
Motif-oriented Representation of Sequences for a Host-
based Intrusion Detection System 

Gaurav Tandon, Debasis Mitra, and Philip K. Chan 

Department of Computer Sciences 
Florida Institute of Technology 

Melbourne, FL 32901, USA 
{gtandon, dmitra, pkc}@cs.fit.edu 

Abstract. Audit sequences have been used effectively to study process 
behaviors and build host-based intrusion detection models. Most sequence-
based techniques make use of a pre-defined window size for scanning the 
sequences to model process behavior. In this paper, we propose two methods 
for extracting variable length patterns from audit sequences that avoid the 
necessity of such a pre-determined parameter. We also present a technique for 
abstract representation of the sequences, based on the empirically determined 
variable length patterns within the audit sequence, and explore the usage of 
such representation for detecting anomalies in sequences. Our methodology for 
anomaly detection takes two factors into account: the presence of individual 
malicious motifs, and the spatial relationships between the motifs that are 
present in a sequence. Thus, our method subsumes most of the past works, 
which primarily based on only the first factor. The preliminary experimental 
observations appear to be quite encouraging. 

1   Introduction 

In this work we propose a technique for intrusion detection from audit logs. Audit 
logs of a hosting computer store process activities at the system call level, which are 
typically analyzed to study the behavior. Various approaches have been proposed to 
detect intrusions based upon identifying deviations from normal traffic at a host 
computer. Forrest et al. (1996) proposed an approach in which they formed 
correlations between audit events within a fixed window size. Lane and Brodley 
(1997a, 1997b) suggested techniques for capturing the user profiles.  They calculated 
the degree of similarity between two different audit sequences by looking into 
adjacent events within a window of ten events. The main limitation of such 
approaches is that an attack may be spread beyond such a pre-determined window.  

In this paper, we attempt to address the problem (of using a fixed window-
size) by extracting variable length patterns (subsequences or motifs) from the audit 
sequences. We then transform the audit event-sequence to a pattern-based 
representation. This also results in some data reduction and is expected to simplify the 
task of the “similarity” finding algorithm. Another motivation behind developing this 
representation scheme is not only to detect intrusions but also to model different types 
of normal or abnormal behaviors. Moreover, most of the anomaly detection systems 



rely on the presence/absence of some events that represent the abnormal behavior. But 
an attack may not always be such a novel event. Rather an attack may constitute 
normal events placed in a “wrong” order. We conjecture that the relative positions of 
some frequently observed subsequences (we call them patterns, sub-strings or motifs 
synonymously) within a sequence of system calls model the behavior of a sequence. 

The paper is organized as follows. In Section 2, we describe some system 
call sequence-based approaches in IDS’s. Section 3 presents our approach for 
detecting anomalies, and the steps involved in our experiments. In Section 4, we 
summarize the results obtained from the experiments with some real data. We also 
analyze the results and discuss certain related issues there. A brief description of the 
1999 DARPA evaluation data set is also presented. Section 5 addresses some views 
and the future direction of our work. 

2   RELATED WORK 
 
Lane and Brodley (1997a, 1997b) examined sequences of user actions and explored 
various matching functions to compare the behaviors of sequences with the various 
user profiles. Their matching functions measured similarity of adjacent audit events 
within a fixed size-window. They empirically found the window-length 10 to be 
providing better results. Forrest et al. (1996) also proposed an approach for host based 
anomaly detection wherein the traces of normal executions were considered and the 
subsequences were recorded by creating a look-ahead window. These subsequences 
were then used to create a database.  All subsequences in the test cases (using the 
same window size and look-ahead) were checked for consistency with the training 
database.  If the number of mismatches was above a threshold for a sequence it was 
deemed anomalous. One of the issues involved in their approach was the use of a 
small window that does not correlate well over a long period of time. Similar 
sequences with minor variations could still be flagged as anomalous producing a very 
high number of false positives. Both these techniques have arbitrarily fixed the 
window length that could lead to an easy evasion by an attacker. Our technique 
detects all frequently occurring subsequences of variable lengths, thereby removing 
the need for such a pre-defined parameter for window length. 

