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ABSTRACT 
Most of the prevalent anomaly detection systems use some 
training data to build models. These models are then utilized to 
capture any deviations resulting from possible intrusions. The 
efficacy of such systems is highly dependent upon a training data 
set free of attacks. “Clean” or labeled training data is hard to 
obtain. This paper addresses the very practical issue of refinement 
of unlabeled data to obtain a clean data set which can then train an 
online anomaly detection system. 

Our system, called MORPHEUS, represents a system call 
sequence using the spatial positions of motifs (subsequences) 
within the sequence. We also introduce a novel representation 
called sequence space to denote all sequences with respect to a 
reference sequence. Experiments on well known data sets indicate 
that our sequence space can be effectively used to purge 
anomalies from unlabeled sequences. Although an unsupervised 
anomaly detection system in itself, our technique is used for data 
purification. A “clean” training set thus obtained improves the 
performance of existing online host-based anomaly detection 
systems by increasing the number of attack detections. 

Categories and Subject Descriptors 
I.2.4 [Knowledge Representation Formalisms and Methods]: 
Representations (procedural and rule-based) 

I.2.6 [Learning]: Parameter Learning 

General Terms 
Algorithms, Security. 

Keywords 
Anomaly detection, motifs, data cleaning. 

1. INTRODUCTION 
Anomaly detection, models normal behavior of applications and 
significant deviations from this behavior are considered 

anomalous. Anomaly detection systems can detect novel attacks 
but also generate false alarms since not all anomalies are hostile. 
Monitoring system call sequences has been successful in detecting 
process-based anomalies corresponding to attacks. But all the 
proposed techniques rely on “clean” training data to build their 
model. Current audit sequence is then examined for anomalous 
behavior. An attack embedded inside the training data would 
result in an erroneous model, since all future occurrences of the 
attack would be treated as normal. Purging all malicious content 
from audit data is hence imperative. 

There are two distinct tasks in any anomaly detection system: (i) 
Cleaning data for training -This is the preprocessing step and can 
be performed offline. (ii) Detecting novel attacks - This is an 
online process where an alarm is raised when an anomaly is 
detected by the system. Offline cleaning can tolerate higher false 
alarm rate than online detection because the goal of cleaning is to 
obtain an attack-free training data set (though false alarms can 
reduce the size of the training set). Online detection of novel 
attacks desires low false alarm rate, otherwise the administrator 
might ignore the detector. 

Unsupervised learning techniques have been proposed in the field 
of network anomaly detection but have not been well researched 
in host-based systems. In this paper, we present a representation 
for a system call sequence using the spatial relationships between 
the motifs (subsequences) occurring in the sequence. Utilizing 
this representation, we propose a novel way to represent system 
call sequences (called sequence space), which can eventually be 
used to determine anomalies. Our system, called MORPHEUS 
(Motif Oriented Representations to Purge Hostile Events from 
Unlabeled Sequences), is an anomaly detector itself. It refines 
data to train other anomaly detection systems. 

Our contributions are as follows: 

(i) Motif representation - We represent sequences on the basis of 
the motifs and introduce the concept of a sequence space. 
Empirical results indicate that our representation can be 
effectively used to detect malicious sequences from the data using 
unsupervised learning techniques.  

(ii) Parameter for LOF (details in Section 3.5) - We propose 
heuristics to automate the process of determining the parameters 
to the existing outlier detection algorithm.  

(iii) We show empirically that cleaning training data improves 
performance of existing online detection systems.
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Figure 1. System Architecture of MORPHEUS. 

 

The paper is organized as follows. In Section 2, we review some 
anomaly detection systems. In Section 3, we present the system 
architecture and detail the various phases of MORPHEUS. In 
Section 4, we summarize and analyze the results obtained from 
the experiments performed on synthetic and real data sets. In 
Section 5, we conclude and put forth some issues we plan to 
address in the future. 

2. RELATED WORK 
Traditional host based anomaly detection techniques create 
models of normal behavioral patterns and then look for 
deviations in test data. Such techniques perform supervised 
learning. Forrest et al. [10] memorized normal system call 
sequences using a look-ahead pairs. Lane and Brodley [17, 18] 
examined UNIX command sequences to capture normal user 
profiles using a fixed size window. Later work by Warrender et 
al. [35] extended sequence modeling by using n-grams and their 
frequency. Wespi et al. [36, 37] proposed a scheme with 
variable length patterns using Teiresias [29], a pattern discovery 
algorithm in biological sequences. Ghosh and Schwartzbard 
[11] used artificial neural networks, Sekar et al. [31] proposed a 
finite state automaton, Jiang et al. [13] also proposed variable 
length patterns, Liao and Vemuri [21] used text categorization 
techniques, Jones and Li [14] learnt temporal signatures, Coull 
et al. [7] suggested sequence alignment, Mazeroff et al. [25] 
proposed probabilistic suffix trees, and Lee at al [20] used 
machine learning algorithm called RIPPER [6] to learn normal 
user behavior. All these techniques require “clean” or labeled 
training data to build models of normal behavior, which is hard 
to obtain. The data sets used are synthetic and generated in 
constrained environments. They are not representative of actual 
application behavior, which contains many irregularities. The 
need for a system to filter audit data and produce a “clean” data 
set motivates our current research. 

