
Learning States and Rules for Time Series Anomaly Detection

Stan Salvador, Philip Chan, and John Brodie

Department of Computer Sciences
Florida Institute of Technology

Melbourne, FL 32901
{ssalvado, pkc, jbrodie}@cs.fit.edu

Abstract
The normal operation of a device can be characterized in
different temporal states. To identify these states, we
introduce a clustering algorithm called Gecko that can
determine a reasonable number of clusters using our
proposed L method. We then use the RIPPER classification
algorithm to describe these states in logical rules. Finally,
transitional logic between the states is added to create a
finite state automaton. Our empirical results, on data
obtained from the NASA shuttle program, indicate that the
Gecko clustering algorithm is comparable to a human expert
in identifying states and our overall system can track normal
behavior and detect anomalies.

Introduction
Expert (knowledge-based) systems are often used to help humans
monitor and control critical systems in real-time. For example,
NASA uses expert systems to monitor various devices on the
space shuttle. However, populating an expert system’s
knowledge base by hand is a time-consuming process. In this
paper we investigate machine learning techniques for generating
knowledge that can monitor the operation of devices or systems.
Specifically, we study methods for generating models that can
detect anomalies in time series data.

The normal operation of a device can usually be characterized
in different temporal states. Segmentation or clustering
techniques can help identify the various states, however, most
methods directly or indirectly require a parameter to specify the
number of segments/clusters in the time series data. The output
of these algorithms is also not in a logical rule format, which is
commonly used in expert systems for its ease of comprehension
and modification. Furthermore, the relationships between these
states need to be determined to allow tracking from one state to
another and to detect anomalies.

Given a time series depicting a system’s normal operation, we
desire to learn a model that can detect anomalies and can be
easily read and modified by human users. We investigate a few
issues in this paper. First, we want a clustering algorithm that can
dynamically determine a reasonable number of clusters, and
hence the number of states for our purposes. These states,
collected from a device, should be comparable to those identified
by human experts. Second, we would like to characterize these
states in logical rules so that they can be read and modified with
relative ease by humans. Third, given the knowledge of the

 Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

different states, we wish to describe the relationship among them
for tracking normal behavior and detecting anomalies.
 To identify states, we introduce Gecko, which is able to cluster
time series data and determine a reasonable number of clusters
(states). Gecko consists of a top-down partitioning phase to find
initial sub-clusters and a bottom-up phase which merges them
back together. The appropriate number of clusters is determined
by what we call the L method. To characterize the states as
logical rules, we use the RIPPER (Cohen 1995) classification rule
learning algorithm. Since different states often overlap in the
one-dimensional input space, additional attributes are derived to
help characterize the states. To track normal behavior and detect
anomalies, we construct a finite state automaton (FSA) with the
identified states.
 Our main contributions are: (1) we demonstrate a way to
perform time series anomaly detection via generated states and
rules that can easily be understood and modified by humans; (2)
we introduce an algorithm named Gecko for clustering time series
data; (3) we propose the L method for dynamically finding a
reasonable number of clusters--the L method is general enough to
be used with other hierarchical divisive/agglomerative clustering
algorithms (Salvador and Chan 2003); (4) we integrate RIPPER
and state transition logic to generate a complete anomaly
detection system; (5) our empirical evaluations, with data from
NASA, indicate that Gecko performs comparably with a NASA
expert and the overall system can track normal behavior and
detect anomalies.

Related Work

Clustering Algorithms. There are four main categories of
clustering algorithms: partitioning, hierarchical, density-based,
and grid-based. Partitioning algorithms, for example K-means,
iteratively refine a set of k clusters. Density-based algorithms,
such as DBSCAN (Ester et al. 1996), are able to efficiently
produce clusters of arbitrary shape and are also able to handle
noise. If the density of a region is above a specified threshold, it
is assigned to a cluster, otherwise it is considered to be noise.
Hierarchical algorithms can be agglomerative and/or divisive.
The agglomerative (bottom-up) approach repeatedly merges two
clusters, while the divisive (top-down) approach repeatedly splits
a cluster into two. Our Gecko algorithm is similar to the
hierarchical Chameleon (Karypis, Han, and Kumar 1999)
clustering algorithm, but with constraints during the merging
phase so it can be applied to time series data. Grid-based
algorithms such as WaveCluster (Seikholeslami, Chatterjee, and
Zhang 1998) reduce the clustering space into a grid of cells which
enables efficient clustering of very large datasets.

