cs.fit.edu

Abstract

Many approaches have been suggested and
various systems been modeled to detect intrusions from
anomalous behavior of system calls as a result of an
attack. Though these techniques have been shown to be
quite effective, a key element seems to be missing – the
inclusion and utilization of the system call arguments to
create a richer, more valuable signature and to use this
information to model the intrusion detection system more
accurately. We put forth the idea of adopting a rule
learning approach that mobilizes rules based upon system
calls and models the system for normal traffic using
system call arguments and other key attributes. We present
variations of our techniques and compare the results with
those from some of the well known techniques based upon
system call sequences. The results show that system call
argument information is crucial and assists to successfully
detect U2R, R2L and Data attacks generating lesser false
alarms.

1. Introduction

Motivation: The Internet has invariably been a medium
for malicious purposes. Attacks on computers, be it some
graduate students trying to hack systems to prove their
mettle or intruders with more damaging intentions, is on a
steady rise. Moreover, novel attacks and hacking schemes
are developed all the time, making it hard for systems to be
made immune to all these vulnerabilities. It has thus
become imperative that these be checked early to minimize
losses.

Two different lines of approach have been adopted to
detect intrusions. The first technique, misuse (signature)
detection, is similar to pattern matching -- systems are

modeled upon known attack patterns and the test data is
checked for the occurrence of these patterns. These
systems have a high degree of accuracy but fail to detect
new attacks. The other method, anomaly detection, models
normal behavior and significant deviations from this
behavior are considered anomalous. The primary
advantage of this approach is that it can detect novel
attacks, the drawback being that it can generate a lot of
false alarms. This is attributed to the fact that not all
anomalies are necessarily attacks and will thus result in
false positives.

Intrusion Detection Systems (IDSs) can also be
categorized as network-based and host-based. In the
former, header fields of the various network protocols are
used to detect intrusions. For example, the IP header fields
- source IP address, destination IP address, source port
number, destination port number and others can be used to
check for malicious intent. In the latter approach (a host-
based IDS), the focus shifts to the operating system level.
System call data is extracted from audit logs like the
Solaris Basic Security Module (BSM) [16] and their
behavior is studied to detect attacks.

Most of the present techniques for host-based anomaly
detection systems revolve around sequences of system
calls. These techniques are based upon the observation that
an illegitimate activity results in an abnormal (novel)
sequence of system calls.

Problem: The efficacy of such systems might be improved
upon if more information is utilized. For system calls the
most intuitive option lies in the system call arguments.
Some other attributes related with system calls are the path
for the object, the return value and the error status. Does
adding these attributes assist in modeling a host-based
anomaly detection system better? How do such systems
fare (in terms of detections, false alarms, space and time

requirements) as compared to the systems based only upon
the sequence of system call information? These are some
of the key issues we seek to explore in this paper.

Approach: We extract system calls, their arguments, path,
return value and error status from the Solaris BSM audit
logs [16]. We then propose a host-based anomaly-
detection system using system calls and other
aforementioned key attributes by using variants of LERAD
(Learning Rules for Anomaly Detection) [14], which is a
conditional rule-learning algorithm. We aim at forming
rules for our anomaly detection system based upon the
system calls and their attributes. We suggest that including
these attributes to the system calls will result in learning
more information, thereby enabling us to model our
systems better and detecting more attacks. We propose
three models – the first one modeling system call
sequences using LERAD, the second modeling system call
arguments and other attributes, and the third approach
being a combination of the two. We juxtapose these
techniques and also compare them with some of the
previous well-known sequence-based techniques, namely
tide, stide, t-stide [20].

Contributions:

• We proposed the use of system call argument
information to enrich the representation of program
behavior in anomaly detection.

• We proposed modifications to LERAD to learn rules
that allow one of the attributes to be designated as a
pivotal attribute (system call in our case -- explanation
in Section 3.2.2) on which the rules are based.

• As compared to tide, stide and t-stide, three well
known sequence-based techniques (more details in
Section 2), our argument-based systems are able to
detect more attacks at lower false alarm rates.

• Our method that uses both sequence and argument
information generally detected the most attacks with
different false alarm rates.

Organization: Section 2 describes the related work in the
field of anomaly detection. In Section 3, we discuss the
approach that we adopt for prepare the data set for our
anomaly detection models. We give a brief explanation of
LERAD on which our models are based. Then we describe
the three variants of LERAD that are used to investigate
different issues. Section 4 gives a brief description of
evaluation data, procedure and criteria. Then we analyze
the results obtained from the experiments we performed. In
Section 5, we conclude and put forth some views for future
endeavors.