Wespi et al. (1999, 2000) proposed a scheme for producing variable length 
patterns using Teiresias, a pattern discovery algorithm for biological sequences 
(Rigoutsos and Floratos, 1998). This method improved upon the fixed length pattern 
usage techniques proposed by Forrest et al. Jiang et al. (2002) extended this idea by 
taking into account both the intra-pattern and the inter-pattern anomalies for detecting 
intrusions. Though all these techniques also use the notion of variable length 
sequences, they rely on encountering novel events to identify anomalous behaviors. 
We attempt to find anomalies by using an abstract representation of an audit trail 
sequence based on the previously known subsequences (we have extracted them from 
the sequences). Michael (2003) also suggested a technique for replacing frequent 
subsequences with “meta-symbols” when extracting variable length sequences.  But 
his approach looks for repeated substrings that are only adjacent to one another. Our 
suggested technique is a generalization of his approach. 

A simple methodology for comparing amino acid sequences or nucleotide 
sequences, called the Matrix Method, was proposed by Gibbs and McIntyre (1970). A 



matrix is formed between two sequences, where the elements of one sequence 
constitute the rows and that for the other sequence constitute the columns. An entry, 
where the row and the column have common elements between them, is marked with 
an asterisk (*), as shown in Figure 1. A series of adjacent asterisks parallel to the 
diagonal indicate a common subsequence between the two sequences. We have 
borrowed this technique for extracting common motifs of system calls. Another 
popular method for alignment in bio-informatics is the Basic Local Alignment Search 
Tool (BLAST, Altschul et al, 1990). This algorithm starts with small common 
subsequence as a seed and builds it gradually until mismatches appear. There is a 
whole body of literature in the area of bio-informatics on alignment of bio-sequences. 
However, they are not exactly useful for our problem of motif generation for three 
reasons. (1) These algorithms are for aligning two (or more) sequences and not for 
extracting common sub-sequences. (2) Point mutation through evolution creates gaps 
or replaces an element with another and the alignment algorithms need to 
accommodate for that. (3) One of the objectives of such alignment algorithms is fast 
database-search over some sequence databases and not necessarily for identifying 
motifs. The primary goal there is to create a distance metric between bio-sequences so 
that one could retrieve matched sequences against a query sequence. There are many 
details of the problem structure (e.g., typically a small query against the large target 
sequences) that are not necessarily valid in our case. However, this body of literature 
provides a good source for our research. 

3   APPROACH 
 
Filtering the audit data: In this preprocessing phase we extract the very large finite 
length sequences of system calls from the audit trails, related to a particular 
application (e.g., ftpd) and related to a particular process.  
 
Translation of system calls: Subsequently we map each system call to a unique 
arbitrary symbol. Thus, we form strings of finite lengths from the sequences of system 
calls. 
 
3.1 Motif Extraction Phase 
 
We have pursued two different mechanisms for generating the motifs: auto-match and 
cross-match. These two techniques are discussed below. 
 
3.1.1 Motif extraction using auto-match 
 
For our initial experiments, we have considered any pattern (substring/motif) 
occurring more than once in a string as frequent enough to be a candidate motif.  We 
start by looking at such sub-strings of length two within each string. Then, we do the 
same for substrings of increasing lengths (3, 4, … up to an arbitrary limit of 7). 
Variable length motifs are generated by studying the overlapping patterns of the fixed 
length motifs in the sequences (explained latter). The longer motifs may be generated 
out of the motifs with shorter length. While the frequencies of occurrence of the 
motifs within a sequence provide good indication regarding such subsumption, there 



are some problems associated with the issue. To illustrate this consider the following 
sequence 

acggcggfgjcggfgjxyz  (I) 
One may note that in this sequence we have a motif cgg with frequency 3, 

and another motif cggf with frequency 2, which is longer and sometimes subsumes 
the shorter motif but not always. We consider them as two different motifs since the 
frequency of the shorter motif was more than the longer one. Thus, a motif of shorter 
length may be subsumed by a longer motif only if it has the same frequency as that of 
the shorter motif. Frequency of a shorter motif in a sequence cannot obviously be less 
than that of the longer one. 

