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Abstract 
The normal operation of a device can be characterized in 
different temporal states.  To identify these states, we 
introduce a clustering algorithm called Gecko that can 
determine a reasonable number of clusters using our 
proposed L method.  We then use the RIPPER classification 
algorithm to describe these states in logical rules.  Finally, 
transitional logic between the states is added to create a 
finite state automaton. Our empirical results, on data 
obtained from the NASA shuttle program, indicate that the 
Gecko clustering algorithm is comparable to a human expert 
in identifying states and our overall system can track normal 
behavior and detect anomalies. 

Introduction  
Expert (knowledge-based) systems are often used to help humans 
monitor and control critical systems in real-time.  For example, 
NASA uses expert systems to monitor various devices on the 
space shuttle.  However, populating an expert system’s 
knowledge base by hand is a time-consuming process.  In this 
paper we investigate machine learning techniques for generating 
knowledge that can monitor the operation of devices or systems.  
Specifically, we study methods for generating models that can 
detect anomalies in time series data.  

The normal operation of a device can usually be characterized 
in different temporal states.  Segmentation or clustering 
techniques can help identify the various states, however, most 
methods directly or indirectly require a parameter to specify the 
number of segments/clusters in the time series data.  The output 
of these algorithms is also not in a logical rule format, which is 
commonly used in expert systems for its ease of comprehension 
and modification.  Furthermore, the relationships between these 
states need to be determined to allow tracking from one state to 
another and to detect anomalies. 

Given a time series depicting a system’s normal operation, we 
desire to learn a model that can detect anomalies and can be 
easily read and modified by human users.  We investigate a few 
issues in this paper.  First, we want a clustering algorithm that can 
dynamically determine a reasonable number of clusters, and 
hence the number of states for our purposes.  These states, 
collected from a device, should be comparable to those identified 
by human experts.  Second, we would like to characterize these 
states in logical rules so that they can be read and modified with 
relative ease by humans.  Third, given the knowledge of the 
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different states, we wish to describe the relationship among them 
for tracking normal behavior and detecting anomalies. 
 To identify states, we introduce Gecko, which is able to cluster 
time series data and determine a reasonable number of clusters 
(states).  Gecko consists of a top-down partitioning phase to find 
initial sub-clusters and a bottom-up phase which merges them 
back together.  The appropriate number of clusters is determined 
by what we call the L method.  To characterize the states as 
logical rules, we use the RIPPER (Cohen 1995) classification rule 
learning algorithm.  Since different states often overlap in the 
one-dimensional input space, additional attributes are derived to 
help characterize the states.  To track normal behavior and detect 
anomalies, we construct a finite state automaton (FSA) with the 
identified states. 
 Our main contributions are:  (1) we demonstrate a way to 
perform time series anomaly detection via generated states and 
rules that can easily be understood and modified by humans; (2) 
we introduce an algorithm named Gecko for clustering time series 
data; (3) we propose the L method for dynamically finding a 
reasonable number of clusters--the L method is general enough to 
be used with other hierarchical divisive/agglomerative clustering 
algorithms (Salvador and Chan 2003); (4) we integrate RIPPER 
and state transition logic to generate a complete anomaly 
detection system; (5) our empirical evaluations, with data from 
NASA, indicate that Gecko performs comparably with a NASA 
expert and the overall system can track normal behavior and 
detect anomalies. 

Related Work 

Clustering Algorithms.  There are four main categories of 
clustering algorithms:  partitioning, hierarchical, density-based, 
and grid-based.  Partitioning algorithms, for example K-means, 
iteratively refine a set of k clusters.  Density-based algorithms, 
such as DBSCAN (Ester et al. 1996), are able to efficiently 
produce clusters of arbitrary shape and are also able to handle 
noise.  If the density of a region is above a specified threshold, it 
is assigned to a cluster, otherwise it is considered to be noise.  
Hierarchical algorithms can be agglomerative and/or divisive.  
The agglomerative (bottom-up) approach repeatedly merges two 
clusters, while the divisive (top-down) approach repeatedly splits 
a cluster into two.  Our Gecko algorithm is similar to the 
hierarchical Chameleon (Karypis, Han, and Kumar 1999) 
clustering algorithm, but with constraints during the merging 
phase so it can be applied to time series data.  Grid-based 
algorithms such as WaveCluster (Seikholeslami, Chatterjee, and 
Zhang 1998) reduce the clustering space into a grid of cells which 
enables efficient clustering of very large datasets.   