Segmentation Algorithms. Segmentation algorithms usually
take time series data as input and produce a Piecewise Linear
Representation (PLR) as output. PLR is a set of consecutive line
segments that tightly fit the original data points. Segmentation
algorithms are somewhat related to clustering algorithms in that
each segment can be thought of as a cluster. However, due to the
linear representation bias, segmentation algorithms are much
more effective at producing fine grain partitioning, rather than a
smaller set of segments that represent natural clusters.
 There are three common approaches (Keogh et al. 2001). First,
in the Sliding Window approach, a segment is grown until the
error of the line is above a specified threshold, then a new
segment is started. Second, in the Top-down approach, the entire
time series is recursively split until the desired number of
segments is reached, or an error threshold is reached. Third, the
Bottom-up approach starts off with n/2 segments, the 2 most
similar adjacent segments are repeatedly joined until either the
desired number of segments, or an error threshold is reached.
Determining the Number of Segments/Clusters. Five common
approaches to estimating the dimension of a model (such as the
number of clusters or segments) are: cross-validation, penalized
likelihood estimation, permutation tests, resampling, and finding
the knee of an error curve.
 Cross-validation techniques create models that attempt to fit the
data as accurately as possible. Monte Carlo cross-validation
(Smyth 1996) has been successfully used to prevent over-fitting
(too many clusters/segments). Penalized likelihood estimation
also attempts to find a model that fits the data as accurately as
possible, but also attempts to minimize the complexity of the
model. Permutation tests (Vasko & Toivonen 2002) are able to
prevent segmentation algorithms from creating a PLR that over-
fits the data. Resampling (Monti et al. 2003) attempts to find the
correct number of clusters by repeatedly clustering samples of the
data set, and determining at what number of clusters the
clusterings of the various samples are the most “stable.”
 Locating the “knee” of an error curve, in order to determine an
appropriate number of clusters or segments, is well known, but it
is not a particularly well studied method. There are methods that
statistically evaluate each point in the error curve, and use the
point that either minimizes or maximizes some function as the
number of clusters/segments to return. Such methods include the
Gap statistic (Tibshirani, Walther, and Hastie 2000) and
prediction strength (Tibshirani et al. 2001).
Anomaly Detection. Much of the work in time series anomaly
detection relies on models that are not easily readable and hence
cannot be modified by a human for tuning purposes. Examples
include a set of normal sequences (Dasgupta and Forrest 1996)
and adaptive resonance theory (Caudell and Newman 1993).

Approach
The input to our overall anomaly detection system is “normal”
time series data (like the graph at the top left corner of Figure 1).
The output of the overall system is a set of rules that implement
state transition logic on an expert system, and are able to
determine if other time series signatures deviate significantly
from the learned signature. Any deviation from the learned
“normal” model is considered to be an anomaly. The overall
architecture of the anomaly detection system, depicted in Figure
1, consists of three components: clustering, rule generation
(characterization), and state transition logic. The clustering phase
is performed by our newly-developed clustering algorithm

Figure 1. Main steps in time series anomaly detection.
“Gecko,” which is designed to identify distinct phases in a time
series. Then rules are created for each state by the RIPPER
algorithm (Cohen 1995). Finally, rules are added for the
transitions between states to create a finite state automaton. The
three steps in our approach are detailed in the next three
subsections.

Gecko – Data Clustering
While segmentation algorithms typically create only a fine linear
approximation of time series data, Gecko divides a time series
into clusters. This number of clusters is determined by the
algorithm and requires no user input. The Gecko algorithm
consists of three phases, as depicted in Figure 2. The first phase
creates many small sub-clusters. The second phase repeatedly
merges the two most similar clusters. Phase 3 determines the
number of clusters to return.

DataData 1 Large
Cluster

c1 c2 c3 c4

Phase 1:
 Obtain Subclusters

c1 c2 c3 c4

c6

c5

c7

Phase 2:
Merge Subclusters

Subclusters

Phase 3:
Determine the Best

Clustering Level

c1 c2 c3 c4

c6

c5

c7 c1 c2 c5

Final Clustering

Figure 2. Overview of the Gecko Algorithm.