2. Related Work

Forrest et al. [2] proposed an approach for host based
anomaly detection called time-delay embedding (tide),
wherein traces of normal application executions were
noted. A sliding look-ahead window of a fixed length was
used to record correlations between pairs of system calls.
These correlations were stored in a database of normal
patterns, which was then used to monitor sequences during
the testing phase. Anomalies were accumulated over the
entire sequence and an alarm was raised if the anomaly
count exceeded the threshold. tide forms correlations
between pairs of system calls within a certain preset
window size. Some of the issues involved in their approach
were: using a small window does not help to form
correlations over a long period of time. Similar sequences
with minor variations could still be flagged as anomalous.

Later work by Warrender et al [20] extended this
technique in sequence time-delay embedding (stide), which
memorized all contiguous sequences of predetermined,
fixed lengths during training. An anomaly count was
defined as the number of mismatches in a temporally local
region. A threshold was set for the anomaly score above
which a sequence is flagged anomalous, indicating a
possible attack. stide memorizes all fixed length sequences
from the training data, irrespective of the number of
instances found in the dataset. An extension, called
sequence time-delay embedding with (frequency) threshold
(t-stide), was similar to stide with the exception that the
frequencies of these fixed length sequences were also
taken into account. Rare sequences were ignored from the
normal sequence database in this approach. When
encountered during the testing phase, they were also
counted as mismatches and aggregated to the locality
frame counts (anomaly counts). All these techniques
modeled normal behavior by using fixed length patterns of
training sequences. But there was no rationale in fixing the
length to a predetermined constant value.

Wespi et al. [21], [22] proposed a scheme to generate
variable length patterns by using Teiresias [17], a pattern-
discovery algorithm in biological sequences. These
techniques improved upon the fixed length pattern
methods cited above. Some extensions to (fixed and
variable length) sequence-based methods were also
proposed in [6], [7] and [8]. Though all the above
mentioned approaches use system call sequences, none of
them make use of the system call arguments. Given some
knowledge about the system being used, attackers can
devise some methodologies to evade such intrusion
detection systems. Wagner and Soto [19] made such an

attempt to model a malicious sequence by adding "no-ops"
(system calls having no effect) to compromise an IDS
based upon the sequence of system calls. This brings to
surface yet another shortcoming of sequence-based
methods. Such attacks would fail if the system call
arguments are also taken into consideration.

Sekar and others [18] proposed a method to build a
compact finite state automaton (FSA) in an efficient way to
detect intrusive activities. But no frequency information is
stored in the FSA. Again, there lies the inherent drawback
that the system call arguments are not considered. In [3],
Feng et al proposed a method that dynamically extracts
return address information from the call stack and program
counter information is recorded at each system call. This
technique performs equally well as compared to the
deterministic FSA approach in terms of detections,
convergence and false positives.

Artificial neural networks (ANNs) have been employed for
both anomaly and misuse (signature) detection. Ghosh and
Schwartzbad [4] expressed the idea of a process-based
intrusion detection system that can generalize from
previously observed behavior to recognize future unseen
behavior. But their system ignores isolated anomalies.

Machine learning approaches have also been used to
model intrusion detection systems. Lee at el. [11] verified
the feasibility of rule-learning approaches by using an
algorithm called RIPPER [1]. Mahoney and Chan [14]
introduced a machine-learning algorithm called LERAD
(Learning Rules for Anomaly Detection) to detect network
intrusions. This technique extended the network traffic
model to include a larger number of attributes. They also
introduced and used the concept of a non-stationary model
in [13], [14] and [15], in which the probability of an event
depends upon its most recent occurrence and not on the
frequency. LERAD is a conditional rule-learning algorithm
that selects good rules from a vast rule space. This paper
uses variants of LERAD for a host-based anomaly
detection system.

3. Approach

Rule learning techniques have been shown that they can be
successfully adapted to model systems for intrusion
detection [14]. Since our goal is to detect host-based
intrusions and we are dealing with BSM audit data, system
calls are instrumental in our system. We thus extend upon
the machine learning approach and incorporate the system
calls with its arguments to generate a richer set of rules and

measure the performance on the basis of number of
detections and the false alarm rate. We study and evaluate
three different variations of modeling a system using
LERAD: sequence of system calls, system calls and their
arguments, and a fusion of the previous two
methodologies. We compare and contrast the results from
these three models of our approach with tide, stide and t-
stide.

3.1. Learning Rules for Anomaly Detection
(LERAD)

LERAD is an efficient conditional rule-learning algorithm
that picks up attributes in a random fashion. LERAD is
briefly described here. More details can be obtained from
[14]. LERAD learns rules of the form:

,....},{,..., 21 xxXbBaA ∈�== (1)

where A, B, and X are attributes and a, b, x1, x2 are values
to the corresponding attributes. The learned rules
represent the patterns present in the training data that
consist of normal behavior. The set {x1, x2, …} in the
consequent constitutes all unique values of X when the
antecedent occurs in the training data. (These rules are
different from typical classification rules or association
rules.)

