
MORPHEUS: Motif Oriented Representations to Purge Hostile
Events from Unlabeled Sequences

Gaurav Tandon Philip Chan
Department of Computer Sciences

Florida Institute of Technology
Melbourne, FL 32901

USA

Debasis Mitra

{gtandon, pkc, dmitra}@cs.fit.edu

ABSTRACT
Most of the prevalent anomaly detection systems use some
training data to build models. These models are then utilized to
capture any deviations resulting from possible intrusions. The
efficacy of such systems is highly dependent upon a training data
set free of attacks. “Clean” or labeled training data is hard to
obtain. This paper addresses the very practical issue of refinement
of unlabeled data to obtain a clean data set which can then train an
online anomaly detection system.

Our system, called MORPHEUS, represents a system call
sequence using the spatial positions of motifs (subsequences)
within the sequence. We also introduce a novel representation
called sequence space to denote all sequences with respect to a
reference sequence. Experiments on well known data sets indicate
that our sequence space can be effectively used to purge
anomalies from unlabeled sequences. Although an unsupervised
anomaly detection system in itself, our technique is used for data
purification. A “clean” training set thus obtained improves the
performance of existing online host-based anomaly detection
systems by increasing the number of attack detections.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and Methods]:
Representations (procedural and rule-based)

I.2.6 [Learning]: Parameter Learning

General Terms
Algorithms, Security.

Keywords
Anomaly detection, motifs, data cleaning.

1. INTRODUCTION
Anomaly detection, models normal behavior of applications and
significant deviations from this behavior are considered

anomalous. Anomaly detection systems can detect novel attacks
but also generate false alarms since not all anomalies are hostile.
Monitoring system call sequences has been successful in detecting
process-based anomalies corresponding to attacks. But all the
proposed techniques rely on “clean” training data to build their
model. Current audit sequence is then examined for anomalous
behavior. An attack embedded inside the training data would
result in an erroneous model, since all future occurrences of the
attack would be treated as normal. Purging all malicious content
from audit data is hence imperative.

There are two distinct tasks in any anomaly detection system: (i)
Cleaning data for training -This is the preprocessing step and can
be performed offline. (ii) Detecting novel attacks - This is an
online process where an alarm is raised when an anomaly is
detected by the system. Offline cleaning can tolerate higher false
alarm rate than online detection because the goal of cleaning is to
obtain an attack-free training data set (though false alarms can
reduce the size of the training set). Online detection of novel
attacks desires low false alarm rate, otherwise the administrator
might ignore the detector.

Unsupervised learning techniques have been proposed in the field
of network anomaly detection but have not been well researched
in host-based systems. In this paper, we present a representation
for a system call sequence using the spatial relationships between
the motifs (subsequences) occurring in the sequence. Utilizing
this representation, we propose a novel way to represent system
call sequences (called sequence space), which can eventually be
used to determine anomalies. Our system, called MORPHEUS
(Motif Oriented Representations to Purge Hostile Events from
Unlabeled Sequences), is an anomaly detector itself. It refines
data to train other anomaly detection systems.

Our contributions are as follows:

(i) Motif representation - We represent sequences on the basis of
the motifs and introduce the concept of a sequence space.
Empirical results indicate that our representation can be
effectively used to detect malicious sequences from the data using
unsupervised learning techniques.

(ii) Parameter for LOF (details in Section 3.5) - We propose
heuristics to automate the process of determining the parameters
to the existing outlier detection algorithm.

(iii) We show empirically that cleaning training data improves
performance of existing online detection systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VizSEC/DMSEC'04, October 29, 2004, Washington DC, USA.
Copyright 2004 ACM 1-58113-974-8/04/0010…$5.00.

Figure 1. System Architecture of MORPHEUS.

The paper is organized as follows. In Section 2, we review some
anomaly detection systems. In Section 3, we present the system
architecture and detail the various phases of MORPHEUS. In
Section 4, we summarize and analyze the results obtained from
the experiments performed on synthetic and real data sets. In
Section 5, we conclude and put forth some issues we plan to
address in the future.

2. RELATED WORK
Traditional host based anomaly detection techniques create
models of normal behavioral patterns and then look for
deviations in test data. Such techniques perform supervised
learning. Forrest et al. [10] memorized normal system call
sequences using a look-ahead pairs. Lane and Brodley [17, 18]
examined UNIX command sequences to capture normal user
profiles using a fixed size window. Later work by Warrender et
al. [35] extended sequence modeling by using n-grams and their
frequency. Wespi et al. [36, 37] proposed a scheme with
variable length patterns using Teiresias [29], a pattern discovery
algorithm in biological sequences. Ghosh and Schwartzbard
[11] used artificial neural networks, Sekar et al. [31] proposed a
finite state automaton, Jiang et al. [13] also proposed variable
length patterns, Liao and Vemuri [21] used text categorization
techniques, Jones and Li [14] learnt temporal signatures, Coull
et al. [7] suggested sequence alignment, Mazeroff et al. [25]
proposed probabilistic suffix trees, and Lee at al [20] used
machine learning algorithm called RIPPER [6] to learn normal
user behavior. All these techniques require “clean” or labeled
training data to build models of normal behavior, which is hard
to obtain. The data sets used are synthetic and generated in
constrained environments. They are not representative of actual
application behavior, which contains many irregularities. The
need for a system to filter audit data and produce a “clean” data
set motivates our current research.

Unsupervised learning is an extensively researched topic in
network anomaly detection [27, 9, 5, and 19]. Network traffic
comprises of continuous and discrete attributes which can be
considered along different dimensions of a feature space.
Distance and density based algorithms can then be applied on
this feature space to detect outliers. Due to the lack of a similar
feature space, not much work has been done using unsupervised
learning techniques in host based systems. In this paper, we
present a novel framework of system call sequences (called
sequence space) and demonstrate the efficacy of our
representation to purge outliers using unsupervised learning
techniques.