Phase 1: Create Sub-Clusters. In the first phase, many
small sub-clusters are created by a method that is similar to the
one used by Chameleon (Karypis, Han, and Kumar 1999), except
that Gecko forces cluster boundaries to be non-overlapping in the
time dimension. The sub-clusters are created by initially placing
all of the data points in a cluster, and repeatedly splitting the
largest cluster until all of the clusters are too small to be split
again without violating the minimum possible cluster size s.

 To determine how to split the largest cluster, a k-nearest
neighbor graph is built in which each node in the graph is a time
series data point, and each edge is the similarity between two data
points. Only the slopes of the original values are used to
determine similarity, and not the original values themselves.
Using only the slope will tend to produce sub-clusters that are
straight lines. For more specific details about phase 1, please
refer to (Salvador, Chan, and Brodie 2003) due to space
constraints.
Phase 2: Repeatedly Merge Clusters. In phase 2, the most
similar pair of adjacent (in time) clusters are repeatedly merged
until only one cluster remains. To determine which adjacent pair
of clusters are the most similar, representative points are
generated for each cluster and the two adjacent clusters with the
closest representative points are merged. A single representative
point is able to accurately represent every point in a cluster
because each cluster is internally homogeneous. The
representative point of a cluster contains a value for the slope of
every original attribute in the data other than time. Clustering by
the slope values causes the time series to be divided into flat
regions. Segmentation also relies exclusively on slope: if a
minimum-error line (segment) is well fitted to a set of points it
means that the segment has a consistent slope.
 If raw slope values are used in the representative points, then
the “distance” between clusters with slope values 100 and 101
would be the same as the distance between clusters with slope
values 0 and 1. Differences in slopes that are near zero need to be
emphasized because the same absolute change in slope can triple
a small value, and be an insignificant increase for a large value.
Relative differences between slopes cannot be measured by the
percentage increase because in the preceding example, the
percentage increase from 0 to 1 is undefined. Gecko uses
representative values of slopes to determine the “distance”
between two slopes by using the equation:

Representative Slope =

This equation emphasizes slopes near zero and decreases the
effect of changes in slope when the slope values are large.
Whenever a slope value is squared, its representative slope value
(approximately) doubles. In the preceding example of comparing
2 pairs of clusters with slopes {100, 101} and {0, 1} the
representative values of their slopes are {4.615, 4.625} and {0,
0.693}. This accurately reflects the relative difference between
raw slopes and not the absolute difference.

Figure 3. A sample # of clusters vs. merge distance graph.

Phase 3: Determine the Best Clustering Level. To
determine a good number of clusters to return, the distances of all
merges (all the way to a single cluster) during phase 2 are
analyzed. The basic shape of the ‘# of clusters vs. merge
distance’ graph is shown in Figure 3. In this graph, the x-axis is
the number of clusters from ‘2’ to ‘the number of sub-clusters
generated by phase 1’. The y-axis is the distance of the two
closest clusters when there are x clusters. Each data-point is the
distance of a single merge, and the entire graph is generated in
only once pass of the clustering algorithm. The majority of ‘# of
clusters vs. merge distance’ graphs have three distinctive areas: a
rather flat region to the right, a near-vertical region to the left, and
a curved transition area in the middle.
 Starting from the right end, where the phase 2 merging process
begins, there are many very similar clusters that should be
merged. Another distinctive area of the graph is on the far left
side where the merge distances grow very rapidly. This rapid
increase in distance indicates that very dissimilar clusters are
being merged together, and that the quality of the clustering is
becoming poor because clusters are no longer internally
homogeneous. In this region, too many merges have already been
performed and the optimal clustering has been passed. The
optimal number of clusters is therefore in the curved area, or the
“knee” of the graph. This region is between the low distance
merges that form a nearly straight line on the right side of the
graph, and the quickly increasing region on the left side.
 The regions to both the right and the left of the curved section
of the graph (see Figure 3) are approximately linear. If a line is
fitted to the right side and another line is fitted to the left side,
then the area between those two lines will be in the transition area
and can be used as the number of clusters to return. Figure 4
depicts an example. To find these two lines, we choose the pair of
lines that most closely fit the curve. Each line must contain at
least two points, and must start at either end of the data. Both
lines together cover all of the data points, so if one line is short,
the other is long to cover the rest of the remaining data points.
The lines cover sequential sets of points, so the total number of
line pairs is numOfInitialClusters – 4.