Segmentation Algorithms.  Segmentation algorithms usually 
take time series data as input and produce a Piecewise Linear 
Representation (PLR) as output.  PLR is a set of consecutive line 
segments that tightly fit the original data points.  Segmentation 
algorithms are somewhat related to clustering algorithms in that 
each segment can be thought of as a cluster.  However, due to the 
linear representation bias, segmentation algorithms are much 
more effective at producing fine grain partitioning, rather than a 
smaller set of segments that represent natural clusters.   
 There are three common approaches (Keogh et al. 2001).  First, 
in the Sliding Window approach, a segment is grown until the 
error of the line is above a specified threshold, then a new 
segment is started.  Second, in the Top-down approach, the entire 
time series is recursively split until the desired number of 
segments is reached, or an error threshold is reached.  Third,  the 
Bottom-up approach starts off with n/2 segments, the 2 most 
similar adjacent segments are repeatedly joined until either the 
desired number of segments, or an error threshold is reached. 
Determining the Number of Segments/Clusters.  Five common 
approaches to estimating the dimension of a model (such as the 
number of clusters or segments) are:  cross-validation, penalized 
likelihood estimation, permutation tests, resampling, and finding 
the knee of an error curve. 
 Cross-validation techniques create models that attempt to fit the 
data as accurately as possible.  Monte Carlo cross-validation 
(Smyth 1996) has been successfully used to prevent over-fitting 
(too many clusters/segments).  Penalized likelihood estimation 
also attempts to find a model that fits the data as accurately as 
possible, but also attempts to minimize the complexity of the 
model.  Permutation tests (Vasko & Toivonen 2002) are able to 
prevent segmentation algorithms from creating a PLR that over-
fits the data.  Resampling (Monti et al. 2003) attempts to find the 
correct number of clusters by repeatedly clustering samples of the 
data set, and determining at what number of clusters the 
clusterings of the various samples are the most “stable.” 
 Locating the “knee” of an error curve, in order to determine an 
appropriate number of clusters or segments, is well known, but it 
is not a particularly well studied method.  There are methods that 
statistically evaluate each point in the error curve, and use the 
point that either minimizes or maximizes some function as the 
number of clusters/segments to return.  Such methods include the 
Gap statistic (Tibshirani, Walther, and Hastie 2000) and 
prediction strength (Tibshirani et al. 2001). 
Anomaly Detection.  Much of the work in time series anomaly 
detection relies on models that are not easily readable and hence 
cannot be modified by a human for tuning purposes.  Examples 
include a set of normal sequences (Dasgupta and Forrest 1996) 
and adaptive resonance theory (Caudell and Newman 1993). 

Approach 
The input to our overall anomaly detection system is “normal” 
time series data (like the graph at the top left corner of Figure 1).  
The output of the overall system is a set of rules that implement 
state transition logic on an expert system, and are able to 
determine if other time series signatures deviate significantly 
from the learned signature.  Any deviation from the learned 
“normal” model is considered to be an anomaly.  The overall 
architecture of the anomaly detection system, depicted in Figure 
1, consists of three components:  clustering, rule generation 
(characterization), and state transition logic.  The clustering phase 
is performed by our newly-developed clustering algorithm  

Figure 1. Main steps in time series anomaly detection. 
“Gecko,” which is designed to identify distinct phases in a time 
series.  Then rules are created for each state by the RIPPER 
algorithm (Cohen 1995).  Finally, rules are added for the 
transitions between states to create a finite state automaton.  The 
three steps in our approach are detailed in the next three 
subsections. 