3. SYSTEM ARCHITECTURE
In this section, we present the system architecture and describe
the various stages involved in our system. The overview of our
system is presented in Figure 1.

Audit sequences corresponding to all the processes for an
application are the inputs to our system (Phase 0). Every
sequence is a process in execution and initial preprocessing
might be required to obtain them. The preprocessing of audit
data is explained in Section 4.1. In the first phase, all the unique
system calls are extracted and mapped to a unique id. Using the
sequences and the system call mapping table, we extract motifs
(subsequences) which are either repetitive within the same
sequence or are common across any two sequences (Phase 2).
Once all motifs have been extracted and inserted into a database,
they are ranked and assigned a unique id.

Using the motif database, we create a representation for a
sequence by recording all the motifs that occur within that
sequence and their corresponding positions (Phase 3). In Phase
4, these representations are used to map all sequences in a single
plot (called sequence space). Anomaly detection is performed

on the sequence space and outliers are detected (Phase 5). These
suspicious components are removed to obtain a relatively
“clean” data set, which is then fed as training input to an online
detection algorithm in Phase 6.

3.1 Phase 1: Translation and ordering of
system calls
We represent a process (system call sequence) as a finite
sequence of system calls, where each system call belongs to the
finite set ∑. A system call sequence (SCS) s is thus represented

as (c1 c2 c3 . . . cn), where .1,ci ni ≤≤Σ∈ |s| represents the

length of SCS s.

As a result of the pre-processing stage, we obtain system call
sequences as finite (but not necessarily equal) length strings. We
then map each system call to a unique symbol using a translation
table. Once we have mapped all the system calls, we rank their
corresponding ids by utilizing prior knowledge as to how
susceptible the system call is to malicious usage. Bernaschi et al.
[3] proposed kernel enhancements to Linux using a threat level
classification. We use a similar ranking scheme which allows
system calls with similar threat levels to be grouped together.
This ranking is used in Phase 2.

3.2 Phase 2: Motif extraction and id
generation
A motif is defined as a subsequence of length greater than p if it
appears more than k times, for some positive integers p and k,
within the finite set S = {s1, s2, . . . sm} comprising m SCSs. Now
our task is reduced to extract motifs (subsequences) from the
strings (corresponding to the system call sequences). We extract
two sets of motifs via “auto-match” and “cross-match”.

3.2.1 Motif extraction using auto-match
Our first set of motifs comprises the frequently occurring
patterns within each sequence. For our experiments, we
considered any pattern at least 2 characters long, occurring more
than once as frequent. While the set of SCSs S is the input to
this algorithm, a set of unique motifs M={m1, m2, . . ., mq} is the
output. It may happen that a smaller length subsequence is
subsumed by a longer one. We prune the smaller motif only if it
is not more frequent than a larger motif that subsumes it.

Definition A motif im extracted using auto-match (1) has

length ≥ 2, (2) has frequency ≥ 2, and (3) if there exists a motif
Mm j ∈ in a sequence Ssk ∈ such that mi is a subsequence

of mj but occurs independently in SCS sk.

To illustrate this idea, consider the following synthetic sequence
 acggcggfgjcggfgjxyz (I)
The frequently occurring subsequences (with their respective
frequency) are cg(3), gg(3), gf(2), fg(2), gj(2), cgg(3), cggf(2),
ggfg(2), gfgj(2), cggfg(2), ggfgj(2), cggfgj(2). The longest
pattern cggfgj subsumes all the smaller subsequences except cg,
gg and cgg since they are more frequent than the longer pattern,
implying independent occurrence. But cg and gg are subsumed
by cgg, since they all have the same frequency. Thus, the final
set of motifs M={cgg, cggfgj}.

We start by looking at such sub-strings of length two within
each string. Then, we do the same for substrings of increasing
lengths. Two or more overlapping motifs may be merged
together to form a motif of greater length. This is how we create
motifs of arbitrarily lengths. Representing sequences with
possibly overlapping motifs is based on Allen's temporal
reasoning scheme [2]. After extracting motifs of length 4 in the
example sequence (I), we have motifs cggf, ggfg and gfgj, all
with frequency 2. Since these patterns are overlapping and have
the same frequency, they may be merged together in order to
obtain a longer motif cggfgj with the same frequency 2.
However, there are instances when the smaller motifs may
concatenate forming a longer motif at some places, but may
occur at other positions on the sequences independently (i.e.,
not overlapping). Even though they have the same frequency,
the concatenated longer motif does not subsume the shorter
ones. Consider the sequence cggfgjabcggfpqrggfgxyzgfgj. Here,
the motifs cggf, ggfg and gfgj each have a frequency 2. But the
longer motif cggfgj occurs only once, though we may wrongly
conclude a frequency of 2 by using the above derivation. The
remaining instances of the smaller motifs are at different (non-
overlapping) positions within the string. The solution to this
problem is that the occurrence of the longer motif obtained from
the fusion of the smaller motifs should be verified for accuracy.
If the frequency of the longer motif is found to be the same as
that of a smaller one, then merging of the latter ones is all right,
i.e., we ignore the smaller motifs. This technique reduces the
effort of going through all possible string lengths and of finding
all possible motifs for those lengths. The procedure of finding
motifs of variable lengths by first merging and then verifying is
repeated until no more motifs could be merged.

3.2.2 Motif extraction using cross-match
Apart from frequently occurring patterns, we are also interested
in patterns which do not occur frequently but are present in
more than one SCS. We believe that these motifs could also be
instrumental in modeling an intrusion detection system since
they reflect common behavioral patterns across sequences. We
performed pair-wise cross-match between different sequences to
obtain these.

