
Motif-oriented Representation of Sequences for a Host-
based Intrusion Detection System

Gaurav Tandon, Debasis Mitra, and Philip K. Chan

Department of Computer Sciences
Florida Institute of Technology

Melbourne, FL 32901, USA
{gtandon, dmitra, pkc}@cs.fit.edu

Abstract. Audit sequences have been used effectively to study process
behaviors and build host-based intrusion detection models. Most sequence-
based techniques make use of a pre-defined window size for scanning the
sequences to model process behavior. In this paper, we propose two methods
for extracting variable length patterns from audit sequences that avoid the
necessity of such a pre-determined parameter. We also present a technique for
abstract representation of the sequences, based on the empirically determined
variable length patterns within the audit sequence, and explore the usage of
such representation for detecting anomalies in sequences. Our methodology for
anomaly detection takes two factors into account: the presence of individual
malicious motifs, and the spatial relationships between the motifs that are
present in a sequence. Thus, our method subsumes most of the past works,
which primarily based on only the first factor. The preliminary experimental
observations appear to be quite encouraging.

1 Introduction

In this work we propose a technique for intrusion detection from audit logs. Audit
logs of a hosting computer store process activities at the system call level, which are
typically analyzed to study the behavior. Various approaches have been proposed to
detect intrusions based upon identifying deviations from normal traffic at a host
computer. Forrest et al. (1996) proposed an approach in which they formed
correlations between audit events within a fixed window size. Lane and Brodley
(1997a, 1997b) suggested techniques for capturing the user profiles. They calculated
the degree of similarity between two different audit sequences by looking into
adjacent events within a window of ten events. The main limitation of such
approaches is that an attack may be spread beyond such a pre-determined window.

In this paper, we attempt to address the problem (of using a fixed window-
size) by extracting variable length patterns (subsequences or motifs) from the audit
sequences. We then transform the audit event-sequence to a pattern-based
representation. This also results in some data reduction and is expected to simplify the
task of the “similarity” finding algorithm. Another motivation behind developing this
representation scheme is not only to detect intrusions but also to model different types
of normal or abnormal behaviors. Moreover, most of the anomaly detection systems

rely on the presence/absence of some events that represent the abnormal behavior. But
an attack may not always be such a novel event. Rather an attack may constitute
normal events placed in a “wrong” order. We conjecture that the relative positions of
some frequently observed subsequences (we call them patterns, sub-strings or motifs
synonymously) within a sequence of system calls model the behavior of a sequence.

The paper is organized as follows. In Section 2, we describe some system
call sequence-based approaches in IDS’s. Section 3 presents our approach for
detecting anomalies, and the steps involved in our experiments. In Section 4, we
summarize the results obtained from the experiments with some real data. We also
analyze the results and discuss certain related issues there. A brief description of the
1999 DARPA evaluation data set is also presented. Section 5 addresses some views
and the future direction of our work.

2 RELATED WORK

Lane and Brodley (1997a, 1997b) examined sequences of user actions and explored
various matching functions to compare the behaviors of sequences with the various
user profiles. Their matching functions measured similarity of adjacent audit events
within a fixed size-window. They empirically found the window-length 10 to be
providing better results. Forrest et al. (1996) also proposed an approach for host based
anomaly detection wherein the traces of normal executions were considered and the
subsequences were recorded by creating a look-ahead window. These subsequences
were then used to create a database. All subsequences in the test cases (using the
same window size and look-ahead) were checked for consistency with the training
database. If the number of mismatches was above a threshold for a sequence it was
deemed anomalous. One of the issues involved in their approach was the use of a
small window that does not correlate well over a long period of time. Similar
sequences with minor variations could still be flagged as anomalous producing a very
high number of false positives. Both these techniques have arbitrarily fixed the
window length that could lead to an easy evasion by an attacker. Our technique
detects all frequently occurring subsequences of variable lengths, thereby removing
the need for such a pre-defined parameter for window length.