Gecko – Data Clustering 
While segmentation algorithms typically create only a fine linear 
approximation of time series data, Gecko divides a time series 
into clusters.  This number of clusters is determined by the 
algorithm and requires no user input.  The Gecko algorithm 
consists of three phases, as depicted in Figure 2.  The first phase 
creates many small sub-clusters.  The second phase repeatedly 
merges the two most similar clusters.  Phase 3 determines the 
number of clusters to return. 
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Figure 2. Overview of the Gecko Algorithm. 

Phase 1: Create Sub-Clusters.  In the first phase, many 
small sub-clusters are created by a method that is similar to the 
one used by Chameleon (Karypis, Han, and Kumar 1999), except 
that Gecko forces cluster boundaries to be non-overlapping in the 
time dimension.  The sub-clusters are created by initially placing 
all of the data points in a cluster, and repeatedly splitting the 
largest cluster until all of the clusters are too small to be split 
again without violating the minimum possible cluster size s. 



 
 To determine how to split the largest cluster, a k-nearest 
neighbor graph is built in which each node in the graph is a time 
series data point, and each edge is the similarity between two data 
points.  Only the slopes of the original values are used to 
determine similarity, and not the original values themselves.  
Using only the slope will tend to produce sub-clusters that are 
straight lines.  For more specific details about phase 1, please 
refer to (Salvador, Chan, and Brodie 2003) due to space 
constraints. 
Phase 2: Repeatedly Merge Clusters.  In phase 2, the most 
similar pair of adjacent (in time) clusters are repeatedly merged 
until only one cluster remains.  To determine which adjacent pair 
of clusters are the most similar, representative points are 
generated for each cluster and the two adjacent clusters with the 
closest representative points are merged.  A single representative 
point is able to accurately represent every point in a cluster 
because each cluster is internally homogeneous.  The 
representative point of a cluster contains a value for the slope of 
every original attribute in the data other than time.  Clustering by 
the slope values causes the time series to be divided into flat 
regions.  Segmentation also relies exclusively on slope:  if a 
minimum-error line (segment) is well fitted to a set of points it 
means that the segment has a consistent slope. 
 If raw slope values are used in the representative points, then 
the “distance” between clusters with slope values 100 and 101 
would be the same as the distance between clusters with slope 
values 0 and 1.  Differences in slopes that are near zero need to be 
emphasized because the same absolute change in slope can triple 
a small value, and be an insignificant increase for a large value.  
Relative differences between slopes cannot be measured by the 
percentage increase because in the preceding example, the 
percentage increase from 0 to 1 is undefined.  Gecko uses 
representative values of slopes to determine the “distance” 
between two slopes by using the equation:  
   
Representative Slope  =  
 

This equation emphasizes slopes near zero and decreases the 
effect of changes in slope when the slope values are large.  
Whenever a slope value is squared, its representative slope value 
(approximately) doubles.  In the preceding example of comparing 
2 pairs of clusters with slopes {100, 101} and {0, 1} the 
representative values of their slopes are {4.615, 4.625} and {0, 
0.693}.  This accurately reflects the relative difference between 
raw slopes and not the absolute difference. 

 
Figure 3. A sample # of clusters vs. merge distance graph. 