Definition A motif im extracted using cross-match (1) has

length ≥ 2, (2) appears in at least a pair of sequences
Sss lk ∈, , and (3) is maximal, i.e., there does not exist a motif

)(ijMm j ≠∈ such that lkj ssm ,⊆ and ji mm ⊂ .

Let us consider the following pair of synthetic sequences:

acgfgjcgfgjxyzcg (II)

cgfgjpqrxyzpqr (III)

Using cross-match between the example sequences (II) and (III),
we get the motifs cgfgj and xyz, since these are the maximal
common subsequences across the two given sequences.

A simple method for comparing amino acid and nucleotide
sequences called the Matrix Method is described by Gibbs and
McIntyre [12]. A matrix is formed with one sequence written
across and the other in the downward position on the left of the
matrix. Any common element was marked with a dot and a
series of dots along a diagonal gave a common subsequence

Figure 2. Motif-oriented representation for sequence (II).

between the two sequences. Using a technique similar to the
Matrix Method, we extract motifs which occur across sequences
but may not be frequent within a single sequence itself.

After generating all the motifs for a sequence (auto-match) or
pairs of sequences (cross-match), we added them to the motif
database and pruned redundant motifs. We ordered the motifs on
the likelihood of involving in an attack using a dictionary sort
and the ranking of the system calls in Section 3.1. The motifs are
then assigned a unique id based upon their position within the
ordered motif database.

3.3 Phase 3: Motif-based representation of a
sequence
Once we have all the motifs that exist in the set S of sequences
in the motif database M, we would like to represent each
sequence in terms of the motifs existing within it. For each
sequence Ssi ∈ , we list all the motifs occurring within it along

with their starting positions within the sequence.

This creates a two dimensional representation for each SCS si,
where the X-axis is the distance along the sequence from its
beginning, and the Y-axis is the motif id of those motifs present
in si. With this scheme a sequence could be visualized as a
scatter plot of the motifs present in a sequence. Figure 2 depicts
such a representation for the synthetic sequence (II), where the
motifs cg, cgfgj and xyz are represented at the positions of
occurrence within the respective sequence. A motif’s starting
point is the abscissa and the motif ID is the ordinate of the
corresponding point in the scatter plot. A total of 4 unique
motifs (cg, cgfgj, pqr and xyz), obtained from auto-match and
cross-match of (II) and (III), are assumed in the motif database
for the plot in Figure 2. This representation is for visualization
purposes only. At the end of this phase, our system stores each
SCS as a list of all motifs present within along with their spatial
positions from the beginning of the sequence.

Once we have all the motifs that exist in the set S of sequences
in the motif database M, we would like to represent each
sequence in terms of the motifs existing within it. For each

sequence Ssi ∈ , we list all the motifs occurring within it

alongwith their starting positions within the sequence.

3.4 Phase 4: Sequence space – a single
representation for all sequences
We model all sequences on the basis of their motifs. Malicious
activity results in alterations in the SCS which is reflected by the
variations in the motifs and their spatial positions. Plotting all
the SCSs (based upon their motif representations) in a single
feature space could reflect the similarity/dissimilarity between
them.

After creating a motif-based representation for each sequence
(Section 3.3), we plot all the test sequences S in a feature space
called the sequence space. In this representation we measure the
distance between pairs of SCSs along each of the two axes
(motifs and their locations). Utilizing one (arbitrarily chosen)
SCS from the set S as a reference sequence s1, we measure (dx,
dy) distances for all SCSs Ssi ∈ . Thus, the sequences are

represented as points in this 2D sequence space, where the
sequence s1 is at the origin (reference point) on this plot. Let s2
be any other sequence in S whose relative position with respect
to s1 is to be computed. Inspired by the symmetric Mahalanobis
distance [23], the distance is computed as follows:

 (IV)

0

1

2

3

4

5

0 5 10 15 20

Mo
ti

f
ID

Location from beginning of sequence

21

1
12

1
21

1

2

2

1
)()(

nn

xxxx

d
x

n

j

x

n

i

x

ji

+

−

+
−

=

∑∑
==

σσ

21

1

1
12

2

1
21

21
)()(

nn

yyyy

d
y

n

j

y

n

i

y

ji

+

−

+
−

=

∑∑
==

σσ

(a) (b)
Figure 3. Sequence space for (a) ftpd, and (b) lpr applications.

where s1 has n1 motif occurrences and s2 has n2 motif
occurrences, (dx, dy) is the position of s2 w.r.t. s1, is the
mean and),(yx σσ is the standard deviation along the x and y

axes. Using this metric, we try to calculate the variation in
motifs and their locations in the two sequences.

After computing (dx, dy) for all sequences in S with respect to
the reference sequence (s1), we plot them in the sequence space,
as represented by the two plots in Figure 3. The origin
represents the reference sequence It is important to note that the
position of another sequence (calculated using IV) with respect
to the randomly selected reference sequence can be negative (in
X and/or Y direction). In that case the sequence space will get
extended to other quadrants as well, as in Figure 3(b).

3.5 Phase 5: Purging sequence space
anomalies
Similar sequences are expected to cluster together in the
sequence space. Malicious activity is known to produce irregular
sequence of events. These anomalies would correspond to
spurious points (global outliers) or local outliers in the scatter
plot created in Phase 4. In Figure 3(a), the point on the top-right
corner of the plot is isolated from the rest of the points, making
it anomalous. In this section we will concentrate on outlier
detection, which has been well researched topic in databases and
knowledge discovery [16, 4, 28, and 1].