Wespi et al. (1999, 2000) proposed a scheme for producing variable length
patterns using Teiresias, a pattern discovery algorithm for biological sequences
(Rigoutsos and Floratos, 1998). This method improved upon the fixed length pattern
usage techniques proposed by Forrest et al. Jiang et al. (2002) extended this idea by
taking into account both the intra-pattern and the inter-pattern anomalies for detecting
intrusions. Though all these techniques also use the notion of variable length
sequences, they rely on encountering novel events to identify anomalous behaviors.
We attempt to find anomalies by using an abstract representation of an audit trail
sequence based on the previously known subsequences (we have extracted them from
the sequences). Michael (2003) also suggested a technique for replacing frequent
subsequences with “meta-symbols” when extracting variable length sequences. But
his approach looks for repeated substrings that are only adjacent to one another. Our
suggested technique is a generalization of his approach.

A simple methodology for comparing amino acid sequences or nucleotide
sequences, called the Matrix Method, was proposed by Gibbs and McIntyre (1970). A

matrix is formed between two sequences, where the elements of one sequence
constitute the rows and that for the other sequence constitute the columns. An entry,
where the row and the column have common elements between them, is marked with
an asterisk (*), as shown in Figure 1. A series of adjacent asterisks parallel to the
diagonal indicate a common subsequence between the two sequences. We have
borrowed this technique for extracting common motifs of system calls. Another
popular method for alignment in bio-informatics is the Basic Local Alignment Search
Tool (BLAST, Altschul et al, 1990). This algorithm starts with small common
subsequence as a seed and builds it gradually until mismatches appear. There is a
whole body of literature in the area of bio-informatics on alignment of bio-sequences.
However, they are not exactly useful for our problem of motif generation for three
reasons. (1) These algorithms are for aligning two (or more) sequences and not for
extracting common sub-sequences. (2) Point mutation through evolution creates gaps
or replaces an element with another and the alignment algorithms need to
accommodate for that. (3) One of the objectives of such alignment algorithms is fast
database-search over some sequence databases and not necessarily for identifying
motifs. The primary goal there is to create a distance metric between bio-sequences so
that one could retrieve matched sequences against a query sequence. There are many
details of the problem structure (e.g., typically a small query against the large target
sequences) that are not necessarily valid in our case. However, this body of literature
provides a good source for our research.

3 APPROACH

Filtering the audit data: In this preprocessing phase we extract the very large finite
length sequences of system calls from the audit trails, related to a particular
application (e.g., ftpd) and related to a particular process.

Translation of system calls: Subsequently we map each system call to a unique
arbitrary symbol. Thus, we form strings of finite lengths from the sequences of system
calls.

3.1 Motif Extraction Phase

We have pursued two different mechanisms for generating the motifs: auto-match and
cross-match. These two techniques are discussed below.

3.1.1 Motif extraction using auto-match

For our initial experiments, we have considered any pattern (substring/motif)
occurring more than once in a string as frequent enough to be a candidate motif. We
start by looking at such sub-strings of length two within each string. Then, we do the
same for substrings of increasing lengths (3, 4, … up to an arbitrary limit of 7).
Variable length motifs are generated by studying the overlapping patterns of the fixed
length motifs in the sequences (explained latter). The longer motifs may be generated
out of the motifs with shorter length. While the frequencies of occurrence of the
motifs within a sequence provide good indication regarding such subsumption, there

are some problems associated with the issue. To illustrate this consider the following
sequence

acggcggfgjcggfgjxyz (I)
One may note that in this sequence we have a motif cgg with frequency 3,

and another motif cggf with frequency 2, which is longer and sometimes subsumes
the shorter motif but not always. We consider them as two different motifs since the
frequency of the shorter motif was more than the longer one. Thus, a motif of shorter
length may be subsumed by a longer motif only if it has the same frequency as that of
the shorter motif. Frequency of a shorter motif in a sequence cannot obviously be less
than that of the longer one.