Another aspect of the above issue is that two or more overlapping motifs 
may be merged together to form a motif of greater length. This is how we create 
motifs of arbitrarily long sizes. After extracting motifs of length 4 in the example 
sequence (I), we have motifs cggf, ggfg and gfgj, all with frequency 2. Since these 
patterns are overlapping and have the same frequency, they may be merged together 
in order to obtain a longer motif cggfgj with the same frequency 2. However, there are 
instances when the smaller motifs may concatenate forming a longer motif at some 
places, but may occur at other positions on the sequences independently (i.e., not 
overlapping). Even though they have the same frequency, the concatenated longer 
motif does not subsume the shorter ones. Consider the sequence 
cggfgjabcggfpqrggfgxyzgfgj. Here, the motifs cggf, ggfg and gfgj each have a 
frequency 2. But the longer motif cggfgj occurs only once, though we may wrongly 
conclude a frequency of 2 by using the above derivation. The remaining instances of 
the smaller motifs are at different (non-overlapping) positions within the string. The 
solution to this problem is that the occurrence of the longer motif obtained from the 
fusion of the smaller motifs should be verified for accuracy. If the frequency of the 
longer motif is found to be the same as that of a smaller one, then merging of the 
latter ones is all right, i.e., we ignore the smaller motifs. This technique reduces the 
effort of going through all possible string lengths and of finding all possible motifs for 
those lengths. The procedure of finding motifs of variable lengths by first merging 
and then verifying is repeated until no more motifs could be merged.  

Let us consider the following two synthetic sequences: acgfgjcgfgjxyzcg (II), 
cgfgjpqrxyzpqr (III). Using auto-match for sequence (II), we obtain the motifs cg with 
frequency 3, gf with frequency 2, and cgf, cgfg and cgfgj each with frequency 2. 
Motifs cgf and cgfg are subsumed by cgfgj, so the final list of motifs for sequence (II) 
is cg and cgfgi. For sequence (III), the only motif we get by auto-match is pqr. 

After the procedure terminates running over a string the motifs extracted are 
(1) of length ≥ 2, (2) a motif is a substring of another motif iff the former exists 
independently, and (3) the frequency of each motif is ≥ 2. Motifs extracted from each 
string are added to the motif database making sure that there is no redundancy in the 
latter, i.e., the same motif appearing in different strings is not recorded twice. In 
subsequent phases of modeling sequence-behaviors, the frequency values of the 
motifs are no longer needed.  
 
 
 
 



3.1.2 Motif extraction using cross-match 
 
The technique of auto-match is meant for finding frequent patterns in each string. 
Some other techniques (Jiang et al, 2002; Michael, 2003; Wespi et al, 1999, 2000)  
 

 SEQUENCE (II) 
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Figure 1. Matrix representation of the cross-match strategy between the sequences II &III  
 
 
also follow the concept of extracting such frequent patterns in each string. However, 
we are additionally interested in patterns that did not occur frequently in any 
particular string but are present across more than one of the different strings. We 
believe that these motifs could also be instrumental in modeling an intrusion detection 
system, as they might be able to detect attack patterns across different attack 
sequences. We obtained these by performing pairwise cross-match between different 
sequences. Using cross-match between the example sequences (II) and (III), we get 
the motifs cgfgj and xyz, since these are the maximal common subsequences within 
the two given sequences, as shown in Figure 1, which represents the two sequences in 
a matrix and depicts the common elements with a * (Gibbs and McIntyre, 1970). 

Motifs extracted in cross-match are (1) of length≥ 2, (2) appears at least in a 
pair of sequences. Unique motifs extracted in this phase are also added to the 
database. Note that the motifs extracted in the cross-match phase could be already 
present (and so, ignored) in the motif database generated in the previous phase of 
auto-match. Also note that, although a motif could be appearing only once across a 
pair of sequences in the cross-match, its frequency count is 2 because of its presence 
in both the matched sequences.  