Unsupervised learning is an extensively researched topic in 
network anomaly detection [27, 9, 5, and 19]. Network traffic 
comprises of continuous and discrete attributes which can be 
considered along different dimensions of a feature space. 
Distance and density based algorithms can then be applied on 
this feature space to detect outliers. Due to the lack of a similar 
feature space, not much work has been done using unsupervised 
learning techniques in host based systems. In this paper, we 
present a novel framework of system call sequences (called 
sequence space) and demonstrate the efficacy of our 
representation to purge outliers using unsupervised learning 
techniques. 

3. SYSTEM ARCHITECTURE 
In this section, we present the system architecture and describe 
the various stages involved in our system. The overview of our 
system is presented in Figure 1. 

Audit sequences corresponding to all the processes for an 
application are the inputs to our system (Phase 0). Every 
sequence is a process in execution and initial preprocessing 
might be required to obtain them. The preprocessing of audit 
data is explained in Section 4.1. In the first phase, all the unique 
system calls are extracted and mapped to a unique id. Using the 
sequences and the system call mapping table, we extract motifs 
(subsequences) which are either repetitive within the same 
sequence or are common across any two sequences (Phase 2). 
Once all motifs have been extracted and inserted into a database, 
they are ranked and assigned a unique id. 

Using the motif database, we create a representation for a 
sequence by recording all the motifs that occur within that 
sequence and their corresponding positions (Phase 3). In Phase 
4, these representations are used to map all sequences in a single 
plot (called sequence space). Anomaly detection is performed 



on the sequence space and outliers are detected (Phase 5). These 
suspicious components are removed to obtain a relatively 
“clean” data set, which is then fed as training input to an online 
detection algorithm in Phase 6. 

3.1 Phase 1: Translation and ordering of 
system calls 
We represent a process (system call sequence) as a finite 
sequence of system calls, where each system call belongs to the 
finite set ∑. A system call sequence (SCS) s is thus represented 

as (c1 c2 c3  .   .   . cn), where .1,ci ni ≤≤Σ∈ |s| represents the 

length of SCS s. 

As a result of the pre-processing stage, we obtain system call 
sequences as finite (but not necessarily equal) length strings. We 
then map each system call to a unique symbol using a translation 
table. Once we have mapped all the system calls, we rank their 
corresponding ids by utilizing prior knowledge as to how 
susceptible the system call is to malicious usage. Bernaschi et al. 
[3] proposed kernel enhancements to Linux using a threat level 
classification. We use a similar ranking scheme which allows 
system calls with similar threat levels to be grouped together. 
This ranking is used in Phase 2. 

3.2 Phase 2: Motif extraction and id 
generation 
A motif is defined as a subsequence of length greater than p if it 
appears more than k times, for some positive integers p and k, 
within the finite set S = {s1, s2, . . . sm} comprising m SCSs. Now 
our task is reduced to extract motifs (subsequences) from the 
strings (corresponding to the system call sequences). We extract 
two sets of motifs via “auto-match” and “cross-match”. 

3.2.1 Motif extraction using auto-match  
Our first set of motifs comprises the frequently occurring 
patterns within each sequence. For our experiments, we 
considered any pattern at least 2 characters long, occurring more 
than once as frequent. While the set of SCSs S is the input to 
this algorithm, a set of unique motifs M={m1, m2, . . ., mq} is the 
output. It may happen that a smaller length subsequence is 
subsumed by a longer one. We prune the smaller motif only if it 
is not more frequent than a larger motif that subsumes it.  
 
Definition A motif im  extracted using auto-match (1) has 

length ≥ 2, (2) has frequency ≥ 2, and (3) if there exists a motif 
Mm j ∈ in a sequence Ssk ∈  such that mi is a subsequence 

of mj but occurs independently in SCS sk. 
 
To illustrate this idea, consider the following synthetic sequence 
  acggcggfgjcggfgjxyz     (I) 
The frequently occurring subsequences (with their respective 
frequency) are cg(3), gg(3), gf(2), fg(2), gj(2), cgg(3), cggf(2), 
ggfg(2), gfgj(2), cggfg(2), ggfgj(2), cggfgj(2). The longest 
pattern cggfgj subsumes all the smaller subsequences except cg, 
gg and cgg since they are more frequent than the longer pattern, 
implying independent occurrence. But cg and gg are subsumed 
by cgg, since they all have the same frequency. Thus, the final 
set of motifs M={cgg, cggfgj}. 