Another aspect of the above issue is that two or more overlapping motifs
may be merged together to form a motif of greater length. This is how we create
motifs of arbitrarily long sizes. After extracting motifs of length 4 in the example
sequence (I), we have motifs cggf, ggfg and gfgj, all with frequency 2. Since these
patterns are overlapping and have the same frequency, they may be merged together
in order to obtain a longer motif cggfgj with the same frequency 2. However, there are
instances when the smaller motifs may concatenate forming a longer motif at some
places, but may occur at other positions on the sequences independently (i.e., not
overlapping). Even though they have the same frequency, the concatenated longer
motif does not subsume the shorter ones. Consider the sequence
cggfgjabcggfpqrggfgxyzgfgj. Here, the motifs cggf, ggfg and gfgj each have a
frequency 2. But the longer motif cggfgj occurs only once, though we may wrongly
conclude a frequency of 2 by using the above derivation. The remaining instances of
the smaller motifs are at different (non-overlapping) positions within the string. The
solution to this problem is that the occurrence of the longer motif obtained from the
fusion of the smaller motifs should be verified for accuracy. If the frequency of the
longer motif is found to be the same as that of a smaller one, then merging of the
latter ones is all right, i.e., we ignore the smaller motifs. This technique reduces the
effort of going through all possible string lengths and of finding all possible motifs for
those lengths. The procedure of finding motifs of variable lengths by first merging
and then verifying is repeated until no more motifs could be merged.

Let us consider the following two synthetic sequences: acgfgjcgfgjxyzcg (II),
cgfgjpqrxyzpqr (III). Using auto-match for sequence (II), we obtain the motifs cg with
frequency 3, gf with frequency 2, and cgf, cgfg and cgfgj each with frequency 2.
Motifs cgf and cgfg are subsumed by cgfgj, so the final list of motifs for sequence (II)
is cg and cgfgi. For sequence (III), the only motif we get by auto-match is pqr.

After the procedure terminates running over a string the motifs extracted are
(1) of length ≥ 2, (2) a motif is a substring of another motif iff the former exists
independently, and (3) the frequency of each motif is ≥ 2. Motifs extracted from each
string are added to the motif database making sure that there is no redundancy in the
latter, i.e., the same motif appearing in different strings is not recorded twice. In
subsequent phases of modeling sequence-behaviors, the frequency values of the
motifs are no longer needed.

3.1.2 Motif extraction using cross-match

The technique of auto-match is meant for finding frequent patterns in each string.
Some other techniques (Jiang et al, 2002; Michael, 2003; Wespi et al, 1999, 2000)

 SEQUENCE (II)

 a c g f g j c g f g j x y z c g
c *
g *
f *
g *
j *
p
q
r
x *
y *
z *
p
q

SE
Q

U
EN

C
E

(I
II

)

r

Figure 1. Matrix representation of the cross-match strategy between the sequences II &III

also follow the concept of extracting such frequent patterns in each string. However,
we are additionally interested in patterns that did not occur frequently in any
particular string but are present across more than one of the different strings. We
believe that these motifs could also be instrumental in modeling an intrusion detection
system, as they might be able to detect attack patterns across different attack
sequences. We obtained these by performing pairwise cross-match between different
sequences. Using cross-match between the example sequences (II) and (III), we get
the motifs cgfgj and xyz, since these are the maximal common subsequences within
the two given sequences, as shown in Figure 1, which represents the two sequences in
a matrix and depicts the common elements with a * (Gibbs and McIntyre, 1970).

Motifs extracted in cross-match are (1) of length≥ 2, (2) appears at least in a
pair of sequences. Unique motifs extracted in this phase are also added to the
database. Note that the motifs extracted in the cross-match phase could be already
present (and so, ignored) in the motif database generated in the previous phase of
auto-match. Also note that, although a motif could be appearing only once across a
pair of sequences in the cross-match, its frequency count is 2 because of its presence
in both the matched sequences.

A discerning point between our work and most of the previous ones in the
IDS-literature is that we do not necessarily attach any semantics (e.g., anomalous
motif) to any sub-string, although we could do so if that is necessary. We extract
motifs that are just “frequently” appearing and so, may have some necessity within
the sequences, and we use them only for creating an abstract representation of the
sequences (explained later). Since the motif database is created only once the
efficiency of the procedures for extracting them is not a critical issue.

3.2 Sequence Coverage by the Motif Database

A motif database storing all the extracted unique motifs is created from the previous
experiments. Continuing with the example sequences (II) and (III), the motif database
comprises of (obtained by auto-match and cross-match) cg, cgfgj, pqr and xyz.