LOF [4] is a density-based outlier finding algorithm which
defines a local neighborhood, using which a degree of
outlierness is assigned to every object. A reachability distance is
computed for every object based upon its distance from its kth-
nearest neighbor. A reachability density is then calculated for
every object based upon the average reachability distance of that
object from its neighbors (number of neighbors – MinPts –being
an input parameter). Finally, a local outlier factor (LOF) is
associated with every object by comparing its reachability
density with each of its neighbors. A local outlier is one whose
neighbors have a high reachability density as compared to that
object. For each point this algorithm gives a degree to which
that point is an outlier as compared to its neighbors. This LOF

score corresponds to the anomaly score of that point in our
model. Our system computes the anomaly scores for all the
SCSs (represented as points in sequence space). All the points
for which the score is greater than a threshold are considered
anomalous and removed.

3.5.1 Automating the LOF parameters

3.5.1.1 MinPts
We use LOF for anomaly detection in the sequence space. LOF
takes MinPts as an input parameter, which signifies the number
of neighborhood points to be compared with. The performance
of the system is sensitive to the parameter MinPts. A human
expert (in our case a system administrator) would be required to
analyze the sequence space and then come up with a reasonable
value of MinPts. But the LOF values increases and decreases
non-monotonically [4]. So it is highly desirable for this
parameter selection to be automated. We present one intuitive
way in which this can be computed without the help of any
human expert. To select MinPts, we use clustering to identify
the larger neighborhoods. Then, we scrutinize each cluster and
approximate the number of neighbors in an average
neighborhood.

(a) Finding the number of clusters: After creating the sequence
space, we use the L-Method [30] to predict the number of
clusters in the representation. This is done by creating a
“number of clusters vs. merge distance” graph obtained from
merging one data point at a time in the sequence space. Starting
with all N points in the sequence space, the 2 closest points are
merged to form a cluster. At each step, a data point with
minimum distance to another cluster or data point is merged. At
the final step, all points are merged into the same cluster. The
graph obtained has 3 distinct areas – a horizontal region
(points/clusters close to each other merged), a vertical region
(far away points/clusters merged), and a curved region in
between. The number of clusters is represented by the knee of
this curve, which is the intersection of a pair of lines fitted
across the points in the graph that minimizes the root mean
square error. Further details can be obtained from [30].

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-100 0 100 200 300 400 500 600 700

D
i
s
t
a
n
c
e
/
v
a
r
i
a
t
i
o
n

w
r
t

m
o
t
i
f
s

p
r
e
s
e
n
t

Distance/variation wrt motif locations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4

D
i
s
t
a
n
c
e
/
v
a
r
i
a
t
i
o
n

w
r
t

m
o
t
i
f
s

p
r
e
s
e
n
t

Distance/variation wrt motif locations

),(yx

(b) Calculating MinPts: Assume k clusters are obtained in a
given sequence space using L-Method (with each cluster
containing at least 2 points). Let αi be the actual number of
points in cluster i, ki ≤≤1 . Let ρi be the maximum pair-wise
distance between any 2 points in cluster i; and τi is the average
(pair-wise) distances between 2 points in cluster i. Let βi be the
expected number of points in cluster i. Its value can be
computed by dividing the area of the bounding box for the
cluster with the average area occupied by the bounding box of
any 2 points in the cluster (for simplicity we assume square
shaped clusters). Therefore, we get

 βi =

2










i

i

τ
ρ

 (V)

This gives us the expected number of points within the cluster.
But the actual number of points is αi. Thus, we equally distribute
the excess points among all the points constituting the cluster.
This gives us an approximate value for MinPts (number of
“close” neighbors) of the cluster:

MinPts for cluster i = (VI)

After obtaining MinPts for all k clusters, we compute a weighted
mean over all clusters to obtain the average number of MinPts
for the entire sequence space.

 (VII)

Only clusters with at least 2 points are used in this computation.

(c) Considering duplicates: But this approach gives a reasonable
value for the average number of MinPts in a sequence space if
all the points are unique and there are no duplicates. In our case,
there are many instances when the sequences are exactly the
same. This is representative of exactly same application
behavior. Density is the basis of our system and we cannot
ignore duplicates. But the equation (V) would be affected since
the maximum distance still remains the same whereas the
average value is suppressed due to the presence of points with
same spatial coordinates. Also, if there are q points
corresponding to a coordinate (x, y), then each of the q points is
bound to have (q-1) MinPts in the worst case.

Let p be the number of frequent data points (i.e. frequency > 1)
in cluster i. Let ψj be the frequency of a data point j in cluster i.
We compute γ` the same way as equation (VI), where γ` is the
MinPts value for cluster i assuming unique points in the
sequence space.

 (VIII)

This value is then modified to accommodate the frequently
occurring points (corresponding to sequences sharing the same
spatial positions in the sequence space). We compute a weighted

mean to obtain an appropriate value of MinPts in cluster i as
follows:

 (IX)

Average MinPts for the entire plot can then be computed using
equation (VII) above.

3.5.1.2 Threshold for raising alarms
LOF only assigns a local outlier factor for a point in the
sequence space which corresponds to its anomaly score. If the
score is above a user specified threshold, then it is considered as
anomalous and hence filtered from the data set. If the threshold
is too low, there is a risk of filtering a lot of points, many of
which may depict normal application behavior. On the contrary,
if the threshold is too high, some of the data points
corresponding to actual intrusions (but close to many other data
points on the sequence space) may not get filtered. One way to
compute a threshold automatically is to order and plot the LOF
scores in increasing order of the scores (with each data point
along the X-axis and the anomaly/LOF score along the Y-axis).
Since the normal points are assumed in abundance, their LOF
scores are ideally 1. We are interested in the scores after the first
steep rise of this plot, since these correspond to outliers.
Ignoring all the scores below the first steep rise (corresponding
to normal sequences), the cut-off value can be computed as the
median of all the scores thereafter. This heuristic gives a
reasonable threshold value for the various applications in our
data sets.