Records that match the antecedent but not the consequent
of a rule are considered anomalous. The degree of
anomaly is based on a probabilistic model. For each rule,
from the training data, the probability, p, of observing a
value not in the consequent is estimated by:

nrbBaAxxXp /,...),|...},{Pr(21 ===∉= (2)

where ‘r’ is the cardinality of the set, {x1, x2, …}, in the
consequent and ‘n’ is the number of records that satisfy the
antecedent. This probability estimation of novel (zero
frequency) events is due to Witten and Bell [23]. Since p
estimates the probability of a novel event, the larger p is,
the less anomalous a novel event is. Hence, during
detection, when a novel event is observed, the degree of
anomaly, or Anomaly Score, is estimated by:

rnpreAnomalySco //1 == (3)

The rule generation phase of LERAD comprises of three
main steps:

(i) Candidate rules are generated from patterns observed in
randomly selected pairs of training examples: Training
samples are picked up at random and then an initial set of
rules is generated based upon common attributes between
the samples. The conditional rules formed are of the type
depicted in Equation (1) above.

(ii) The rule set is minimized by removing rules that do not
cover/describe additional training examples: Redundant
rules are discarded and a minimal set of rules is generated.

(iii) A subset of the training set is chosen as a validation
set on which no training is performed: Rules learnt so far
are used to test the data in this validation set. Rules are
removed if they cause a false alarm in the validation set.
This is due to the fact that the validation data set comprises
of clean data (no attacks) and any anomaly implies a false
alarm.

The rule generation methodology of LERAD is described
next using Table 1.

Table 1: LERAD rule generation example: S1 – S6
are training samples with attributes A, B, C and D.

Training
Sample

A B C D

S1 1 2 3 4

S2 1 2 3 5

S3 6 7 8 4

S4 1 0 9 5

S5 1 2 3 4

S6 6 3 8 5

Step (i) Samples, say S1 and S2, are picked at random to
create an initial rule set. Rules are generated by selecting
matching attributes in a random order. In this example, the
S1 and S2 have the matching attributes A, B and C.
Selecting them in the order B, C and A, we get the
following 3 rules:

Rule1: * � B ∈ {2}

Rule 2: C=3 � B ∈ {2}

Rule 3: A=1, C=3 � B ∈{2}

A rule so generated implies that the attribute in the
consequent can have a value from a set of values only if

the conditions in the antecedent are satisfied. It may so
happen that there is a consequent but no antecedent in a
rule formed by LERAD. This means that an attribute can
take any value from its set of values without the need to
satisfy any other condition. Such a situation is presented in
Rule 1 where the antecedent is represented by a wildcard
character *.

Step (ii) Coverage test is applied to a subset of the training
set (say S1-S3) and rules are modified as follows:

Rule1: * � B ∈ {2, 7}

Rule 2: C=3 � B ∈ {2}

Rule 3: A=1, C=3 � B ∈{2}

Once we have the extended rule set, the probability p --
described in Equation (2) above -- is associated with every
rule. The rules are then sorted in increasing order of the
probability p:

Rule 2: C=3 � B ∉ {2} [p = 1/2]

Rule 3: A=1, C=3 � B ∉{2} [p = 1/2]

Rule 1: * � B ∉ {2, 7} [p = 2/3]

When the probabilities are equal, the rule with lesser
number of conditions in the antecedent is given higher
priority (Rule 2 is higher in priority than Rule 3 in our
example). Next, we desire a minimal set of rules. This is
achieved by removing those rules that do not give any new
information. In our example, Rule 2 is satisfied by samples
1 and 2. Rule 3 does not add any new value to the attribute
B and is thus deemed as redundant and is removed from
the rule set. The last rule (Rule 1) covers sample 3 as well
and is kept in the rule set.

Extending the two rules to the entire training (minus
validation) set (samples S1-S5 in our example), we get

Rule 2: C=3 � B ∉ {2} [p = 1/3]

Rule 1: * � B ∉ {2, 7, 0} [p = 3/5]

Step (iii): The last step comprises of testing the above set
of rules on the validation set, which is a subset of the
training data for which rules have not been generated. Any
rule which produces anomaly in the validation set is
removed. In our example, sample S6 forms the validation
set. Rule 1 is violated since attribute B has a novel value 3
in this sample. Thus, we are left with the following rule:

C=3 � B ∉ {2} [p = 1/3]