We start by looking at such sub-strings of length two within 
each string. Then, we do the same for substrings of increasing 
lengths. Two or more overlapping motifs may be merged 
together to form a motif of greater length. This is how we create 
motifs of arbitrarily lengths. Representing sequences with 
possibly overlapping motifs is based on Allen's temporal 
reasoning scheme [2]. After extracting motifs of length 4 in the 
example sequence (I), we have motifs cggf, ggfg and gfgj, all 
with frequency 2. Since these patterns are overlapping and have 
the same frequency, they may be merged together in order to 
obtain a longer motif cggfgj with the same frequency 2. 
However, there are instances when the smaller motifs may 
concatenate forming a longer motif at some places, but may 
occur at other positions on the sequences independently (i.e., 
not overlapping). Even though they have the same frequency, 
the concatenated longer motif does not subsume the shorter 
ones. Consider the sequence cggfgjabcggfpqrggfgxyzgfgj. Here, 
the motifs cggf, ggfg and gfgj each have a frequency 2. But the 
longer motif cggfgj occurs only once, though we may wrongly 
conclude a frequency of 2 by using the above derivation. The 
remaining instances of the smaller motifs are at different (non-
overlapping) positions within the string. The solution to this 
problem is that the occurrence of the longer motif obtained from 
the fusion of the smaller motifs should be verified for accuracy. 
If the frequency of the longer motif is found to be the same as 
that of a smaller one, then merging of the latter ones is all right, 
i.e., we ignore the smaller motifs. This technique reduces the 
effort of going through all possible string lengths and of finding 
all possible motifs for those lengths. The procedure of finding 
motifs of variable lengths by first merging and then verifying is 
repeated until no more motifs could be merged. 

3.2.2 Motif extraction using cross-match  
Apart from frequently occurring patterns, we are also interested 
in patterns which do not occur frequently but are present in 
more than one SCS. We believe that these motifs could also be 
instrumental in modeling an intrusion detection system since 
they reflect common behavioral patterns across sequences. We 
performed pair-wise cross-match between different sequences to 
obtain these. 

Definition A motif im extracted using cross-match (1) has 

length ≥ 2, (2) appears in at least a pair of sequences 
Sss lk ∈, , and (3) is maximal, i.e., there does not exist a motif 

)( ijMm j ≠∈ such that lkj ssm ,⊆  and ji mm ⊂ . 

Let us consider the following pair of synthetic sequences: 

acgfgjcgfgjxyzcg      (II) 

cgfgjpqrxyzpqr    (III) 

Using cross-match between the example sequences (II) and (III), 
we get the motifs cgfgj and xyz, since these are the maximal 
common subsequences across the two given sequences. 

A simple method for comparing amino acid and nucleotide 
sequences called the Matrix Method is described by Gibbs and 
McIntyre [12]. A matrix is formed with one sequence written 
across and the other in the downward position on the left of the 
matrix. Any common element was marked with a dot and a 
series of dots along a diagonal gave a common subsequence



 

Figure 2. Motif-oriented representation for sequence (II). 

 

between the two sequences. Using a technique similar to the 
Matrix Method, we extract motifs which occur across sequences 
but may not be frequent within a single sequence itself.  

After generating all the motifs for a sequence (auto-match) or 
pairs of sequences (cross-match), we added them to the motif 
database and pruned redundant motifs. We ordered the motifs on 
the likelihood of involving in an attack using a dictionary sort 
and the ranking of the system calls in Section 3.1. The motifs are 
then assigned a unique id based upon their position within the 
ordered motif database. 

3.3 Phase 3: Motif-based representation of a 
sequence 
Once we have all the motifs that exist in the set S of sequences 
in the motif database M, we would like to represent each 
sequence in terms of the motifs existing within it. For each 
sequence Ssi ∈ , we list all the motifs occurring within it along 

with their starting positions within the sequence. 

This creates a two dimensional representation for each SCS si, 
where the X-axis is the distance along the sequence from its 
beginning, and the Y-axis is the motif id of those motifs present 
in si. With this scheme a sequence could be visualized as a 
scatter plot of the motifs present in a sequence. Figure 2 depicts 
such a representation for the synthetic sequence (II), where the 
motifs cg, cgfgj and xyz are represented at the positions of 
occurrence within the respective sequence. A motif’s starting 
point is the abscissa and the motif ID is the ordinate of the 
corresponding point in the scatter plot. A total of 4 unique 
motifs (cg, cgfgj, pqr and xyz), obtained from auto-match and 
cross-match of (II) and (III), are assumed in the motif database 
for the plot in Figure 2. This representation is for visualization 
purposes only. At the end of this phase, our system stores each 
SCS as a list of all motifs present within along with their spatial 
positions from the beginning of the sequence. 

Once we have all the motifs that exist in the set S of sequences 
in the motif database M, we would like to represent each 
sequence in terms of the motifs existing within it. For each 

sequence Ssi ∈ , we list all the motifs occurring within it 

alongwith their starting positions within the sequence. 

 

3.4 Phase 4: Sequence space – a single 
representation for all sequences 
We model all sequences on the basis of their motifs. Malicious 
activity results in alterations in the SCS which is reflected by the 
variations in the motifs and their spatial positions. Plotting all 
the SCSs (based upon their motif representations) in a single 
feature space could reflect the similarity/dissimilarity between 
them. 