Figure 4. Finding the number of clusters by the L method.

The Gecko Algorithm (overview)
Input: D // time series data
 s // the minimum cluster size
Output: c* clusters

Phase 1:
1. build a k-nearest neighbor graph of D (k=2*s)
2. recursively bisect the graph until no bisections can be

made without creating a cluster smaller than s

Phase 2:
3. recursively merge the sub-clusters together until only one

cluster remains - a dendrogram is created

Phase 3:
4. find c*, an appropriate number of clusters to return, by

using the L method.
5. extract c* clusters from the dendrogram and return them

⎩
⎨
⎧

<+−−
≥+

0)1ln(
0)1ln(

slopeifslope
slopeifslope

 Consider a ‘# of clusters vs. evaluation metric' graph with
values on the x-axis up to x=b. The x-axis varies from 2 to b;
hence there are b-1 data points in the graph. Let Lc and Rc be the
left and right sequences of data points partitioned at x=c; that is,
Lc has points with x=2...c, and Rc has points with x=c+1…b,
where c=3…b-2. Equation 1 defines the total root mean squared
error RMSEc, when the partition of Lc and Rc is at x=c:

)(
1

)(
1
1

ccc RRMSE
b

cbLRMSE
b
cRMSE ×

−
−

+×
−
−

= [1]

where RMSE(Lc) is the root mean squared error of the best-fit line
for the sequence of points in Lc (and similarly for Rc). The
weights are proportional to the lengths of Lc (c-1) and Rc (b-c).
We seek the value of c, c*, such that RMSEc is minimized:

c
 [2]

c RMSEc minarg* =

 The location of the knee at x=c* is used as the number of
clusters to return. This method to determine the number of
clusters to return is general, and can also be used to determine the
number of clusters in other hierarchical clustering and
hierarchical segmentation algorithms, as shown in (Salvador and
Chan 2003).

RIPPER – Rule Generation
We have adapted RIPPER (Cohen 1995) to generate human
readable rules that characterize the states identified by the Gecko
algorithm. The RIPPER algorithm is based on the Incremental
Reduce Error Pruning (IREP) (Furnkranz and Wildmer 1994)
over-fit-and-prune strategy. The IREP algorithm is a 2-class
approach, where the data set must first be divided into two
subsets. The first subset contains examples of the class whose
characteristics are desired (the positive example set) and the other
subset contains all other data samples (the negative example set).
Our implementation of RIPPER acts as an outer loop for the IREP
rule construction.
 The input to RIPPER is the data produced by Gecko which
contains time series data classified into c* states. RIPPER will
execute the IREP algorithm c* times, once for each state. At each
execution of IREP, a different state is considered to be the
positive example set and the rest of the states form the negative
example set. This creates a set of rules for each state. To
describe the relationship among these states, state transition logic
is identified as discussed in the following section.

State Transition Logic
The upper right-hand quadrant of Figure 1 depicts a simplified
state transition diagram for a signal containing just three states.
The state transition logic is described by three rules for each state
corresponding to each of the three possible state transition
conditions on each input data point:
• IF input matches current state’s characteristics THEN remain

in current state.
• IF input matches the next state’s characteristics THEN

transition to the next state.
• IF input matches neither the current state’s nor the next

state’s characteristics THEN transition to an anomaly state.

 The antecedent condition for each state is obtained from the
RIPPER rule generation process. The state transition logic simply
needs to glue together the proper antecedents to formulate the
above three transition rules for each state.

 Before an anomaly state is entered, one of two additional
criteria must be satisfied: either (1) the number of consecutively
observed anomalous values must exceed a specified threshold; or
(2) the total number of anomalous values observed has exceeded
another threshold. Thus, an anomalous condition is not
annunciated unless the observed values have been improper for
some length of time. Similar logic is provided for the transition
from a normal state to its normal successor to prevent premature
state transitions.

Empirical Evaluation
The goal of this evaluation is to demonstrate the ability of the
Gecko algorithm to identify states in real time series data, and
also to show that our overall system is able to detect anomalies.
The data used to evaluate Gecko and the overall anomaly
detection system is 10 time series data sets obtained from NASA.
The data sets are signatures of a valve from the space shuttle.