A non-stationary model is assumed for LERAD –
frequency is made irrelevant and only the last occurrence
of an event is assumed important. Since novel events are
bursty in conjunction with attacks, a ‘t’ factor was
introduced to capture the non-stationary characteristic,
where ‘t’ is the time interval since the last novel
(anomalous) event. When a novel event occurred recently,
or t is small, a novel event is more likely to occur at the
present moment. Hence, the anomaly score is measured by
t/p. Since a record can deviate from the consequent of
more than one rule, the total anomaly score of a record is:

ii
i

ii
i

i rntptlyScoreTotalAnoma // �� == (4)

where ‘i’ is the index of a rule from which the record has
deviated. The anomaly score is aggregated over all the
rules to combine the effect from violation of multiple rules.
The more the violations, more critical the anomaly is, and
the higher the anomaly score should be. LERAD yields
successful results for network-based anomaly detection
systems. This paper extends the algorithm for host-based
anomaly detection systems.

3.2. Variants of LERAD

Our goal is to create a system that can detect any anomaly
across any application/program. We developed a
taxonomy of the entire data set from the BSM audit log.
We classified the data into various applications/programs
and generated a model for each of them.

3.2.1. Sequence of system calls: S-LERAD

Using sequence of system calls is a very popular approach
for anomaly detection. We performed experiments wherein
we extracted system calls from the data. We used a
window of fixed length 6 (as this is claimed to give best
results in stide and t-stide [20]) and fed these sequences of
six system call tokens as input to LERAD. We called this
technique as S-LERAD since we are trying to capture
system call sequences by using LERAD.

For input to LERAD, we thus have a set of following
attributes: date and time when system call information
logged, the last two bytes of the destination IP address
used for identifying the hosts during the evaluation, a
system call and the previous five system calls, thereby
making it a sequence of 6 system calls. LERAD uses these

attributes at random to generate rules as described in
Section 3.1.

The purpose of performing this experiment was to explore
whether LERAD would be able to capture the correlations
among system calls in a sequence. Also, this experiment
would assist us in comparing results by using the same
algorithm for system call sequences as well as system call
arguments. Since stide and t-stide report best results for
sequences of length 6, we increased the maximum number
of allowed attributes in the antecedent of the rules
generated by LERAD from 3 to 5, keeping the consequent
fixed at 1 attribute.

A sample rule learned in a particular run of S-LERAD is:

()}{3()6(),2(),1 munmapSCopenSCmmapSCcloseSC ∈�===

n/r value = 455/1

This rule is analogous to encountering close() as the first
system call (represented as SC 1), followed by mmap() and
munmap(), and open() as the sixth system call (SC 6) in a
window of size 6 sliding across the audit trail. Each rule is
associated with an n/r value, as explained in Section 3.1.
The number 455 in the numerator refers to the number of
training instances that comply with the rule (n in Equation
3). The number 1 in the denominator implies that there
exists just one distinct value of the consequent (munmap()
in this case) when all the conditions in the premise hold
true (r in Equation 3 of Section 3.1).

3.2.2. System call arguments and other key attributes:
A-LERAD

We propose that argument and other key attribute
information is integral to modeling a good host-based
anomaly detection system. In this experiment, we extracted
arguments, object path, return value and error status of
system calls from the Solaris BSM audit log and examined
the effects of learning rules based upon system calls along
with these attributes.

We built models per application using LERAD with the
modification that the rules were forced to have system call
in the antecedent since it is the key attribute in a host based
system. The generic version of LERAD could have been
used to generate rules, but the motivation behind this is
that ours is a host-based system and is centered upon
system calls. We term the system call as a pivotal attribute

since our rules are based upon it. Thus, the system call will
always be a condition in the antecedent of the rule.

This model is given the nomenclature A-LERAD since our
motive here is to generate rules for various attributes given
the system calls. Any value for the other arguments (given
the system call) that was never encountered in the training
period for a long time would raise an alarm. A sample rule
is of the form:

}1240,2110,0102,1340{1() xxxArgmunmapSC ∈�=
 n/r value = 500/4

In the above rule, 500/4 refers to the n/r value for the rule
(Equation 3 in Section 3.1), that is, the number of training
instances complying with the rule (500 in this case)
divided by the cardinality of the set of allowed values in
the consequent. This rule gives the 4 different values
encountered for the first argument when the system call is
munmap().

The maximum number of arguments has been chosen as 5
since most of system calls do not take more than 5
arguments. Considering more number of arguments results
in more null values for the same and may cause formation
of not-so-important rules thereby degrading the system
performance. Thus only the high frequency arguments
were selected from the data set. There may be several other
approaches that can be adopted in this regard. Ours is just
one intuitive approach.