A discerning point between our work and most of the previous ones in the 
IDS-literature is that we do not necessarily attach any semantics (e.g., anomalous 
motif) to any sub-string, although we could do so if that is necessary. We extract 
motifs that are just “frequently” appearing and so, may have some necessity within 
the sequences, and we use them only for creating an abstract representation of the 
sequences (explained later). Since the motif database is created only once the 
efficiency of the procedures for extracting them is not a critical issue. 

 



3.2 Sequence Coverage by the Motif Database  
 
A motif database storing all the extracted unique motifs is created from the previous 
experiments. Continuing with the example sequences (II) and (III), the motif database 
comprises of (obtained by auto-match and cross-match) cg, cgfgj, pqr and xyz. 

We also produce data reduction by our proposed representation of sequences 
using only the relevant motifs. Hence, it is important to verify the degree of loss of 
information. After extracting the motifs, we performed another study of checking the 
coverage of the sequences by these motifs. Coverage of a sequence by the motif-
database is parameterized by the percentage of the sequence length that coincides 
with some motifs in the database. For instance, the string acgfgjcgfgjxyzcg has 15 
characters from the motif database {cg, cgfgj, pqr and xyz} out of total length of 16, 
so, has coverage of 93.8%. The technique proposed by Wespi et al (1999, 2000) 
determines anomaly when the coverage is below a threshold. But in reality an 
uncovered pattern may not necessarily be a representation of an attack. Rather, it may 
be a novel audit sequence representing a normal behavior. This increases the rate of 
false alarms in their method. We do not use coverage information explicitly; rather we 
use it only for the purpose of checking the quality of motif extraction process. It is 
good to have a significant amount of coverage of the sequences by the motif database, 
which will indicate a low loss of information for the representation. 
 
3.3 Motif-based representation of sequences 
 
At first (matching phase) we extract the motifs’ presence in each sequence. A 
standard automaton is being implemented for all the motifs to find the respective ones 
within a sequence in this phase. Each sequence is run through the automaton and the 
existing motifs along with their starting positions in the sequence are recorded.  

Eventually each motif in the database is translated to a unique numeral id. [It 
is important to note that in the pre-processing phase the translation was for individual 
system calls to the corresponding ids, while the translation here is for the motifs.]  
Each string is subsequently represented as a scatter-plot, where a motif’s starting 
point is the abscissa and the motif’s id is the ordinate of the corresponding point. This 
is how the spatial relationships between different relevant subsequences/motifs within 
a sequence are being taken into account. The representations for the two synthetic 
example sequences (II) and (III) are shown in Figures 2(a) and 2(b) respectively. 
 
3.4 Testing Phase – Anomaly Detection 
 

Let },...,,{ 21 NtttT =  be the training set comprising of N sequences and the 
test sequence be denoted by s. Also, let },...,{ 2,1 nmmmM = denote the set of n motifs. 

),( ki tmf represents the frequency of motif mi in the sequence tk., whereas )( km td
i

is 
the distance between two consecutive occurrences of the same motif mi in the 
sequence tk. The re-occurrence interval of a motif mi in the sequence tk , denoted 
by )( km tr

i
, is computed by averaging over all such motif distances within the 

sequence. This is represented as 
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An anomaly score ),,( ki tsmAS  is associated with every motif mi common between a 
pair of sequences s and tk, which is equal to the difference of the re-occurrence 
intervals for that motif in the two sequences. The total anomaly score ),( ktsTAS is 
obtained by aggregating the anomaly scores over all such motifs. 
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An alarm is raised if the anomaly score for a test sequence with respect to each of the 
training sequences exceeds the threshold. That is, 

SequenceAnomalousThresholdtsScoreAnomalyTotalNk k ⇒>∈∀ ),(],,1[  
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Figures 2(a) and 2(b). Cloud representations of the sequences acgfgjcgfgjxyzcg and 
cgfgjpqrxyzpqr respectively 
 