3.6 Phase 6: Training and online detection
The filtered data set obtained above provides clean data as
training input to any online anomaly detection system like stide
and LERAD.

stide (Sequence TIme-Delay Embedding) [35] memorizes all
contiguous sequences of predetermined, fixed length (n-grams)
during training. This is done by using a sliding window and
adding all unique sequences to the database. During test phase,
an anomaly count is associated with n-gram mismatches and is
defined as the number of mismatches in a temporally local
region for a sequence. A threshold is set for the anomaly score
above which a sequence is flagged anomalous, indicating a
possible attack.

LERAD (LEarning Rules for Anomaly Detection) [24] is a
randomized algorithm that learns rules for the normal data set.
With every rule a probability is assigned for encountering a
novel value of the attribute in the consequent when the
conditions in the antecedent are true. A non-stationary model is
assumed for LERAD – frequency is made irrelevant and only the
last occurrence of an event is assumed important. The anomaly
scoring function uses the probability and time since last anomaly
of the rule violated by the test input. Details for the rule learning
algorithm are available in [24]. The applicability of LERAD to
host based anomaly detection has been demonstrated in [33].








 −
=

i

ii
i β

βα
γ





















=∴

∑

∑

=

=
k

i
i

k

i
ii

MinPts

1

1

α

αγ








 −
=

i

ii
i β

βαγ '



















+

−+
=

∑

∑

=

=
p

j
ji

p

j
jjii

i

1

1

)1('

ψα

ψψαγ
γ

Table 1. Automated MinPts computation
Application eject fdformat ftpd ps lpr login excel

Number of
sequences

21

19

91

341

3704

16

38

Average
sequence length

66.43

57.63

284.93

66.45

835.73

730.81

2862.87

MinPts 3 2 10 71 6 3 2

4. EXPERIMENTAL EVALUATION
Our goal is to determine if our proposed representation can be
used with an unsupervised learning algorithm (namely LOF) to
detect and purge out anomalies, creating a “clean” training set
for online detection systems. We would also like to note the
change in performance after using our filtering scheme.

4.1 Data sets and preprocessing
We evaluated our techniques on 7 applications obtained from
three different data sets:

(i) The DARPA intrusion detection evaluation data set was
developed at the MIT-Lincoln Labs [22]. We used the Solaris
data from the Basic Security Module (BSM) audit logs [26].
This data has to be preprocessed before use by MORPHEUS.

For our experiments, we selected the ftpd, ps, fdformat and eject
applications to obtain a good range in the number of sequences
and the number of system calls (~1200-26000). These
applications also have a good mix of different attack types [15].
The ftpd application comprises of R2L (guessftp, ftpwrite) and
DoS (warez, warezclient) attacks. On the other hand, ps, eject
and fdformat are all U2R attacks.

(ii) Two applications (lpr and login) from the University of New
Mexico (UNM) data sets [35] were also used. The lpr
application comprised of 2703 normal traces running lpr
collected from 77 hosts running SUNOS 4.1.4 at the MIT
Artificial Intelligence Lab. Another 1001 traces correspond to
the execution of the lprcp attack script. Older versions of lpr
use only 1000 different names for printer queue files. The attack
takes advantage of the fact that the old files are not removed
from the queue before they can be used again. The attack works
as follows: a symbolic link is placed to the victim file at the
beginning. All the intermediary traces increment the counter and
the intruder overwrites the target file in the last trace. Traces
from the login application were obtained from a Linux machine
running kernel 2.0.35. A homegrown Trojan program was used
for the attack traces.

(iii) We also used system call sequence logs corresponding to
Microsoft excel macros in execution used by researchers at
Florida Institute of Technology (FIT) [38] and University of
Tennessee at Knoxville (UTK) [25]. 36 normal traces
correspond to some statistical, chemistry and cost estimation
related Excel macros. 2 malicious traces modify the registry
settings and execute some other application. Such a behavior is
exhibited by the ILOVEYOU worm which opens the web
browser to a specified website and executes a program,
modifying registry keys and corrupting user files. This worm
results in a distributed denial of service (DDoS) attack.

4.2 Outlier (anomaly) detection in sequence
space
Our system creates a sequence space and plots all sequences as
points with respect to other sequences. We claim that the
malicious sequences are reflected as outliers in the sequence
space. It is therefore imperative for us to evaluate if the outliers
in the sequence space correspond to actual attacks. The
underlying assumption is that the bulk of the data set constitutes
of normal SCSs. We assume that the similar nature of normal
behavior will cause them to cluster together. Outliers to these
clusters would be the anomalies resulting from possible
intrusions.

For the MIT-Lincoln lab data set, week 3 comprises of clean
data while weeks 4 and 5 data has attacks. We are also given the
timestamp for the occurrence of the attacks. In this experiment,
after dividing the data into different applications and their
processes (as explained in Section 4.1), we combine the data for
the 3 weeks together (on a per application basis) and feed it to
our system. This gives a good mix of normal application
behavior and some sequences resulting from intrusions. We also
use an aggregation of all traces for the other data sets (UNM and
FIT-UTK) on a per application basis for similar reasons.

We created a sequence space for each application. Figure 3(a)
represents the sequence space for the ftpd application from the
DARPA evaluation data set, whereas 3(b) corresponds to the lpr
data set from UNM. The X-axis on the plots is the distance due
to the motif separation amongst sequences and Y-axis
corresponds to the distance with respect to the motifs present in
the sequence. Similar sequences tend to cluster together while
anomalous sequences are represented as outliers.