3.2.3. Merging argument information and sequence of
system calls: M-LERAD

The third set of experiments we conducted was to combine
the techniques discussed in Sections 3.3.1 and 3.3.2. The
first is a well acclaimed technique based upon sequence of
system calls and is known to be an effective technique; the
second one takes into consideration the attributes
(arguments, path, return value and error status), whose
efficacy we claim in this paper; so fusing the two to study
the effects was an obvious choice. We call this technique
as M-LERAD (short form for the merged system), as we
desire to combine system call sequences and the related
key attributes. Merging is accomplished by adding more
attributes in each tuple before input to LERAD. Each tuple
now comprises of the system call, arguments, object path,
return value, error status and the previous five system
calls. The n/r values obtained from the all rules violated

are aggregated into an anomaly score, which is then used
to generate an alarm based upon the threshold.

4. Experimental Evaluation

Our goal is to study if the rule-learning algorithm LERAD
can be modified to determine as many attacks with least
number of false alarms in a host-based anomaly detection
system.

4.1. Evaluation Data and Procedures

We evaluated out techniques using the 1999 DARPA
Intrusion Detection Evaluation Data Set [12]. The test bed
involved a simulation of an air force base that has
machines that are under frequent attack. These machines
comprised of Linux, SunOS, Sun Solaris and Windows
NT. Various intrusion detection systems were evaluated
using this test bed, which comprised of three weeks of
training data obtained from network sniffers, audit logs,
nightly file system dumps and BSM logs from Solaris
machine that trace system calls. Training was performed
on week 3 data (around 2.1 million system calls) and
testing on weeks 4 and 5 data (comprising over 7 million
system calls) from the BSM audit log. A total of 51 attacks
during weeks 4 and 5 were targeted at the Solaris machine,
from which the BSM log was collected.

Data from the Basic Security Module (BSM) [16] audit log
has to be preprocessed before it can be fed as input to
LERAD. This was important from the point of view that we
want to model process behavior for application. We
divided the entire data set into various applications. For
each application, we grouped the data on the basis of the
process ID. For a given process id, all the data from the
exec system call to the exit system call comprised the data
for that particular process. Data for which we could not
trace the start of the process was excluded from our
experiments. The fork system call was dealt in a special
way. A parent process spawns a child process with the fork
system call, that is, a copy of the parent process is created.
Unless fork is followed by exec, the child performs the
same tasks as the parent process. Therefore, all the system
calls for a child process are for the same application as the
parent process until it encounters its own exec system call.
In this way, we divided the data into applications, and
further into processes belonging to the various
applications/programs.

All the system calls (with their arguments) pertaining to a
single process were thus differentiated from the set of

system calls (and arguments) for another process
belonging to the same application. In a similar manner,
sequences of system calls for various processes of different
applications were differentiated from one another and were
ready to be used for our rule-based learning models.

The parameters for S-LERAD were the 6 contiguous
system calls; for A-LERAD they comprised of the system
call, its return value and error status besides other
arguments; and for M-LERAD it was a combination of the
two techniques. For tide, the parameters were all the pairs
of system calls within a window of fixed size 6; stide
comprised all contiguous sequences of length 6, and t-stide
added frequency information to the same. These sequence-
based methodologies have been discussed in Section 2. In
all models, alarms are accumulated for the applications and
then evaluated for true detections and false positives.

4.2. Evaluation Criteria

The performance metrics used in this 1999 DARPA
evaluation were the attack detection rate and the number of
false alarms generated. We have adopted the same for the
purpose of evaluating our system. As per the evaluation
criteria, a system is considered to have successfully
detected an attack if it generates an alarm within 60
seconds of the occurrence of the attack. We also follow the
same criterion for evaluating our schemes.

The attacks in the 1999 DARPA evaluation are classified
as probes, DoS, R2L, U2R and Data. These are based
upon the classification by Kendell[10]. The taxonomy is as
follows:

(i) Probes or scan attacks are attempts by hackers to collect
information prior to an attack. Examples include
illegalsniffer, ipsweep, mscan, portscan amongst others.

(ii) DoS (Denial of Service) attacks are the ones in which a
host or a network service is disrupted. For example,
arppoison, selfping, dosnuke and crashiis are all DoS
attacks.

(iii) R2L (Remote to Local) – In these attacks, an
unauthorized user gains access to a system. Examples of
R2L attacks are guest, dict, ftpwrite, ppmacro, sshtrojan
and framespoof.

(iv) U2R (User to Root) / Data attacks are those in which a
local user is able to execute non-privileged commands,
which only a super user can execute. Examples are eject,
fdformat, ffbconfig, perl, ps and xterm.

Some attacks are combinations, such as a U2R attack that
enables the attacker to steal secret data and are therefore
categorized as Data-U2R attacks. Similarly, there are also
Data-R2L attacks.