We also produce data reduction by our proposed representation of sequences
using only the relevant motifs. Hence, it is important to verify the degree of loss of
information. After extracting the motifs, we performed another study of checking the
coverage of the sequences by these motifs. Coverage of a sequence by the motif-
database is parameterized by the percentage of the sequence length that coincides
with some motifs in the database. For instance, the string acgfgjcgfgjxyzcg has 15
characters from the motif database {cg, cgfgj, pqr and xyz} out of total length of 16,
so, has coverage of 93.8%. The technique proposed by Wespi et al (1999, 2000)
determines anomaly when the coverage is below a threshold. But in reality an
uncovered pattern may not necessarily be a representation of an attack. Rather, it may
be a novel audit sequence representing a normal behavior. This increases the rate of
false alarms in their method. We do not use coverage information explicitly; rather we
use it only for the purpose of checking the quality of motif extraction process. It is
good to have a significant amount of coverage of the sequences by the motif database,
which will indicate a low loss of information for the representation.

3.3 Motif-based representation of sequences

At first (matching phase) we extract the motifs’ presence in each sequence. A
standard automaton is being implemented for all the motifs to find the respective ones
within a sequence in this phase. Each sequence is run through the automaton and the
existing motifs along with their starting positions in the sequence are recorded.

Eventually each motif in the database is translated to a unique numeral id. [It
is important to note that in the pre-processing phase the translation was for individual
system calls to the corresponding ids, while the translation here is for the motifs.]
Each string is subsequently represented as a scatter-plot, where a motif’s starting
point is the abscissa and the motif’s id is the ordinate of the corresponding point. This
is how the spatial relationships between different relevant subsequences/motifs within
a sequence are being taken into account. The representations for the two synthetic
example sequences (II) and (III) are shown in Figures 2(a) and 2(b) respectively.

3.4 Testing Phase – Anomaly Detection

Let },...,,{ 21 NtttT = be the training set comprising of N sequences and the
test sequence be denoted by s. Also, let },...,{ 2,1 nmmmM = denote the set of n motifs.

),(ki tmf represents the frequency of motif mi in the sequence tk., whereas)(km td
i

is
the distance between two consecutive occurrences of the same motif mi in the
sequence tk. The re-occurrence interval of a motif mi in the sequence tk , denoted
by)(km tr

i
, is computed by averaging over all such motif distances within the

sequence. This is represented as

()

1),(
)(,2),(),,(&,

−
=≥∈∀
∑

ki

t
km

kmkiiki tmf

td

trtmfsmftsm k

i

i

An anomaly score),,(ki tsmAS is associated with every motif mi common between a
pair of sequences s and tk, which is equal to the difference of the re-occurrence
intervals for that motif in the two sequences. The total anomaly score),(ktsTAS is
obtained by aggregating the anomaly scores over all such motifs.

|)()(|),,(),(
,,

srtrtsmAStsTAS
i

ki

i

ki

m
tsm

km
tsm

kik ∑∑
∈∈

−==

An alarm is raised if the anomaly score for a test sequence with respect to each of the
training sequences exceeds the threshold. That is,

SequenceAnomalousThresholdtsScoreAnomalyTotalNk k ⇒>∈∀),(],,1[

Abstract Representation of
Sequence(II)

0
10
20
30
40
50
60
70

0 5 10 15 20

Distance from beginning of motifs

Motif
 ID

Abstract Representation of

Sequence(III)

0

10

20

30

40

50

60

70

0 5 10 15 20
Distance from beginning of motifs

Motif
ID

Figure 2(a) Figure 2(b)

Figures 2(a) and 2(b). Cloud representations of the sequences acgfgjcgfgjxyzcg and
cgfgjpqrxyzpqr respectively