We used the sequence space to detect local outliers using LOF
on all the datasets. LOF takes MinPts-nearest neighbors (the
number of points comprising the neighborhood of a point) as an
input parameter and the results are very sensitive to this
parameter selection [4]. For our experiments, we varied this
parameter value as a percentage of the entire population. We
also used the MinPts value that we computed using our
automated technique (as in Section 3.5.1.1). These values are
listed in Table 1. After computing the LOF or anomaly scores,
we ranked them in descending order. All the sequences with
scores greater than the threshold were considered anomalies and
evaluated for detections and false alarms.

The results from the experiments, depicted in Table 2, indicate
that none of the MinPts values were ideal to detect all the
attacks. The two parameter values – 15% and 20% – seem to
have the maximum number of detections (17 each, out of 19
total attacks).

Table 2. True positives and false positives for various applications at varied LOF MinPts values

Number of different attacks detected (with false alarm count) for different values of
LOF MinPts (% of total population)

Application Total
Attacks

5% 10% 15% 20% Automated (from
Table 1)

eject 2 1 (1) 2 (1) 2 (0) 2 (0) 2 (0)

fdformat 3 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)

ftpd 6 0 (6) 0 (11) 6 (6) 6 (1) 0 (11)

ps 4 0 (6) 4 (1) 4 (1) 4 (2) 4 (49)

lpr 1 0 (123) 1 (193) 1 (198) 1 (157) 1 (97)

login 1 0 (1) 0 (2) 1 (2) 1 (2) 1 (2)

excel 2 2 (0) 0 (3) 0 (0) 0 (0) 2 (0)

Total 19 6 (137) 10 (211) 17 (207) 17 (162) 13 (159)

The only attacks missed were the ones in the excel application
where a reasonable value of MinPts is best suggested as 5%. Our
methodology for MinPts calculation was successful in computing
the correct number for the parameter and hence successfully
detected the attack sequence as outlier (for which the 15% and
20% values failed). The automated LOF parameter detected all the
attacks except the ones in the ftpd application. The reason for
such a behavior can be better understood from Figure 3(a). There
are 2 main clusters in the sequence space – one close to the origin
and the other towards the center of the plot. The total number of
points is 91 (80 in the large cluster, 10 in the smaller one, and one
spurious point far away on the top-right corner of the plot). The
MinPts value obtained by using our heuristic is 10, which seems
to be an appropriate value. Inability of LOF to detect the
anomalies in this representation is attributed to the fact that all the
10 points in the smaller cluster correspond to 6 different attacks.
Therefore, the anomaly scores for all these points are very low.
This implies that the concept of local outliers is not sufficient to
capture such anomalous data points. Thus, we need to adopt a
global view to find anomalous clusters as well, which can be
incorporated in our sequence space. This would also be beneficial
in detecting flooding attacks, which would typically correspond to
high density points/clusters in the sequence space. Other than the
ftpd application, the automated technique successfully detected all
other attacks. This suggests that the MinPts values computed
using our heuristic are generally reasonable.

As can be observed from Table 2, the number of false alarms is
high for the lpr application (in the range 2.6 – 5.3%), which
constitutes of over 3700 sequences and approximately 3.1 million
system calls. The data was collected over 77 different hosts and
represents high variance in application behavior. Though we were
able to capture the lpr attack invoked by the lprcp attack script, we
also detected other behavioral anomalies which do not correspond
to attacks. Our goal here is to retain generic application behavior
and shun anomalies. Peculiar (but normal) sequences would also
be deemed anomalous since they are not representative of the
general way in which the application functions, as in this case.
Since program faults and system crashes are not representative of
normal behavior, purging these anomalies is justifiable.

Our representation scheme also subsumes the ideas presented in
[35, 36, 37, and 13]. The underlying assumption is that similar

sequences would appear together in the sequence space. An attack
modifies the course of events. This results in (a) either the absence
of a motif, or (b) altered spatial positions of motifs within the
sequence due to repetition of a motif, or (c) the presence of an
entirely new motif. All these instances affect the spatial
relationships amongst the different motifs within the sequence.
Ultimately, this affects the distance of the malicious sequence
with respect to the reference sequence, resulting in an outlier
being plotted on the sequence space. It is this drift within the
sequence space that the outlier detection algorithm is able to
capture as an anomaly. Since the reference sequence is picked
randomly, it may so happen that the reference sequence is the
attack sequence itself. This does not affect our system since our
distance metric is symmetric and the point is still classified as an
outlier.

4.3 Effects of filtering the data
We reemphasize that our ultimate goal is to obtain “clean” data
for other intrusion detection systems to train on. Thus, it is
important to study how well our system can clean the training data
and what effect does it have on the performance of an online
detection system (in terms of true detections as well as false alarm
generation).

Only the MIT-Lincoln Labs and FIT-UTK data sets were used for
this set of experiments since they contained sufficient attacks to
be used in both “adulterated” training and test data sets. The lpr
and login data sets from UNM comprised of only a single attack.
We have already demonstrated in the previous section that our
technique could filter them as spurious outliers. But a single
attack is not sufficient for this set of experiments, as we would
like to have attacks in both training and test data. Therefore, we
did not involve those two applications for this experiment. We
combined the “clean” week 3 data with the “mixed” week 4 data
of the MIT-Lincoln lab data set to obtain an unlabeled data set.
We use this to train stide and LERAD. We then tested on week 5
data (containing attacks with known timestamps). Subsequently,
we used MORPHEUS to filter out spurious data points (and hence
SCSs) from the combined data set. This marks the end of phase 5
of our system. The sixth and final phase is next, which uses the
refined data set for training stide and LERAD. Week 5 data is
used for testing purposes. As per the 1999 DARPA evaluation
criteria, a system is considered to have successfully detected an

0

1

2

3

4
N

u
m

b
er

 o
f d

et
ec

tio
n

s

ftpd eject fdformat ps excel

Application

stide
without filtering

with filtering

0

1

2

3

4

N
u

m
b

er
 o

f d
et

ec
tio

n
s

ftpd eject fdformat ps excel

Application

LERAD
without filtering

with filtering

Figure 4. Comparison of attack detections with and without filtering (for stide and LERAD respectively).

attack if it generates an alarm within 60 seconds of the occurrence
of the attack. We follow the same criterion for our evaluation. For
the FIT-UTK Microsoft Excel data set, we randomly picked 33
traces (including one attack) for training and remaining 5 traces
for testing purposes.