After creating a motif-based representation for each sequence 
(Section 3.3), we plot all the test sequences S in a feature space 
called the sequence space. In this representation we measure the 
distance between pairs of SCSs along each of the two axes 
(motifs and their locations). Utilizing one (arbitrarily chosen) 
SCS from the set S as a reference sequence s1, we measure (dx, 
dy) distances for all SCSs Ssi ∈ . Thus, the sequences are 

represented as points in this 2D sequence space, where the 
sequence s1   is at the origin (reference point) on this plot. Let s2 
be any other sequence in S whose relative position with respect 
to s1 is to be computed. Inspired by the symmetric Mahalanobis 
distance [23], the distance is computed as follows: 
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(a) (b) 
Figure 3. Sequence space for (a) ftpd, and (b) lpr applications. 

 

where s1 has n1 motif occurrences and s2 has n2 motif 
occurrences, (dx, dy) is the position of s2 w.r.t. s1,            is the 
mean and ),( yx σσ is the standard deviation along the x and y 

axes. Using this metric, we try to calculate the variation in 
motifs and their locations in the two sequences. 

After computing (dx, dy) for all sequences in S with respect to 
the reference sequence (s1), we plot them in the sequence space, 
as represented by the two plots in Figure 3. The origin 
represents the reference sequence It is important to note that the 
position of another sequence (calculated using IV) with respect 
to the randomly selected reference sequence can be negative (in 
X and/or Y direction). In that case the sequence space will get 
extended to other quadrants as well, as in Figure 3(b). 

3.5 Phase 5: Purging sequence space 
anomalies 
Similar sequences are expected to cluster together in the 
sequence space. Malicious activity is known to produce irregular 
sequence of events. These anomalies would correspond to 
spurious points (global outliers) or local outliers in the scatter 
plot created in Phase 4. In Figure 3(a), the point on the top-right 
corner of the plot is isolated from the rest of the points, making 
it anomalous. In this section we will concentrate on outlier 
detection, which has been well researched topic in databases and 
knowledge discovery [16, 4, 28, and 1]. 

LOF [4] is a density-based outlier finding algorithm which 
defines a local neighborhood, using which a degree of 
outlierness is assigned to every object. A reachability distance is 
computed for every object based upon its distance from its kth-
nearest neighbor. A reachability density is then calculated for 
every object based upon the average reachability distance of that 
object from its neighbors (number of neighbors – MinPts –being 
an input parameter). Finally, a local outlier factor (LOF) is 
associated with every object by comparing its reachability 
density with each of its neighbors. A local outlier is one whose 
neighbors have a high reachability density as compared to that 
object. For each point this algorithm gives a degree to which 
that point is an outlier as compared to its neighbors. This LOF 

score corresponds to the anomaly score of that point in our 
model. Our system computes the anomaly scores for all the 
SCSs (represented as points in sequence space). All the points 
for which the score is greater than a threshold are considered 
anomalous and removed. 

3.5.1 Automating the LOF parameters 

3.5.1.1 MinPts 
We use LOF for anomaly detection in the sequence space. LOF 
takes MinPts as an input parameter, which signifies the number 
of neighborhood points to be compared with. The performance 
of the system is sensitive to the parameter MinPts. A human 
expert (in our case a system administrator) would be required to 
analyze the sequence space and then come up with a reasonable 
value of MinPts. But the LOF values increases and decreases 
non-monotonically [4]. So it is highly desirable for this 
parameter selection to be automated. We present one intuitive 
way in which this can be computed without the help of any 
human expert. To select MinPts, we use clustering to identify 
the larger neighborhoods. Then, we scrutinize each cluster and 
approximate the number of neighbors in an average 
neighborhood. 

(a) Finding the number of clusters: After creating the sequence 
space, we use the L-Method [30] to predict the number of 
clusters in the representation. This is done by creating a 
“number of clusters vs. merge distance” graph obtained from 
merging one data point at a time in the sequence space. Starting 
with all N points in the sequence space, the 2 closest points are 
merged to form a cluster. At each step, a data point with 
minimum distance to another cluster or data point is merged. At 
the final step, all points are merged into the same cluster. The 
graph obtained has 3 distinct areas – a horizontal region 
(points/clusters close to each other merged), a vertical region 
(far away points/clusters merged), and a curved region in 
between. The number of clusters is represented by the knee of 
this curve, which is the intersection of a pair of lines fitted 
across the points in the graph that minimizes the root mean 
square error. Further details can be obtained from [30]. 
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(b) Calculating MinPts: Assume k clusters are obtained in a 
given sequence space using L-Method (with each cluster 
containing at least 2 points). Let αi be the actual number of 
points in cluster i, ki ≤≤1 . Let ρi be the maximum pair-wise 
distance between any 2 points in cluster i; and τi is the average 
(pair-wise) distances between 2 points in cluster i. Let βi be the 
expected number of points in cluster i. Its value can be 
computed by dividing the area of the bounding box for the 
cluster with the average area occupied by the bounding box of 
any 2 points in the cluster (for simplicity we assume square 
shaped clusters). Therefore, we get  

                                   βi = 

2










i

i

τ
ρ

   (V) 

This gives us the expected number of points within the cluster. 
But the actual number of points is αi. Thus, we equally distribute 
the excess points among all the points constituting the cluster. 
This gives us an approximate value for MinPts (number of 
“close” neighbors) of the cluster: 

MinPts for cluster i =    (VI) 

 

After obtaining MinPts for all k clusters, we compute a weighted 
mean over all clusters to obtain the average number of MinPts 
for the entire sequence space. 