4 RESULTS AND ANALYSIS

The data set that we have used for the extraction of motifs is developed by Lippman
et al. (2000) for the 1999 DARPA Intrusion Detection Evaluation. The test bed
involved a simulation of an air force base that had some machines under frequent
attack. These machines comprised of Linux, SunOS, Sun Solaris and Windows NT.
Various IDS’s are being evaluated using this test bed, which comprised of three
weeks of training data obtained from the network sniffers, audit logs, nightly file
system dumps and BSM logs from Solaris machine that trace the system calls. We
selected the Solaris host and used the BSM audit log (Osser and Noordergraaf, 2001)
to form the sequences for the processes corresponding to the ftpd application. For a

given process id, all the data from the exec system call to the exit system call
comprised the data for that particular process. The fork system call was handled in a
special manner. All the system calls for a child process are for the same application as
the parent process until it encounters its own exec system call. Thus, we have used
variable length sequences corresponding to different processes running over the ftp
server. We have selected a total of 91 sequences for the ftpd application across weeks
3, 4 and 5 of the BSM audit log. In our experiments, the sequence lengths were
mostly in a range of 200-400, with an average sequence length of 290.11 characters.

Table 1. Coverage’s of the sequences by motifs
BSM Data

Used
Range of Coverage

(Auto-Match)
Range of Coverage

(Cross-Match)
 Lowest Highest Lowest Highest

Week 3 82 % 94 % 91 % 99 %
Week 4 65 % 94 % 90 % 99 %
Week 5 65 % 92 % 96 % 99 %

The first set of experiments involved motif extraction using auto-match and
cross-match methods, as explained before. We generated 66 unique motifs in the
auto-match and a total of 101 unique motifs after the cross-match, for our motif
database. The next set of experiments computed the percentage coverage of the audit
sequences by the motifs to check the quality of the motif database for the studied
sequences. Table 1 presents the lowest and the highest coverage over the sequences. It shows
better coverage for cross-match since it considers motifs across sequences ignoring their
frequencies. A good coverage of the sequence by the motifs implies here that there will
be a low loss of information in our scatter-plot representation.

After obtaining the motifs, we created the abstract representations of the
sequences as described in Section 3.3. They are the scatter-plots for the sequences in
the ftpd application of the 1999 DARPA evaluation data set. Our next set of
experiments aimed at generating alarms based upon the anomalies observed, as
discussed in Section 3.4. Week 3 comprised of the training sequences and weeks 4
and 5 were used as the test data as they contained unlabeled attacks. The evaluation
criterion is the number of true positives and false positives obtained by using our
methodology. Utilizing a simple metric for anomaly score (average separation of each
motif’s multiple occurrences in a sequence) as explained in Section 3.4 we are able to
detect 6 attacks with 3 false alarms. We were able to successfully detect 1
warezmaster, 2 warezclient, 2 ftp-write and 5 instances of a guessftp attack. Whereas
warezmaster and warezclient attacks are denial-of-service attacks, ftp-write and
guessftp belong to the remote-to-local attack category. More sophisticated metric will
be deployed in future for automated clustering of the sequences.

Figure 3 depicts curves for two test sequences – a normal test sequence and
an attack test sequence respectively. Each point on a curve corresponds to the
anomaly score (Y-axis) of the corresponding test sequence with respect to the training
sequences (each with a unique id as on X-axis). The results indicate that the execution
of a normal process results in less deviation of relative motif positions and hence a
lower anomaly score. A malicious sequence, on the other hand, consists of execution

of code which alters the spatial relationship between the motifs, resulting in anomaly
scores (with respect to all training sequences) exceeding the threshold. We chose a
threshold of 100 for our experiments. We also varied the threshold and raised it till
300 but there was no change in the results.

We would also like to mention that an attacker might devise some clever
techniques to evade typical sequence-based anomaly detection systems. Wagner and
Soto (2002) presented one such idea wherein they were successful in modeling a

Comparison of Scores for Normal and Attack

Sequences

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
Unique ID Corresponding to Training Set Sequences

A
no

m
al

y
Sc

or
e

An Attack Sequence A Normal Sequence Threshold
Figure 3. Anomaly score curves for a normal and an attack sequence (from the ftpd application
in the BSM audit log of the 1999 DARPA evaluation data set). Each point on a curve represents
the anomaly score of the sequence with respect to some sequence (denoted by unique sequence
ids on the X-axis) from the training set

malicious sequence by adding null operators to make it consistent with the sequence
of system calls. The sequence based techniques dealing with short sub-string patterns
can be bypassed by spreading the attack over longer duration (or longer sub-
sequences). Our technique uses variable length motifs and also takes the relative
positions of the motifs for anomaly detection, and hence will be robust against such
evasion. In essence, our system models sequences at two different levels – at the
individual motif level and also at the level of spatial relationship between motifs
within the audit sequence. The latter level adds to the security of the system and
would make it even harder for the attacker to evade the system, since he has to now
not only use the “normal” audit event patterns, but also to place those event-
sequences/motifs within the respective sequence at proper relative positions.