The parameter selection for our experiments was as follows: For
stide, we used a window size of 6. A locality frame of 20 is used,
that is the anomaly count keeps track of the number of
mismatches in a temporally local region comprising 20 system
calls. All the parameter values used are suggested to give best
results in [35]; parameter sensitivity is studied in [32]. For
LERAD, each tuple comprised of the system call, its return value
and error status besides other arguments. In all cases, alarms are
accumulated for the applications and then evaluated for the
number of true detections and false positives.

Figure 4 depicts the number of attacks detected by stide and
LERAD for the 5 applications under study. It is observed that in
both cases, the IDS was able to detect more attacks in ftpd and ps
applications after data filtering by MORPHEUS while there was
no change in the performance for the other three applications
(eject, fdformat and excel). This is because the training data also
contained some attacks. For the ftpd and ps applications, the
attacks in the test data were similar to the ones seen in the
adulterated training data set, and were hence missed by both the
IDSs. When filtered using MORPHEUS, the attack SCSs were
purged and hence detections were possible in the test phase. For
the applications eject and fdformat, the attacks in the adulterated
training and testing data sets were different in character. Hence
both the systems detected them irrespective of the filtering
procedure. For excel, stide was able to detect the worm in both
cases due to similar reasons. LERAD was not able to capture the
malicious sequence due to incomplete argument information.

No false alarms were generated in any case in stide except the
excel application, where one false positive was produced in each
case. For LERAD, 1 false alarm was generated for the ps
application with and without filtering. No other false positives
were obtained. Overall, the results indicate that the filtering
process was instrumental in increasing the number of detections
without increasing the number of false alarms.

5. CONCLUSIONS AND FUTURE WORK
Most of the traditional host based IDSs require a “clean” training
data set which is difficult to obtain. Our system, called
MORPHEUS, addresses and attempts to solve this problem of
data filtering. We present a motif-based representation for system
call sequences (SCSs) based upon their spatial positions within
the sequence. We also propose a novel representation of
sequences – called sequence space – using a distance metric
between the motif-based representations. We also exhibited the
efficacy of this feature space to filter anomalies by integrating it
with an existing unsupervised learning algorithm (called LOF) for
outlier detection. Experiments were performed on different
applications which varied in size, operating system (SUNOS,
Solaris, Linux and Windows), and environment (simulated and
live/real). Results indicate that our system can successfully detect
the vulnerability-based anomalies. The generation of false alarms
is caused by the irregularities in the data set and the results are
sensitive to the parameter selection for the outlier algorithm. We
proposed heuristics to automate the parameters to MORPHEUS –
MinPts (a parameter to LOF) and threshold for raising alarms,
thereby making our system parameter-free. Our automatically
computed parameter was generally able to detect the attacks
producing the least false alarms in the most irregular real data set.
After filtering the anomalous points, the “clean” training data set
was used by an online detection system resulting in higher
detection rates, implying that MORPHEUS effectively purged the
anomalies to create a better training data set.

An attacker might devise a clever technique to evade typical
sequence-based anomaly detection systems. Wagner and Soto [34]
presented one such idea wherein they were successful in modeling
a malicious sequence by adding null operators to make it
consistent with the sequence of system calls. The sequence based
techniques dealing with short sub-string patterns can be bypassed
by spreading the attack over longer duration (or longer sub-
sequences). MORPHEUS uses variable length motifs and also
takes the relative positions of the motifs for anomaly detection,
and is better equipped and more robust against such evasions. In
essence, our system models sequences at two different levels – at
the individual motif level and also at the level of spatial
relationship between motifs within the audit sequence. The latter
level adds to the security of the system and would make it even

harder for the attacker to evade the system, since he has to now
not only use the “normal” audit event patterns, but also place
those event-sequences/motifs within the respective sequence at
proper relative positions.

MORPHEUS can be integrated with a hybrid of signature and
anomaly based systems for better accuracy and the ability to
detect novel attacks. Our system can also be used for user
profiling and detecting masquerade. Also, as mentioned earlier,
we need to expand our perspective from local to global outliers to
detect attack clusters. In terms of efficiency, the only bottleneck in
our system is the motif extraction phase where cross-match is
performed pair-wise. Speed-up is possible by using other
techniques like suffix trees. We are also working on refining the
motif relationships in the motif-based representation.

6. REFERENCES
[1] C. Aggarwal and P. Yu. Outlier Detection for High Dimensional

Data. SIGMOD, 2001.

[2] J. Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM 26, 11, 832-843, 1983.

[3] M. Bernaschi, E. Gabrielli and L.V. Mancini. Operating System
Enhancement to Prevent the Misuse of System Calls. ACM CCS,
2001.

[4] M. Breunig, H. Kriegel, R. Ng and J. Sander. LOF: Identifying
Density-Based Local Outliers. SIGMOD, pp. 93-104, 2000.