Phase 3: Determine the Best Clustering Level. To 
determine a good number of clusters to return, the distances of all 
merges (all the way to a single cluster) during phase 2 are 
analyzed.  The basic shape of the ‘# of clusters vs. merge 
distance’ graph is shown in Figure 3.  In this graph, the x-axis is 
the number of clusters from ‘2’ to ‘the number of sub-clusters 
generated by phase 1’.  The y-axis is the distance of the two 
closest clusters when there are x clusters.  Each data-point is the 
distance of a single merge, and the entire graph is generated in 
only once pass of the clustering algorithm.  The majority of ‘# of 
clusters vs. merge distance’ graphs have three distinctive areas:  a 
rather flat region to the right, a near-vertical region to the left, and 
a curved transition area in the middle.   
 Starting from the right end, where the phase 2 merging process 
begins, there are many very similar clusters that should be 
merged.  Another distinctive area of the graph is on the far left 
side where the merge distances grow very rapidly.  This rapid 
increase in distance indicates that very dissimilar clusters are 
being merged together, and that the quality of the clustering is 
becoming poor because clusters are no longer internally 
homogeneous.  In this region, too many merges have already been 
performed and the optimal clustering has been passed.  The 
optimal number of clusters is therefore in the curved area, or the 
“knee” of the graph.  This region is between the low distance 
merges that form a nearly straight line on the right side of the 
graph, and the quickly increasing region on the left side. 
 The regions to both the right and the left of the curved section 
of the graph (see Figure 3) are approximately linear.  If a line is 
fitted to the right side and another line is fitted to the left side, 
then the area between those two lines will be in the transition area 
and can be used as the number of clusters to return.  Figure 4 
depicts an example. To find these two lines, we choose the pair of 
lines that most closely fit the curve.  Each line must contain at 
least two points, and must start at either end of the data.  Both 
lines together cover all of the data points, so if one line is short, 
the other is long to cover the rest of the remaining data points.  
The lines cover sequential sets of points, so the total number of 
line pairs is numOfInitialClusters – 4. 

 
Figure 4. Finding the number of clusters by the L method. 

The Gecko Algorithm (overview) 
Input: D                 // time series data 
  s                  // the minimum cluster size 
Output: c*  clusters   
 
Phase 1: 
1. build a k-nearest neighbor graph of  D (k=2*s) 
2. recursively bisect the graph until no bisections can be

made without creating a cluster smaller than s 
 
Phase 2: 
3. recursively merge the sub-clusters together until only one

cluster remains - a dendrogram is created 
 
Phase 3: 
4. find c*, an appropriate number of clusters to return, by

using the L method. 
5. extract c* clusters from the dendrogram and return them 

⎩
⎨
⎧

<+−−
≥+

0)1ln(
0)1ln(

slopeifslope
slopeifslope



 Consider a ‘# of clusters vs. evaluation metric' graph with 
values on the x-axis up to x=b.  The x-axis varies from 2 to b; 
hence there are b-1 data points in the graph.  Let Lc and Rc be the 
left and right sequences of data points partitioned at x=c; that is, 
Lc has points with x=2...c, and Rc has points with x=c+1…b, 
where c=3…b-2.  Equation 1 defines the total root mean squared 
error RMSEc, when the partition of Lc and Rc is at x=c: 
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where RMSE(Lc) is the root mean squared error of the best-fit line 
for the sequence of points in Lc (and similarly for Rc).  The 
weights are proportional to the lengths of Lc (c-1) and Rc (b-c).  
We seek the value of c, c*, such that RMSEc is minimized: 

c
                              [2] 

c RMSEc minarg* =

 The location of the knee at x=c* is used as the number of 
clusters to return.  This method to determine the number of 
clusters to return is general, and can also be used to determine the 
number of clusters in other hierarchical clustering and 
hierarchical segmentation algorithms, as shown in (Salvador and 
Chan 2003). 

RIPPER – Rule Generation 
We have adapted RIPPER (Cohen 1995) to generate human 
readable rules that characterize the states identified by the Gecko 
algorithm.  The RIPPER algorithm is based on the Incremental 
Reduce Error Pruning (IREP) (Furnkranz and Wildmer 1994) 
over-fit-and-prune strategy.  The IREP algorithm is a 2-class 
approach, where the data set must first be divided into two 
subsets.  The first subset contains examples of the class whose 
characteristics are desired (the positive example set) and the other 
subset contains all other data samples (the negative example set).  
Our implementation of RIPPER acts as an outer loop for the IREP 
rule construction.  
 The input to RIPPER is the data produced by Gecko which 
contains time series data classified into c* states.  RIPPER will 
execute the IREP algorithm c* times, once for each state.  At each 
execution of IREP, a different state is considered to be the 
positive example set and the rest of the states form the negative 
example set.  This creates a set of rules for each state.  To 
describe the relationship among these states, state transition logic 
is identified as discussed in the following section. 