Figure 5. A data set after being clustered by Gecko.

Each data set contains between 1,000 and 20,000 equally spaced
measurements of current. These 10 data sets contain signatures of
valves that are operating normally, and also signatures of valves
that have been damaged. The current method used to test these
valves requires a human expert to compare a valve’s signature to
a known normal signature, and determine if there is any
significant variation. We would like to demonstrate that Gecko is
able to cluster time series signatures into important phases, and
that our anomaly detection system is able to determine if a valve
is operating normally.

Identifying States with Gecko
Procedures and Criteria. First, Gecko and a valve expert
from NASA independently cluster the 10 data sets. The expert is
given an unclustered graph of each data set. Based on his or her
knowledge of the valve’s states, the human expert is asked to
draw lines between cluster boundaries. This allows us to
determine if the number of clusters determined by the Gecko
algorithm is comparable to the number of clusters produced by
the human expert. Second, both Gecko and an existing algorithm
cluster the 10 data sets. Without knowing which output is from
which algorithm, a NASA engineer will then rate the quality of
each clustering from 1 to 10. The existing algorithm that is used
is bottom-up segmentation (BUS). The number of clusters
returned by BUS is set to be the same number that Gecko returns.
Finally, the valve expert is asked to go over all of the Gecko data
sets that he or she rated in the second step, and explain the
evaluation that was given. Gecko was run with the default
parameter for each data set: minimum cluster size s=10.

Table 1. Clusters produced by Gecko and a human expert.
 Gecko NASA Human Expert

Data Set # of clusters # of clusters Reasonable Range
1 16 11 9-20
2 16 10 9-20
3 14 10 9-20
4 12 10 9-20
5 13 7 (6-15)
6 10 5 (5-10)
7 7 6 (6-11)
8 16 10 (9-19)
9 16 12 (10-20)

10 15 11 (9-16)

Results. The first part of Gecko’s evaluation was to compare the
number of clusters it produced to the number produced by an
expert human. A summary of the results is shown in Table 1.
 Gecko was able to identify a number of clusters that was within
the range specified by the expert to be a ‘reasonable range’ (for
datasets 5-10 the expert did not provide a range and we
extrapolated from his hand-clustering and his ranges for data sets
1-4). The human expert consistently created clusterings with
fewer clusters than the Gecko algorithm. However, the
clusterings are actually quite similar. Gecko identifies the same
major clusters as the valve expert, but also produces several
‘transition’ clusters between them. A more detailed evaluation of
the L Method’s ability to determine the number of clusters for
more diverse data sets can be found in (Salvador and Chan 2003).
 The next task performed by the NASA engineer was to rate the
clusterings produced by Gecko and BUS. Table 2 contains the
clustering quality scores for Gecko and BUS. Gecko’s average
score was 9.5, while the bottom-up segmentation algorithm’s
average score was only 4.3. Notice that Gecko often receives a
perfect clustering score (which signifies a clustering as good as
the human expert’s clustering) even though it returns fewer
clusters than the human expert. For example, Gecko produced
nearly twice as many clusters as the human expert for data set 5,
and Gecko still got a perfect rating. This suggests that there is
often a range of “very good” numbers of clusters to return, rather
than a single correct number.

Table 2. Clustering quality of Gecko and BUS
Data Set 1 2 3 4 5 6 7 8 9 10 Avg

Gecko 10 10 9 10 10 10 8 9 9 10 9.5

BUS 2 3 3 3 3 3 8 5 7 6 4.3

 The final part of Gecko’s evaluation was a discussion with the
NASA engineer about why he gave each score. According to the
engineer, BUS divides regions of high slope into too many
clusters. BUS merges clusters together by keeping the root-mean
squared error of the best fit lines to a minimum. This method
measures error vertically, and as a consequence, lines that are
nearly vertical may seem visually to be a nearly perfect fit, but
the vertical distances from the points to the line can be huge.