[5] P. Chan, M. Mahoney and M. Arshad. Learning Rules and
Clusters for Anomaly Detection in Network Traffic. Managing
Cyber Threats: Issues, Approaches and Challenges, V. Kumar, J.
Srivastava and A. Lazarevic (editors), Kluwer, 2003.

[6] W. Cohen. Fast Effective Rule Induction. ICML, 1995.

[7] S. Coull, J. Branch, B. Szymanski and E. Breimer. Intrusion
Detection: A Bioinformatics Approach. ACSAC, 2003.

[8] D.E. Denning, An Intrusion Detection Model, IEEE Transactions
on Software Engineering, SE-13:222-232, 1987.

[9] E. Eskin, A. Arnold, M. Prerau, L. Portnoy and S. Stolfo. A
Geometric Framework for Unsupervised Anomaly Detection:
Detecting Intrusions in Unlabeled Data. In D. Barbara and S.
Jajodia (editors), Applications of Data Mining in Computer
Security, Kluwer, 2002.

[10] S. Forrest, S. Hofmeyr, A. Somayaji and T. Longstaff. A Sense of
Self for UNIX Processes. IEEE S&P, 1996.

[11] A. Ghosh and A. Schwartzbard. A Study in Using Neural Networks
for Anomaly and Misuse Detection. USENIX Security Symposium,
1999.

[12] A.J. Gibbs and G.A. McIntyre. The diagram, a method for
comparing sequences. Its use with amino acid and nucleotide
sequences. Eur. J. Biochem. 16:1-11, 1970.

[13] N. Jiang, K. Hua and S. Sheu. Considering Both Intra-pattern and
Inter-pattern Anomalies in Intrusion Detection. ICDM, 2002.

[14] A. Jones and S. Li. Temporal Signatures for Intrusion Detection.
ACSAC, 2001.

[15] K. Kendell. A Database of Computer Attacks for the Evaluation of
Intrusion Detection Systems. Masters Thesis, MIT 1999.

[16] E. Knorr and R. Ng. Algorithms for Mining Distance-based Outliers
in Large Data Sets. VLDB, 1998.

[17] T. Lane and C.E. Brodley. Detecting the abnormal: Machine
Learning in Computer Security. TR-ECE 97-1, Purdue University,
1997.

[18] T. Lane and C.E. Brodley. Sequence Matching and Learning in
Anomaly Detection for Computer Security. AI Approaches to
Fraud Detection and Risk Management, 1997.

[19] A. Lazarevic, L. Ertoz, A. Ozgur, J. Srivastava and V. Kumar. A
comparative study of anomaly detection schemes in network
intrusion detection, SDM, 2003.

[20] W. Lee, S. Stolfo and P. Chan. Learning Patterns from UNIX
Process Execution Traces for Intrusion Detection. Workshop, AI
Approaches to Fraud Detection and Risk Management, 1997.

[21] Y. Liao and R. Vemuri. Use of Text Categorization Techniques for
Intrusion Detection, 11th USENIX Security Symposium, 2002.

[22] R. Lippmann, J. Haines, D. Fried, J. Korba and K. Das. The 1999
DARPA Off-Line Intrusion Detection Evaluation. Computer
Networks (34) 579-595, 2000.

[23] P.C. Mahalanobis. On Tests and Measures of Groups Divergence.
International Journal of the Asiatic Society, Vol. 26:541, 1930.

[24] M. Mahoney and P. Chan. Learning Rules for Anomaly Detection of
Hostile Network Traffic, ICDM, 2003.

[25] G. Mazeroff, Victor De Cerqueira, J. Gregor and M.G. Thomason.
Probabilistic Trees and Automata for Application Behavior
Modeling. 41st ACM Southeast Regional Conference Proceedings,
2003.

[26] W. Osser and A. Noordergraaf. Auditing in the Solaris 8 Operating
Environment. Sun Blueprints Online.

[27] L. Portnoy. Intrusion Detection with Unlabeled Data Using
Clustering, Undergraduate Thesis, Columbia University, 2000.

[28] S. Ramaswamy, R. Rastogi and K. Shim, Efficient Algorithms for
Mining Outliers from Large Data Sets, Proceedings of the ACM
SIGMOD Conference, 2000.

[29] I. Rigoutsos and A. Floratos. Combinatorial pattern discovery in
biological sequences. Bioinformatics, 14(1):55–67, 1998.

[30] S. Salvador, P. Chan and J. Brodie. Learning States and Rules for
Time Series Anomaly Detection. FLAIRS, 2004.

[31] R. Sekar, M. Bendre, D. Dhurjati and P. Bollineni. A Fast
Automaton-based Method for Detecting Anomalous Program
Behaviors. IEEE S&P, 2001.

[32] K. Tan & R. Maxion. "Why 6?" Defining the Operational Limits of
stide. IEEE S&P, 2002.

[33] G. Tandon and P. Chan. Learning Rules from System Call
Arguments and Sequences for Anomaly Detection. DMSEC, 2003.

[34] D. Wagner and P. Soto. Mimicry Attacks on Host-Based Intrusion
Detection Systems. ACM CCS, 2002.

[35] C. Warrender, S. Forrest and B. Pearlmutter. Detecting Intrusions
Using System Calls: Alternative Data Models. IEEE S&P, 1999.

[36] A. Wespi, M. Dacier and H. Debar. An Intrusion-Detection System
Based on the Teiresias Pattern-Discovery Algorithm. Proc.
EICAR, 1999.

[37] A. Wespi, M. Dacier and H. Debar. Intrusion detection using
variable-length audit trail patterns. RAID, 2000.

[38] J.A. Whittaker and A. De Vivanco. Neutralizing Windows-based
malicious mobile code. ACM Symposium on Applied Computing,
2002.