5 CONCLUSIONS AND FUTURE WORK

We have described two different lines of approach for extracting motifs from finite
length strings. We were successful in generating frequently occurring motifs using the
first technique (auto-match) and motifs that were common (but not necessarily
frequent) across different sequences using the cross-match technique. Motifs obtained
from the cross-match technique displayed better coverage across all the sequences.
These pattern-extracting techniques can also be used for data reduction without much

loss of information, since we now deal with only the subsequences (motifs) and not
the whole audit trail. The structure of a sequence is accurately captured by the motifs
and a good coverage across the sequence implies low inherent loss of information.

We have also presented an abstract motif-based representation of sequences
that preserves the relative positions between the motifs in a sequence. This abstract
representation enhances the efficiency and effectiveness of the resulting intrusion
detection system. Our results suggest that not only are the novel system call
sequences important, but also the relative positions of the motifs/patterns are
important in modeling the activities over a host-system. Of course, if an attack occurs
with an event or a motif not existing in our motif database we will not able to detect
it. However, our model can be extended to incorporate such cases.

We intend to use an unsupervised learning technique in future, which will
not only be able to distinguish the activities as normal or abnormal but also will be
able to classify a richer repertoire of system behaviors. Such knowledge of a
particular attacker’s behavior may also help in tracking him (or them) down.

Acknowledgement: National Science Foundation has partly supported (IIS-0296042)
this work.

REFERENCES

1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic Local

Alignment Search Tool. Jnl. Of Molecular Biology, vol. 215, pp. 403-410.
2. Forrest S., Hofmeyr S., Somayaji A., and Longstaff T. (1996). A Sense of Self for UNIX

Processes. In Proceedings of the1996 IEEE Symposium on Research in Security and Privacy,
pages 120-128. IEEE Computer Society, IEEE Computer Society Press.

3. Gibbs A.J. and McIntyre G.A. (1970). The diagram, a method for comparing sequences. Its
use with amino acid and nucleotide sequences. Eur. J. Biochem. 16:1-11.

4. Jiang N., Hua K., and Sheu S. (2002). Considering Both Intra-pattern and Inter-pattern
Anomalies in Intrusion Detection. In Proceedings ICDM.

5. Lane, T., and Brodley, C.E. (1997a). Detecting the abnormal: Machine Learning in
Computer Security, (TR-ECE 97-1), West Lafayette, IN: Purdue University.

6. Lane, T., and Brodley, C.E. (1997b). Sequence Matching and Learning in Anomaly
Detection for Computer Security. In Proceedings of AI Approaches to Fraud Detection and
Risk Management.

7. Lippmann R., Haines J., Fried D., Korba J., and Das K. (2000). The 1999 DARPA Off-Line
Intrusion Detection Evaluation. Computer Networks (34) 579-595.

8. Michael, C.C. (2003). Finding the vocabulary of program behavior data for anomaly
detection. Proc. DISCEX’03.

9. Osser W., and Noordergraaf A. (February 2001). Auditing in the SolarisTM 8 Operating
Environment. Sun BlueprintsTM Online.

10. Rigoutsos, Isidore and Floratos, Aris. (1998). Combinatorial pattern discovery in biological
sequences. Bioinformatics, 14(1):55–67.

11. Wagner D., Soto P. (2002). Mimicry Attacks on Host-Based Intrusion Detection Systems.
ACM Conference on Computer and Communications Security.

12. Wespi A., Dacier M., and Debar H. (1999). An Intrusion-Detection System Based on the
Teiresias Pattern-Discovery Algorithm. Proc. EICAR.

13. Wespi A., Dacier M., and Debar H. (2000). Intrusion detection using variable-length audit
trail patterns. In Proceedings of RAID 2000, Workshop on Recent Advances in Intrusion
Detection.