State Transition Logic 
The upper right-hand quadrant of Figure 1 depicts a simplified 
state transition diagram for a signal containing just three states.  
The state transition logic is described by three rules for each state 
corresponding to each of the three possible state transition 
conditions on each input data point: 
• IF input matches current state’s characteristics THEN remain 

in current state. 
• IF input matches the next state’s characteristics THEN 

transition to the next state. 
• IF input matches neither the current state’s nor the next 

state’s characteristics THEN transition to an anomaly state. 

 The antecedent condition for each state is obtained from the 
RIPPER rule generation process.  The state transition logic simply 
needs to glue together the proper antecedents to formulate the 
above three transition rules for each state.   

 Before an anomaly state is entered, one of two additional 
criteria must be satisfied:  either (1) the number of consecutively 
observed anomalous values must exceed a specified threshold; or 
(2) the total number of anomalous values observed has exceeded 
another threshold.  Thus, an anomalous condition is not 
annunciated unless the observed values have been improper for 
some length of time.  Similar logic is provided for the transition 
from a normal state to its normal successor to prevent premature 
state transitions. 

Empirical Evaluation 
The goal of this evaluation is to demonstrate the ability of the 
Gecko algorithm to identify states in real time series data, and 
also to show that our overall system is able to detect anomalies. 
The data used to evaluate Gecko and the overall anomaly 
detection system is 10 time series data sets obtained from NASA.  
The data sets are signatures of a valve from the space shuttle.     

 
Figure 5. A data set after being clustered by Gecko. 

Each data set contains between 1,000 and 20,000 equally spaced 
measurements of current.  These 10 data sets contain signatures of 
valves that are operating normally, and also signatures of valves 
that have been damaged.  The current method used to test these 
valves requires a human expert to compare a valve’s signature to 
a known normal signature, and determine if there is any 
significant variation.  We would like to demonstrate that Gecko is 
able to cluster time series signatures into important phases, and 
that our anomaly detection system is able to determine if a valve 
is operating normally. 

Identifying States with Gecko 
Procedures and Criteria.  First, Gecko and a valve expert 
from NASA independently cluster the 10 data sets.  The expert is 
given an unclustered graph of each data set.  Based on his or her 
knowledge of the valve’s states, the human expert is asked to 
draw lines between cluster boundaries.  This allows us to 
determine if the number of clusters determined by the Gecko 
algorithm is comparable to the number of clusters produced by 
the human expert. Second, both Gecko and an existing algorithm 
cluster the 10 data sets.  Without knowing which output is from 
which algorithm, a NASA engineer will then rate the quality of 
each clustering from 1 to 10.  The existing algorithm that is used 
is bottom-up segmentation (BUS).  The number of clusters 
returned by BUS is set to be the same number that Gecko returns.  
Finally, the valve expert is asked to go over all of the Gecko data 
sets that he or she rated in the second step, and explain the 
evaluation that was given.  Gecko was run with the default 
parameter for each data set:  minimum cluster size s=10. 



Table 1. Clusters produced by Gecko and a human expert. 
 Gecko NASA Human Expert 

Data Set # of clusters # of clusters Reasonable Range 
1 16 11 9-20
2 16 10 9-20 
3 14 10 9-20 
4 12 10 9-20 
5 13 7 (6-15) 
6 10 5 (5-10) 
7 7 6 (6-11) 
8 16 10 (9-19) 
9 16 12 (10-20) 

10 15 11 (9-16) 