Lippmann et al [12] lists poorly detected attacks as the
ones even half of whose instances were not detected by the
any of the IDSs in the 1999 DARPA Evaluation. For the
Solaris host, these were all DoS attacks. Host-based
systems that use Solaris based audit data are more inclined
to detect R2L, U2R and Data attacks than network-based
intrusion detection systems.

As we are using more information (in the form of system
call arguments) for our models, another important criterion
is the space and the CPU time requirements, which is
discussed in Section 4.4.

4.3. Results and Analysis of Detection Rates

We built training models for various applications. We
reiterate our motivation for forcing rules based on system
calls, as they are the pivotal attributes for our model. We
trained our system on week 3 of the DARPA data and
tested on weeks 4 and 5. Putative detections were
considered as true positives if they occurred within 60
seconds of the attack segment for the correct destination
(victim) IP address, which in our case was a single Solaris
host.

0

2

4

6

8

10

Probes
(5)

DOS
(19)

R2L
(12)

U2R (9) Data (4) Data-
U2R (2)

Attack Types (Number of Attacks)

N
um

be
r o

f A
tta

ck
s

D
et

ec
te

d

tide stide t-stide
S-LERAD A-LERAD M-LERAD

Figure 1: Number of detections with 10 false
alarms per day for different attack categories.

Figure 1 plots the result based on a leeway of 10 false
alarms per day of testing week, making a total of 100 false
alarms for the two weeks of testing. The best technique
using sequence-only information was t-stide, detecting 2
probes, 5 DoS, 5 R2L, 5 U2R, 1 Data and 1 Data-U2R
attacks. Both stide and t-stide were able to find more
probes than our argument-based technique, but our claim
lies in finding more R2L, U2R and data attacks. A-LERAD
was able to detect 10 R2L, 5 U2R, 3 Data, and both the
Data-U2R attacks, apart from a probe and 6 DOS attacks.
On the other hand, S-LERAD was not able to detect many
of these attacks. The better performance of A-LERAD over
S-LERAD can be attributed to the inclusion of argument
information in the former model. The graph depicts no
improvement by adding sequence information to argument
information since A-LERAD and M-LERAD had exactly
the same detections for the given false alarm rate. This also
suggests that argument information is sufficient for
detecting anomalies and there is no need for adding
sequence information to A-LERAD.

Our techniques were also able to detect some poorly
detected attacks quoted in [12]. For the Solaris host, these
were DoS attacks, some of which we were able to capture
accurately. There was only one instance of tcpreset, which
our system detected successfully. We were also able to
detect 2 instances of warezclient, both of which were not
detected by the best system for that attack in the 1999
DARPA Evaluation.

0

5

10

15

20

25

30

35

1 5 10 50 100

False Alarms per Day

A
tt

ac
ks

 D
et

ec
te

d

M-LERAD A-LERAD t-stide

stide S-LERAD tide

Figure 2: Detections for the 6 techniques at variable
false alarms rates (for a total of 51 attacks in 2 weeks
of data).

Figure 2 plots the total attacks detected by various
techniques at 1, 5, 10, 50 and 100 false alarms per day
respectively. t-stide maintained to be the best sequence-
based technique, followed by stide, S-LERAD and tide. A-
LERAD fared better than S-LERAD and the other
sequence-based techniques, suggesting that argument
information is more useful than sequence information. The
M-LERAD curve is usually at or above the other curves,
indicating that M-LERAD usually detects more attacks at
various false alarm rates than the remaining five methods.

It can also be seen that the A-LERAD curve closely follows
the curve for M-LERAD. This may imply that the sequence
information is redundant; it is not adding substantial
information to what we already have from the arguments.
In other words, the attacks detected by using sequence
information were also detected by using argument
information, thereby giving similar results for M-LERAD
and A-LERAD. A key point to observe is that even though
the number of detections is almost same for the two
techniques, M-LERAD has a faster convergence than A-
LERAD.

We also observe that the significant difference in the
performance of M-LERAD and t-stide is only at 10 false
alarms per day. The reason for this is that the ROC curve is
plotted on the basis of 5 discrete points only. For lower
false alarm rates (1 and 5 per day), similar number of
attacks was easily detected by both techniques. This can be
attributed to the fact that these attacks contained both
sequence and argument based anomalies. But as we
increase the acceptable false alarm rate, we see that
sequence anomalies do not necessarily correspond to an
attack, whereas the argument anomalies are a good
representation of an occurrence of an attack. By relaxing
the allowed false alarm rate further (50 or 100 false alarms
per day), we certainly expect to get more detections. We
notice from the figure that we do get similar performance
for M-LERAD and t-stide in such cases, but it is
accompanied with a huge cost in terms of the number of
false alarms, which is unacceptable for real-time systems.