 

 

                                  (VII)
    

 

Only clusters with at least 2 points are used in this computation.  

(c) Considering duplicates: But this approach gives a reasonable 
value for the average number of MinPts in a sequence space if 
all the points are unique and there are no duplicates. In our case, 
there are many instances when the sequences are exactly the 
same. This is representative of exactly same application 
behavior. Density is the basis of our system and we cannot 
ignore duplicates. But the equation (V) would be affected since 
the maximum distance still remains the same whereas the 
average value is suppressed due to the presence of points with 
same spatial coordinates. Also, if there are q points 
corresponding to a coordinate (x, y), then each of the q points is 
bound to have (q-1) MinPts in the worst case. 

Let p be the number of frequent data points (i.e. frequency > 1) 
in cluster i. Let ψj be the frequency of a data point j in cluster i. 
We compute γ` the same way as equation (VI), where γ` is the 
MinPts value for cluster i assuming unique points in the 
sequence space.      

      
                   (VIII) 

 

This value is then modified to accommodate the frequently 
occurring points (corresponding to sequences sharing the same 
spatial positions in the sequence space). We compute a weighted 

mean to obtain an appropriate value of MinPts in cluster i as 
follows: 

      
      
      (IX) 

 

 

 

Average MinPts for the entire plot can then be computed using 
equation (VII) above. 

3.5.1.2 Threshold for raising alarms 
LOF only assigns a local outlier factor for a point in the 
sequence space which corresponds to its anomaly score. If the 
score is above a user specified threshold, then it is considered as 
anomalous and hence filtered from the data set. If the threshold 
is too low, there is a risk of filtering a lot of points, many of 
which may depict normal application behavior. On the contrary, 
if the threshold is too high, some of the data points 
corresponding to actual intrusions (but close to many other data 
points on the sequence space) may not get filtered. One way to 
compute a threshold automatically is to order and plot the LOF 
scores in increasing order of the scores (with each data point 
along the X-axis and the anomaly/LOF score along the Y-axis). 
Since the normal points are assumed in abundance, their LOF 
scores are ideally 1. We are interested in the scores after the first 
steep rise of this plot, since these correspond to outliers. 
Ignoring all the scores below the first steep rise (corresponding 
to normal sequences), the cut-off value can be computed as the 
median of all the scores thereafter. This heuristic gives a 
reasonable threshold value for the various applications in our 
data sets. 

3.6 Phase 6: Training and online detection 
The filtered data set obtained above provides clean data as 
training input to any online anomaly detection system like stide 
and LERAD. 

stide (Sequence TIme-Delay Embedding) [35] memorizes all 
contiguous sequences of predetermined, fixed length (n-grams) 
during training. This is done by using a sliding window and 
adding all unique sequences to the database. During test phase, 
an anomaly count is associated with n-gram mismatches and is 
defined as the number of mismatches in a temporally local 
region for a sequence. A threshold is set for the anomaly score 
above which a sequence is flagged anomalous, indicating a 
possible attack. 

LERAD (LEarning Rules for Anomaly Detection) [24] is a 
randomized algorithm that learns rules for the normal data set. 
With every rule a probability is assigned for encountering a 
novel value of the attribute in the consequent when the 
conditions in the antecedent are true. A non-stationary model is 
assumed for LERAD – frequency is made irrelevant and only the 
last occurrence of an event is assumed important. The anomaly 
scoring function uses the probability and time since last anomaly 
of the rule violated by the test input. Details for the rule learning 
algorithm are available in [24]. The applicability of LERAD to 
host based anomaly detection has been demonstrated in [33].

 








 −
=

i

ii
i β

βα
γ





















=∴

∑

∑

=

=
k

i
i

k

i
ii

MinPts

1

1

α

αγ








 −
=

i

ii
i β

βαγ '



















+

−+
=

∑

∑

=

=
p

j
ji

p

j
jjii

i

1

1

)1('

ψα

ψψαγ
γ



Table 1. Automated MinPts computation 
Application eject fdformat ftpd ps lpr login excel 

Number of 
sequences 

 
21 

 
19 

 
91 

 
341 

 
3704 

 
16 

 
38 

Average 
sequence length 

 
66.43 

 
57.63 

 
284.93 

 
66.45 

 
835.73 

 
730.81 

 
2862.87 

MinPts 3 2 10 71 6 3 2 

 

4. EXPERIMENTAL EVALUATION 
Our goal is to determine if our proposed representation can be 
used with an unsupervised learning algorithm (namely LOF) to 
detect and purge out anomalies, creating a “clean” training set 
for online detection systems. We would also like to note the 
change in performance after using our filtering scheme. 