Overall System (FSA)
Procedures and Criteria. In order to test whether the
anomaly detection system works correctly we performed three
kinds of tests: (1) Self-tracking: Use 90% of the data points to
create rules, and then use 100% of the data fed into the expert
system to see if the state transitions occur correctly, without

detecting any anomalies. (2) Normal operation: Use all of a
normal valve’s data to learn its signature, and then monitor
another valve that is also operating normally. This case should
also not trigger any anomalies. (3) Detecting anomalies: Use all
of a properly functioning valve’s data to learn its normal
signature, and then take signatures of valves that are damaged
slightly and run them through the anomaly detection system. The
damaged valves should trigger anomalies.
Self-tracking Results. The baseline test of the anomaly
detection system is to train the model with 90% of the data, and
seeing if 100% of the data can be tracked without triggering an
anomaly. The results of this test are shown in Table 3. An error
point in Table 3 is any point that is unexpected in the state
transition logic. This means that the point is neither in the current
state or the following state. Time series data often contains noise
and minor variations. For this reason, anomalies must not be
triggered by only a single data point that does not agree with the
model contained in the FSA. By using a threshold counter, an
anomaly will only be reported after a certain number of
consecutive error points. The last row in Table 3 shows what the
minimum consecutive error threshold (CE) must be set to for the
anomaly detection system to not report an anomaly. A value of 1
in this last column means that the anomaly detection system will
correctly not report an anomaly as long as CE ≥ 1.

Table 3. Self-tracking of a time series.
Data Set 1 2 3 4 5 6 7 8 9 10 Avg

Error Pts
(%) 1.1 0.8 0.7 0.5 0.0 0.4 0.3 0.2 0.4 1.1 0.6

Min. Error
Threshold 2 2 1 1 0 1 1 1 1 21 4.0

 In this experiment, both the “consecutive transition” (CT) and
the “consecutive error” (CE) thresholds were set to zero. This
causes every possible state transition to be made and every error
point triggers an anomaly. This enabled easy computation of the
number of error points. Data set number 10 performs poorly in
this test because the FSA transitions prematurely near the end of
its signature and starts reporting many anomalies, the results for
this data set can be improved by increasing CT to prevent it from
transitioning too early on a single spurious data point.
Normal Operation Results. This test is to show that the
anomaly detection system’s model of the normal signature is
general enough to recognize that an untrained normal time series
contains no anomalies. In this test, the anomaly detection system
trained on data set 1, and then tested on data set 2. Both of these
data sets are of normally operating valves that contain minor (but
visible) differences. The “consecutive transition” threshold (CT)
parameter was set to 2, and CE was set to 10 (minimum possible
cluster size s=10). This means that two consecutive points
believed to be in the next state are needed to perform a state
transition and ten consecutive points believed to be errors are
needed to declare that the time series contains anomalies.
 The system was able to successfully transition through the
states, without detecting any anomalies. Of 979 data points, 61
(2.6%) were error points--they were not believed to belong to the
current state, nor to be transition points belonging to the
following state. However, since a consecutive number of errors
greater than CE was never encountered, an anomaly was never
triggered.
Detecting Anomalies Results. This final test is to show that
our system is capable of detecting when a time series differs
significantly from the learned model. In this test, two data sets

containing time series signatures of valves operating normally
(data sets 1 and 2) were used to develop the normal models. Each
normal model was then run against the remaining anomalous data
sets (data sets 3…10).
 For each of the 16 tests, the anomaly detection system correctly
determined that the signatures contained anomalies. Additionally,
the system was able to inform the user of the state number where
the signature differs from the model. Thus, the system does not
only give a yes/no answer to whether a time series contains
anomalies, but it is also able to explain to the user where the
anomaly occurred. Also, because the rules generated by RIPPER
are in a human-readable format, the user can look at the rule for
the state where the error occurred and understand exactly why the
system reported the anomaly.

Concluding Remarks
We have detailed our approach to time series anomaly detection
by discovering and characterizing the states of a time series, and
performing transition logic between these states to construct a
finite state automaton, run on an expert system, that can be used
to track normal behavior and detect anomalies. The proposed
Gecko clustering algorithm is designed to cluster time series data,
and uses our proposed L method to determine a reasonable
number of clusters efficiently. The rules generated for each state
by the RIPPER algorithm can be easily understood and modified
by humans. (Moreover, the generated rules can be in a format
used by the SCL expert system shell at ICS, which is our
collaborator on this NASA project)
 Our empirical evaluations have shown that the L method used
by the Gecko algorithm returns a number of clusters that is
similar to the number that is generated by a human expert. When
the human expert was asked to rate Gecko’s clusterings from 1-
10, Gecko’s clusterings were given perfect ratings on 6 of 10 data
sets. A perfect rating signifies that Gecko’s clustering is equally
as good as the human expert’s clustering. For comparison, the
bottom-up segmentation algorithm was also tested, and was only
given an average rating of 4.3. The overall anomaly detection
system was able to detect anomalies in every signature that was
from a ‘damaged’ valve, and was also able to monitor a 2nd
normal valve without detecting any anomalies.
 We plan to further evaluate our approach with more datasets
from NASA; issues include building a model from multiple
datasets collected at different times and datasets with different
measurements. We plan to continue studying how the L method
performs with other hierarchical clustering algorithms (Salvador
and Chan 2003). To dynamically set the thresholds used in the
state transition logic, we can investigate holding out part of the
training data and find thresholds that prevent errors on the unseen
portion of the data.