Results.  The first part of Gecko’s evaluation was to compare the 
number of clusters it produced to the number produced by an 
expert human.  A summary of the results is shown in Table 1.   
 Gecko was able to identify a number of clusters that was within 
the range specified by the expert to be a ‘reasonable range’ (for 
datasets 5-10 the expert did not provide a range and we 
extrapolated from his hand-clustering and his ranges for data sets 
1-4).  The human expert consistently created clusterings with 
fewer clusters than the Gecko algorithm.  However, the 
clusterings are actually quite similar.  Gecko identifies the same 
major clusters as the valve expert, but also produces several 
‘transition’ clusters between them.  A more detailed evaluation of 
the L Method’s ability to determine the number of clusters for 
more diverse data sets can be found in (Salvador and Chan 2003). 
 The next task performed by the NASA engineer was to rate the 
clusterings produced by Gecko and BUS.  Table 2 contains the 
clustering quality scores for Gecko and BUS.  Gecko’s average 
score was 9.5, while the bottom-up segmentation algorithm’s 
average score was only 4.3.  Notice that Gecko often receives a 
perfect clustering score (which signifies a clustering as good as 
the human expert’s clustering) even though it returns fewer 
clusters than the human expert.  For example, Gecko produced 
nearly twice as many clusters as the human expert for data set 5, 
and Gecko still got a perfect rating.  This suggests that there is 
often a range of “very good” numbers of clusters to return, rather 
than a single correct number.  

Table 2. Clustering quality of Gecko and BUS 
Data Set 1 2 3 4 5 6 7 8 9 10 Avg 

Gecko 10 10 9 10 10 10 8 9 9 10 9.5 

BUS 2 3 3 3 3 3 8 5 7 6 4.3 

 The final part of Gecko’s evaluation was a discussion with the 
NASA engineer about why he gave each score.  According to the 
engineer, BUS divides regions of high slope into too many 
clusters.  BUS merges clusters together by keeping the root-mean 
squared error of the best fit lines to a minimum.  This method 
measures error vertically, and as a consequence, lines that are 
nearly vertical may seem visually to be a nearly perfect fit, but 
the vertical distances from the points to the line can be huge. 

Overall System (FSA) 
Procedures and Criteria.  In order to test whether the 
anomaly detection system works correctly we performed three 
kinds of tests:  (1) Self-tracking:  Use 90% of the data points to 
create rules, and then use 100% of the data fed into the expert 
system to see if the state transitions occur correctly, without 

detecting any anomalies. (2) Normal operation:  Use all of a 
normal valve’s data to learn its signature, and then monitor 
another valve that is also operating normally.  This case should 
also not trigger any anomalies. (3) Detecting anomalies:  Use all 
of a properly functioning valve’s data to learn its normal 
signature, and then take signatures of valves that are damaged 
slightly and run them through the anomaly detection system.  The 
damaged valves should trigger anomalies. 
Self-tracking Results.  The baseline test of the anomaly 
detection system is to train the model with 90% of the data, and 
seeing if 100% of the data can be tracked without triggering an 
anomaly.  The results of this test are shown in Table 3.  An error 
point in Table 3 is any point that is unexpected in the state 
transition logic.  This means that the point is neither in the current 
state or the following state.  Time series data often contains noise 
and minor variations.  For this reason, anomalies must not be 
triggered by only a single data point that does not agree with the 
model contained in the FSA.  By using a threshold counter, an 
anomaly will only be reported after a certain number of 
consecutive error points.  The last row in Table 3 shows what the 
minimum consecutive error threshold (CE) must be set to for the 
anomaly detection system to not report an anomaly.  A value of 1 
in this last column means that the anomaly detection system will 
correctly not report an anomaly as long as CE ≥ 1.   