By performing the comparison of the various techniques,
we were also able to determine the effectiveness of the
anomaly scoring function. Amongst the most effective
techniques, A-LERAD and M-LERAD use a time based
probabilistic estimation and t-stide incorporates frequency
information. The way these techniques score anomalies is
also a crucial factor in such anomaly detection systems.

One of the issues we investigated was whether to force
LERAD to form rules based upon a system call as a
condition in the antecedent or let it formulate rules without
pivoting on a system call (as discussed in Section 3.2.2).
We performed some experiments using A-LERAD with and
without the enforcement of system call as a condition in
the antecedent. Based upon the empirical evidence, we
concluded that this enforcement resulted in the detection of
at least as many attacks as in the relaxed case with the
generation of fewer false alarms.

4.4. Results and Analysis of the CPU Time and
Space Requirements

Compared to sequence-based methods, our techniques
extract and utilize more information (system call
arguments and other attributes), making it imperative to
study the feasibility of our techniques in terms of space
and time requirements.

During training, for t-stide, all contiguous system call
sequences of length 6 along with their respective
frequencies are stored in a database. For M-LERAD,
system call sequences and other attributes are stored. In
both the cases, space complexity is of the order of O(n),
where ‘n’ is the total number of system calls, though the
M-LERAD requirement is more by a constant factor k since
it stores additional argument information. During
detection, M-LERAD uses only the learned set of rules (in
the range 14-35 at an average of 25.1 rules per application
in our experiments). t-stide, on the other hand, still
requires the entire database of fixed length sequences
during testing, which incur larger space overhead during
detection. We conducted experiments on the tcsh
application data. The entire week 3 training data set
comprises of over 2 million system calls and the test data
(weeks 4 and 5 combined) has over 7 million system calls.
For tcsh, system calls alongwith their arguments form a 33
MB input file for M-LERAD. The rules formed by M-
LERAD require less than 1.5 KB space, apart from a
mapping table to map strings and integers. For the same
application, the memory requirements for storing a system
call sequence database for t-stide were over 5 KB plus a
mapping table between strings and integers. The results
suggest that M-LERAD has better memory requirements
during the detection phase. We reiterate that the training
can be done offline. Once the rules are generated, M-
LERAD can be used to do online testing with lower
memory requirements.

The time overhead incurred by M-LERAD and t-stide in
our experiments is given in Table 2. The CPU times have

been obtained on a Sun Ultra 5 workstation with 256 MB
RAM and 400 MHz processor speed. We can infer from
the results that M-LERAD is slower than t-stide. During
training, t-stide is a much simpler algorithm and processes
less data than M-LERAD for building a model and hence t-
stide has a much shorter training time. During detection, t-
stide just needs to check if a sequence in the database,
which can be efficiently implemented with a hash table.
On the other hand, M-LERAD needs to check if a record
matches any of the learned rules. Also, M-LERAD has to
process additional argument information. Run-time
performance of M-LERAD can be improved with more
efficient rule matching algorithm. Also, t-stide will incur
significantly larger time overhead when the stored
sequences exceed the memory capacity and disk accesses
become unavoidable – M-LERAD does not encounter this
problem as easily as t-stide since it will still use a small set
of rules. More importantly, M-LERAD’s time overhead is
about tens of seconds for days of data, which is reasonable
for practical purposes.

Table 2: Comparison of CPU times during training
and testing phases for t-stide and M-LERAD for top 8
applications in terms of total number of system calls
(not necessarily in that order).

Application Training Time
(seconds)

[on 1 week of data]

Testing Time
(seconds)

[on 2 weeks of data]

 t-stide M-LERAD t-stide M-LERAD

ftpd 0.19 0.99 0.19 0.96
telnetd 0.96 7.87 1.05 9.79

ufsdump 6.76 33.33 0.42 1.78
tcsh 6.32 32.85 5.91 37.58
login 2.41 16.75 2.45 19.86

sendmail 2.73 15.09 3.23 21.63
quota 0.20 3.48 0.20 3.79

sh 0.21 3.25 0.40 5.63

5. Concluding Remarks

Even though system call sequences are beneficial in
modeling normal process behavior, they are not
omniscient. In this paper, we portrayed the efficacy of
incorporating system call argument information and used a
rule-learning algorithm to model a host-based anomaly
detection system. Our argument-based model, A-LERAD,
detected more attacks at lower false alarm rates than the
sequence-based techniques on the 1999 DARPA
evaluation dataset. Combining the two lines of approach

(argument and sequence information) resulted in creating a
richer and, more importantly, more accurate model for
anomaly detection, as illustrated by the empirical results of
M-LERAD. Though our techniques incur higher time
overhead due to the complexity of our techniques as well
as more information to be processed, they build more
succinct models that incur much less space overhead--our
techniques aim to generalize from the training data, rather
than simply memorize the data.