4.1 Data sets and preprocessing 
We evaluated our techniques on 7 applications obtained from 
three different data sets: 

(i) The DARPA intrusion detection evaluation data set was 
developed at the MIT-Lincoln Labs [22]. We used the Solaris 
data from the Basic Security Module (BSM) audit logs [26]. 
This data has to be preprocessed before use by MORPHEUS.  

For our experiments, we selected the ftpd, ps, fdformat and eject 
applications to obtain a good range in the number of sequences 
and the number of system calls (~1200-26000). These 
applications also have a good mix of different attack types [15]. 
The ftpd application comprises of R2L (guessftp, ftpwrite) and 
DoS (warez, warezclient) attacks. On the other hand, ps, eject 
and fdformat are all U2R attacks. 

(ii) Two applications (lpr and login) from the University of New 
Mexico (UNM) data sets [35] were also used. The lpr 
application comprised of 2703 normal traces running lpr 
collected from 77 hosts running SUNOS 4.1.4 at the MIT 
Artificial Intelligence Lab. Another 1001 traces correspond to 
the execution of the lprcp attack script. Older versions of lpr 
use only 1000 different names for printer queue files. The attack 
takes advantage of the fact that the old files are not removed 
from the queue before they can be used again. The attack works 
as follows: a symbolic link is placed to the victim file at the 
beginning. All the intermediary traces increment the counter and 
the intruder overwrites the target file in the last trace. Traces 
from the login application were obtained from a Linux machine 
running kernel 2.0.35. A homegrown Trojan program was used 
for the attack traces. 

(iii) We also used system call sequence logs corresponding to 
Microsoft excel macros in execution used by researchers at 
Florida Institute of Technology (FIT) [38] and University of 
Tennessee at Knoxville (UTK) [25]. 36 normal traces 
correspond to some statistical, chemistry and cost estimation 
related Excel macros. 2 malicious traces modify the registry 
settings and execute some other application. Such a behavior is 
exhibited by the ILOVEYOU worm which opens the web 
browser to a specified website and executes a program, 
modifying registry keys and corrupting user files. This worm 
results in a distributed denial of service (DDoS) attack. 

4.2 Outlier (anomaly) detection in sequence 
space 
Our system creates a sequence space and plots all sequences as 
points with respect to other sequences. We claim that the 
malicious sequences are reflected as outliers in the sequence 
space. It is therefore imperative for us to evaluate if the outliers 
in the sequence space correspond to actual attacks. The 
underlying assumption is that the bulk of the data set constitutes 
of normal SCSs. We assume that the similar nature of normal 
behavior will cause them to cluster together. Outliers to these 
clusters would be the anomalies resulting from possible 
intrusions. 

For the MIT-Lincoln lab data set, week 3 comprises of clean 
data while weeks 4 and 5 data has attacks. We are also given the 
timestamp for the occurrence of the attacks. In this experiment, 
after dividing the data into different applications and their 
processes (as explained in Section 4.1), we combine the data for 
the 3 weeks together (on a per application basis) and feed it to 
our system. This gives a good mix of normal application 
behavior and some sequences resulting from intrusions. We also 
use an aggregation of all traces for the other data sets (UNM and 
FIT-UTK) on a per application basis for similar reasons. 

We created a sequence space for each application. Figure 3(a) 
represents the sequence space for the ftpd application from the 
DARPA evaluation data set, whereas 3(b) corresponds to the lpr 
data set from UNM. The X-axis on the plots is the distance due 
to the motif separation amongst sequences and Y-axis 
corresponds to the distance with respect to the motifs present in 
the sequence. Similar sequences tend to cluster together while 
anomalous sequences are represented as outliers. 

We used the sequence space to detect local outliers using LOF 
on all the datasets. LOF takes MinPts-nearest neighbors (the 
number of points comprising the neighborhood of a point) as an 
input parameter and the results are very sensitive to this 
parameter selection [4]. For our experiments, we varied this 
parameter value as a percentage of the entire population. We 
also used the MinPts value that we computed using our 
automated technique (as in Section 3.5.1.1). These values are 
listed in Table 1. After computing the LOF or anomaly scores, 
we ranked them in descending order. All the sequences with 
scores greater than the threshold were considered anomalies and 
evaluated for detections and false alarms. 

The results from the experiments, depicted in Table 2, indicate 
that none of the MinPts values were ideal to detect all the 
attacks. The two parameter values – 15% and 20% – seem to 
have the maximum number of detections (17 each, out of 19 
total attacks).   