Table 3. Self-tracking of a time series. 
Data Set 1 2 3 4 5 6 7 8 9 10 Avg

Error Pts 
(%) 1.1 0.8 0.7 0.5 0.0 0.4 0.3 0.2 0.4 1.1 0.6 

Min. Error 
Threshold 2 2 1 1 0 1 1 1 1 21 4.0 

 In this experiment, both the “consecutive transition” (CT) and 
the “consecutive error” (CE) thresholds were set to zero.  This 
causes every possible state transition to be made and every error 
point triggers an anomaly.  This enabled easy computation of the 
number of error points.  Data set number 10 performs poorly in 
this test because the FSA transitions prematurely near the end of 
its signature and starts reporting many anomalies, the results for 
this data set can be improved by increasing CT to prevent it from 
transitioning too early on a single spurious data point. 
Normal Operation Results.  This test is to show that the 
anomaly detection system’s model of the normal signature is 
general enough to recognize that an untrained normal time series 
contains no anomalies.  In this test, the anomaly detection system 
trained on data set 1, and then tested on data set 2.  Both of these 
data sets are of normally operating valves that contain minor (but 
visible) differences.  The “consecutive transition” threshold (CT) 
parameter was set to 2, and CE was set to 10 (minimum possible 
cluster size s=10).  This means that two consecutive points 
believed to be in the next state are needed to perform a state 
transition and ten consecutive points believed to be errors are 
needed to declare that the time series contains anomalies.   
 The system was able to successfully transition through the 
states, without detecting any anomalies.  Of 979 data points, 61 
(2.6%) were error points--they were not believed to belong to the 
current state, nor to be transition points belonging to the 
following state.  However, since a consecutive number of errors 
greater than CE was never encountered, an anomaly was never 
triggered. 
Detecting Anomalies Results.  This final test is to show that 
our system is capable of detecting when a time series differs 
significantly from the learned model.  In this test, two data sets 



containing time series signatures of valves operating normally 
(data sets 1 and 2) were used to develop the normal models.  Each 
normal model was then run against the remaining anomalous data 
sets (data sets 3…10). 
 For each of the 16 tests, the anomaly detection system correctly 
determined that the signatures contained anomalies.  Additionally, 
the system was able to inform the user of the state number where 
the signature differs from the model.  Thus, the system does not 
only give a yes/no answer to whether a time series contains 
anomalies, but it is also able to explain to the user where the 
anomaly occurred.  Also, because the rules generated by RIPPER 
are in a human-readable format, the user can look at the rule for 
the state where the error occurred and understand exactly why the 
system reported the anomaly. 

Concluding Remarks 
We have detailed our approach to time series anomaly detection 
by discovering and characterizing the states of a time series, and 
performing transition logic between these states to construct a 
finite state automaton, run on an expert system, that can be used 
to track normal behavior and detect anomalies.  The proposed 
Gecko clustering algorithm is designed to cluster time series data, 
and uses our proposed L method to determine a reasonable 
number of clusters efficiently.  The rules generated for each state 
by the RIPPER algorithm can be easily understood and modified 
by humans.  (Moreover, the generated rules can be in a format 
used by the SCL expert system shell at ICS, which is our 
collaborator on this NASA project) 
 Our empirical evaluations have shown that the L method used 
by the Gecko algorithm returns a number of clusters that is 
similar to the number that is generated by a human expert.  When 
the human expert was asked to rate Gecko’s clusterings from 1-
10, Gecko’s clusterings were given perfect ratings on 6 of 10 data 
sets.  A perfect rating signifies that Gecko’s clustering is equally 
as good as the human expert’s clustering.  For comparison, the 
bottom-up segmentation algorithm was also tested, and was only 
given an average rating of 4.3.  The overall anomaly detection 
system was able to detect anomalies in every signature that was 
from a ‘damaged’ valve, and was also able to monitor a 2nd 
normal valve without detecting any anomalies. 
 We plan to further evaluate our approach with more datasets 
from NASA; issues include building a model from multiple 
datasets collected at different times and datasets with different 
measurements.  We plan to continue studying how the L method 
performs with other hierarchical clustering algorithms (Salvador 
and Chan 2003).  To dynamically set the thresholds used in the 
state transition logic, we can investigate holding out part of the 
training data and find thresholds that prevent errors on the unseen 
portion of the data. 
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