Our techniques can be easily extended to monitor audit
trails in continuum. Since we model each application
separately, some degree of parallelism can also be
achieved to test process sequences as they are being
logged. S-LERAD fares poorly as compared to stide and t-
stide. We are currently trying to analyze and rectify its
shortcomings, which might have an impact on the
performance of M-LERAD as well. Also, we were able to
see from our experiments that the time based probabilistic
estimation of anomaly score as proposed in LERAD and
the frequency component of t-stide are effective ways to
flag data as anomalous. These two functions can be
combined to give a more appropriate anomaly score. It
would be interesting to see how this would affect the
results. We might perform experiments and publish results
for the same in the near future.

Acknowledgements

This work is partially funded by DARPA (F30602-00-1-
0603). We thank the LLR members for their help on ideas
and the anonymous reviewers for their comments.

References

 [1] Cohen W. Fast Effective Rule Induction, in Machine
Learning. Proc. ICML 1995.

[2] Forrest S., Hofmeyr S., Somayaji A., and Longstaff T. A
Sense of Self for UNIX Processes. 1996 IEEE Symposium on
Research in Security and Privacy.

[3] Feng H., Kolesnikov O., Fogla P., Lee W. and Gong W.
Anomaly Detection Using Call Stack Information. IEEE
Symposium on Security and Privacy, 2003.

[4] Ghosh A., and Schwartzbad A. A Study in Using Neural
Networks for Anomaly and Misuse Detection. 1999 USENIX
Security Symposium.

[5] Hangal S. and Lam M.S. Tracking Down Software Bugs
Using Automatic Anomaly Detection. International Conference
on Software Engineering, 2002.

[6] Helman P. and Bhangoo J. A statistically based system for
prioritizing information exploration under uncertainty. IEEE

Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, 1997.

[7] Hofmeyr S. A., Forrest S., and Somayaji A. Intrusion
detection using sequences of system calls. Journal of Computer
Securit,y 1998.

[8] Jiang N., Hua K., and Sheu S. Considering Both Intra-pattern
and Inter-pattern Anomalies in Intrusion Detection. Proc. Intl.
Conf. Data Mining, 2002.

[9] Jones A., Li S. Temporal Signatures for Intrusion Detection.
Computer Security Applications Conference, 2001.

[10] Kendell K. A Database of Computer Attacks for the
Evaluation of Intrusion Detection Systems. Masters Thesis, MIT
1999.

[11] Lee W., Stolfo S., and Chan P. Learning Patterns from
UNIX Process Execution Traces for Intrusion Detection.
AAAI’97 workshop on AI methods in Fraud and risk
management.

[12] Lippmann R., Haines J., Fried D., Korba J., and Das K. The
1999 DARPA Off-Line Intrusion Detection Evaluation.
Computer Networks, 2000.

[13] Mahoney M. and Chan P. Packet Header Anomaly
Detection for Identifying Hostile Network Traffic, Florida Tech.
Technical Report CS-2001-04.

[14] Mahoney M., and Chan P. Learning Rules for Anomaly
Detection of Hostile Network Traffic, Proc. of the Third IEEE
International Conference on Data Mining, 2003 (to appear).

[15] Mahoney M. and Chan P. Learning non-stationary models
of normal network traffic for detecting novel attacks. Proc. Intl.
Conf. Knowledge Discovery and Data Mining, P 376-385, 2002.

[16] Osser W., and Noordergraaf A. Auditing in the SolarisTM 8
Operating Environment. Sun BlueprintsTM Online - February
2001.

[17] Rigoutsos Isidore and Floratos Aris. Combinatorial pattern
discovery in biological sequences. Bioinformatics, 1998.

[18] Sekar R., Bendre M., Dhurjati D., Bollineni P. A Fast
Automaton-based Method for Detecting Anomalous Program
Behaviors. IEEE Symposium on Security and Privacy, 2001.

[19] Wagner D., Soto P. Mimicry Attacks on Host-Based
Intrusion Detection Systems. ACM Conference on Computer and
Communications Security, 2002.

[20] Warrender C., Forrest S., Pearlmutter B. Detecting
Intrusions Using System Calls: Alternative Data Models. IEEE
Symposium on Security and Privacy, 1999.

[21] Wespi A., Dacier M., and Debar H. Intrusion detection
using variable-length audit trail patterns. Proc. RAID, 2000.

[22] Wespi A., Dacier M., and Debar H. An Intrusion-Detection
System Based on the Teiresias Pattern-Discovery Algorithm.
Proc. EICAR, 1999.

[23] Witten I. and Bell T., The zero-frequency problem:
estimating the probabilities of novel events in adaptive text
compression. IEEE Trans. on Information Theory, 1991.