Table 2. True positives and false positives for various applications at varied LOF MinPts values 

Number of different attacks detected (with false alarm count) for different values of 
LOF MinPts (% of total population) 

Application Total 
Attacks 

5% 10% 15% 20% Automated (from 
Table 1) 

eject 2 1 (1) 2 (1) 2 (0) 2 (0) 2 (0) 

fdformat 3 3 (0) 3 (0) 3 (0) 3 (0) 3 (0) 

ftpd 6 0 (6) 0 (11) 6 (6) 6 (1) 0 (11) 

ps 4 0 (6) 4 (1) 4 (1) 4 (2) 4 (49) 

lpr 1 0 (123) 1 (193) 1 (198) 1 (157) 1 (97) 

login 1 0 (1) 0 (2) 1 (2) 1 (2) 1 (2) 

excel 2 2 (0) 0 (3) 0 (0) 0 (0) 2 (0) 

Total 19 6 (137) 10 (211) 17 (207) 17 (162) 13 (159) 

 

The only attacks missed were the ones in the excel application 
where a reasonable value of MinPts is best suggested as 5%. Our 
methodology for MinPts calculation was successful in computing 
the correct number for the parameter and hence successfully 
detected the attack sequence as outlier (for which the 15% and 
20% values failed). The automated LOF parameter detected all the 
attacks except the ones in the ftpd application. The reason for 
such a behavior can be better understood from Figure 3(a). There 
are 2 main clusters in the sequence space – one close to the origin 
and the other towards the center of the plot. The total number of 
points is 91 (80 in the large cluster, 10 in the smaller one, and one 
spurious point far away on the top-right corner of the plot). The 
MinPts value obtained by using our heuristic is 10, which seems 
to be an appropriate value. Inability of LOF to detect the 
anomalies in this representation is attributed to the fact that all the 
10 points in the smaller cluster correspond to 6 different attacks. 
Therefore, the anomaly scores for all these points are very low. 
This implies that the concept of local outliers is not sufficient to 
capture such anomalous data points. Thus, we need to adopt a 
global view to find anomalous clusters as well, which can be 
incorporated in our sequence space. This would also be beneficial 
in detecting flooding attacks, which would typically correspond to 
high density points/clusters in the sequence space. Other than the 
ftpd application, the automated technique successfully detected all 
other attacks. This suggests that the MinPts values computed 
using our heuristic are generally reasonable. 

As can be observed from Table 2, the number of false alarms is 
high for the lpr application (in the range 2.6 – 5.3%), which 
constitutes of over 3700 sequences and approximately 3.1 million 
system calls. The data was collected over 77 different hosts and 
represents high variance in application behavior. Though we were 
able to capture the lpr attack invoked by the lprcp attack script, we 
also detected other behavioral anomalies which do not correspond 
to attacks. Our goal here is to retain generic application behavior 
and shun anomalies. Peculiar (but normal) sequences would also 
be deemed anomalous since they are not representative of the 
general way in which the application functions, as in this case. 
Since program faults and system crashes are not representative of 
normal behavior, purging these anomalies is justifiable.  

Our representation scheme also subsumes the ideas presented in 
[35, 36, 37, and 13]. The underlying assumption is that similar 

sequences would appear together in the sequence space. An attack 
modifies the course of events. This results in (a) either the absence 
of a motif, or (b) altered spatial positions of motifs within the 
sequence due to repetition of a motif, or (c) the presence of an 
entirely new motif. All these instances affect the spatial 
relationships amongst the different motifs within the sequence. 
Ultimately, this affects the distance of the malicious sequence 
with respect to the reference sequence, resulting in an outlier 
being plotted on the sequence space. It is this drift within the 
sequence space that the outlier detection algorithm is able to 
capture as an anomaly. Since the reference sequence is picked 
randomly, it may so happen that the reference sequence is the 
attack sequence itself. This does not affect our system since our 
distance metric is symmetric and the point is still classified as an 
outlier.  

4.3 Effects of filtering the data 
We reemphasize that our ultimate goal is to obtain “clean” data 
for other intrusion detection systems to train on. Thus, it is 
important to study how well our system can clean the training data 
and what effect does it have on the performance of an online 
detection system (in terms of true detections as well as false alarm 
generation). 

Only the MIT-Lincoln Labs and FIT-UTK data sets were used for 
this set of experiments since they contained sufficient attacks to 
be used in both “adulterated” training and test data sets. The lpr 
and login data sets from UNM comprised of only a single attack. 
We have already demonstrated in the previous section that our 
technique could filter them as spurious outliers. But a single 
attack is not sufficient for this set of experiments, as we would 
like to have attacks in both training and test data. Therefore, we 
did not involve those two applications for this experiment. We 
combined the “clean” week 3 data with the “mixed” week 4 data 
of the MIT-Lincoln lab data set to obtain an unlabeled data set. 
We use this to train stide and LERAD. We then tested on week 5 
data (containing attacks with known timestamps). Subsequently, 
we used MORPHEUS to filter out spurious data points (and hence 
SCSs) from the combined data set. This marks the end of phase 5 
of our system. The sixth and final phase is next, which uses the 
refined data set for training stide and LERAD. Week 5 data is 
used for testing purposes. As per the 1999 DARPA evaluation 
criteria, a system is considered to have successfully detected an
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Figure 4. Comparison of attack detections with and without filtering (for stide and LERAD respectively). 