Acknowledgements
This research is partially supported by NASA. We thank Bobby
Ferrell and Steven Santuro at NASA for providing the data sets,
helpful comments, and clustering evaluations. We also thank
Brian Buckley and Steve Creighton at ICS for help integrating
our algorithms into their SCL expert system.

References
Caudell, T. and Newman, D. 1993. An Adaptive Resonance
Architecture to Define Normality and Detect Novelties in Time
Series and Databases. In Proc. IEEE World Congress on Neural
Networks, 166-176. Portland, OR.

Cohen, W. 1995. Fast Effective Rule Induction, In Proc. of the
12th Intl. Conf. on Machine Learning, 115-123. Tahoe City, CA.

Dasgupta, D. and Forrest, S. 1996. Novelty Detection in Time
Series Data using Ideas from Immunology. In Proc. Fifth Intl.
Conf. on Intelligent Systems, 82-87. Reno, NV.

Ester, M.; Kriegel, H.; Sander, J.; and Xu, X. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise. In Proc. 2nd Intl. Conf. on Knowledge
Discovery and Data Mining (KDD), 226-231. Portland, OR.

Furnkranz, J. and Wildmer, G. 1994. Incremental Reduced Error
Pruning. In Proc. of the 11th Intl. Conf. on Machine Learning, 70-
77, New Brunswick, NJ.

Karypis, G.; Han, E.; and Kumar, V. 1999. Chameleon: A
hierarchical clustering algorithm using dynamic modeling. IEEE
Computer, 32(8):68-75.

Keogh, E.; Chu, S.; Hart, D.; and Pazanni, M. 2001. An Online
Algorithm for Segmenting Time Series. In Proc. IEEE Intl. Conf.
on Data Mining, 289-296. San Jose, CA.

Monti, S. et al. 2003. Consensus Clustering: A Resampling-Based
Method for Class Discovery and Visualization of Gene
Expression Microarray Data. Machine Learning, 52(1-2):91-118.

Salvador, S. and Chan, P. 2003. Determining the Number of
Clusters/Segments in Hierarchical Clustering/Segmentation
Algorithms, Technical Report, CS-2003-18, Dept. of Computer
Sciences, Florida Institute of Technology.

Salvador, S.; Chan, P.; and Brodie, J. 2003 Learning States and
Rules for Time Series Anomaly Detection, Technical Report, CS-
2003-05, Dept. of Computer Sciences, Florida Institute of
Technology.

Seikholeslami, G.; Chatterjee, S.; and Zhang, A. 1998.
WaveCluster: A Multi-Resolution Clustering Approach for Very
Large Spatial Databases. Proc. of the 24th Intl. Conf. on Very
Large Databases (VLDB), 428-439. New York City, NY.

Smyth, P. 1996. Clustering Using Monte-Carlo Cross-Validation.
In Proc. 2nd Knowledge Discovery and Data Mining (KDD), 126-
133. Portland, OR.

Tibshirani, R. et al. 2001. Cluster Validation by Prediction
Strength, Technical Report, 2001-21, Dept. of Biostatistics,
Stanford Univ.

Tibshirani, R.; Walther, G.; and Hastie, T. 2000. Estimating the
number of clusters in a dataset via the Gap statistic, Technical
Report, 208, Dept. of Biostatistics, Stanford Univ.

Vasko, K. and T. Toivonen. 2002. Estimating the number of
segments in time series data using permutation tests. In Proc.
IEEE Intl. Conf. on Data Mining, 466-473. Maebashi City, Japan.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