 

attack if it generates an alarm within 60 seconds of the occurrence 
of the attack. We follow the same criterion for our evaluation. For 
the FIT-UTK Microsoft Excel data set, we randomly picked 33 
traces (including one attack) for training and remaining 5 traces 
for testing purposes. 

The parameter selection for our experiments was as follows: For 
stide, we used a window size of 6. A locality frame of 20 is used, 
that is the anomaly count keeps track of the number of 
mismatches in a temporally local region comprising 20 system 
calls. All the parameter values used are suggested to give best 
results in [35]; parameter sensitivity is studied in [32]. For 
LERAD, each tuple comprised of the system call, its return value 
and error status besides other arguments. In all cases, alarms are 
accumulated for the applications and then evaluated for the 
number of true detections and false positives. 

Figure 4 depicts the number of attacks detected by stide and 
LERAD for the 5 applications under study. It is observed that in 
both cases, the IDS was able to detect more attacks in ftpd and ps 
applications after data filtering by MORPHEUS while there was 
no change in the performance for the other three applications 
(eject, fdformat and excel). This is because the training data also 
contained some attacks. For the ftpd and ps applications, the 
attacks in the test data were similar to the ones seen in the 
adulterated training data set, and were hence missed by both the 
IDSs. When filtered using MORPHEUS, the attack SCSs were 
purged and hence detections were possible in the test phase. For 
the applications eject and fdformat, the attacks in the adulterated 
training and testing data sets were different in character. Hence 
both the systems detected them irrespective of the filtering 
procedure. For excel, stide was able to detect the worm in both 
cases due to similar reasons. LERAD was not able to capture the 
malicious sequence due to incomplete argument information. 

No false alarms were generated in any case in stide except the 
excel application, where one false positive was produced in each 
case. For LERAD, 1 false alarm was generated for the ps 
application with and without filtering. No other false positives 
were obtained. Overall, the results indicate that the filtering 
process was instrumental in increasing the number of detections 
without increasing the number of false alarms. 

5. CONCLUSIONS AND FUTURE WORK 
Most of the traditional host based IDSs require a “clean” training 
data set which is difficult to obtain. Our system, called 
MORPHEUS, addresses and attempts to solve this problem of 
data filtering. We present a motif-based representation for system 
call sequences (SCSs) based upon their spatial positions within 
the sequence. We also propose a novel representation of 
sequences – called sequence space – using a distance metric 
between the motif-based representations. We also exhibited the 
efficacy of this feature space to filter anomalies by integrating it 
with an existing unsupervised learning algorithm (called LOF) for 
outlier detection. Experiments were performed on different 
applications which varied in size, operating system (SUNOS, 
Solaris, Linux and Windows), and environment (simulated and 
live/real). Results indicate that our system can successfully detect 
the vulnerability-based anomalies. The generation of false alarms 
is caused by the irregularities in the data set and the results are 
sensitive to the parameter selection for the outlier algorithm. We 
proposed heuristics to automate the parameters to MORPHEUS – 
MinPts (a parameter to LOF) and threshold for raising alarms, 
thereby making our system parameter-free. Our automatically 
computed parameter was generally able to detect the attacks 
producing the least false alarms in the most irregular real data set. 
After filtering the anomalous points, the “clean” training data set 
was used by an online detection system resulting in higher 
detection rates, implying that MORPHEUS effectively purged the 
anomalies to create a better training data set. 

An attacker might devise a clever technique to evade typical 
sequence-based anomaly detection systems. Wagner and Soto [34] 
presented one such idea wherein they were successful in modeling 
a malicious sequence by adding null operators to make it 
consistent with the sequence of system calls. The sequence based 
techniques dealing with short sub-string patterns can be bypassed 
by spreading the attack over longer duration (or longer sub-
sequences). MORPHEUS uses variable length motifs and also 
takes the relative positions of the motifs for anomaly detection, 
and is better equipped and more robust against such evasions. In 
essence, our system models sequences at two different levels – at 
the individual motif level and also at the level of spatial 
relationship between motifs within the audit sequence. The latter 
level adds to the security of the system and would make it even 



harder for the attacker to evade the system, since he has to now 
not only use the “normal” audit event patterns, but also place 
those event-sequences/motifs within the respective sequence at 
proper relative positions. 

MORPHEUS can be integrated with a hybrid of signature and 
anomaly based systems for better accuracy and the ability to 
detect novel attacks. Our system can also be used for user 
profiling and detecting masquerade. Also, as mentioned earlier, 
we need to expand our perspective from local to global outliers to 
detect attack clusters. In terms of efficiency, the only bottleneck in 
our system is the motif extraction phase where cross-match is 
performed pair-wise. Speed-up is possible by using other 
techniques like suffix trees. We are also working on refining the 
motif relationships in the motif-based representation. 
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