4   RESULTS AND ANALYSIS 
 
The data set that we have used for the extraction of motifs is developed by Lippman 
et al. (2000) for the 1999 DARPA Intrusion Detection Evaluation. The test bed 
involved a simulation of an air force base that had some machines under frequent 
attack. These machines comprised of Linux, SunOS, Sun Solaris and Windows NT. 
Various IDS’s are being evaluated using this test bed, which comprised of three 
weeks of training data obtained from the network sniffers, audit logs, nightly file 
system dumps and BSM logs from Solaris machine that trace the system calls. We 
selected the Solaris host and used the BSM audit log (Osser and Noordergraaf, 2001) 
to form the sequences for the processes corresponding to the ftpd application. For a 



given process id, all the data from the exec system call to the exit system call 
comprised the data for that particular process. The fork system call was handled in a 
special manner. All the system calls for a child process are for the same application as 
the parent process until it encounters its own exec system call. Thus, we have used 
variable length sequences corresponding to different processes running over the ftp 
server. We have selected a total of 91 sequences for the ftpd application across weeks 
3, 4 and 5 of the BSM audit log. In our experiments, the sequence lengths were 
mostly in a range of 200-400, with an average sequence length of 290.11 characters. 
 

Table 1. Coverage’s of the sequences by motifs 
BSM Data 

Used 
Range of Coverage 

(Auto-Match) 
Range of Coverage 

(Cross-Match) 
 Lowest Highest Lowest Highest 

Week 3 82 % 94 % 91 % 99 % 
Week 4 65 % 94 % 90 % 99 % 
Week 5 65 % 92 % 96 % 99 % 

 
 

The first set of experiments involved motif extraction using auto-match and 
cross-match methods, as explained before. We generated 66 unique motifs in the 
auto-match and a total of 101 unique motifs after the cross-match, for our motif 
database. The next set of experiments computed the percentage coverage of the audit 
sequences by the motifs to check the quality of the motif database for the studied 
sequences. Table 1 presents the lowest and the highest coverage over the sequences. It shows 
better coverage for cross-match since it considers motifs across sequences ignoring their 
frequencies. A good coverage of the sequence by the motifs implies here that there will 
be a low loss of information in our scatter-plot representation. 

After obtaining the motifs, we created the abstract representations of the 
sequences as described in Section 3.3. They are the scatter-plots for the sequences in 
the ftpd application of the 1999 DARPA evaluation data set. Our next set of 
experiments aimed at generating alarms based upon the anomalies observed, as 
discussed in Section 3.4. Week 3 comprised of the training sequences and weeks 4 
and 5 were used as the test data as they contained unlabeled attacks. The evaluation 
criterion is the number of true positives and false positives obtained by using our 
methodology. Utilizing a simple metric for anomaly score (average separation of each 
motif’s multiple occurrences in a sequence) as explained in Section 3.4 we are able to 
detect 6 attacks with 3 false alarms. We were able to successfully detect 1 
warezmaster, 2 warezclient, 2 ftp-write and 5 instances of a guessftp attack. Whereas 
warezmaster and warezclient attacks are denial-of-service attacks, ftp-write and 
guessftp belong to the remote-to-local attack category. More sophisticated metric will 
be deployed in future for automated clustering of the sequences. 

Figure 3 depicts curves for two test sequences – a normal test sequence and 
an attack test sequence respectively. Each point on a curve corresponds to the 
anomaly score (Y-axis) of the corresponding test sequence with respect to the training 
sequences (each with a unique id as on X-axis). The results indicate that the execution 
of a normal process results in less deviation of relative motif positions and hence a 
lower anomaly score. A malicious sequence, on the other hand, consists of execution 



of code which alters the spatial relationship between the motifs, resulting in anomaly 
scores (with respect to all training sequences) exceeding the threshold. We chose a 
threshold of 100 for our experiments. We also varied the threshold and raised it till 
300 but there was no change in the results. 

We would also like to mention that an attacker might devise some clever 
techniques to evade typical sequence-based anomaly detection systems. Wagner and 
Soto (2002) presented one such idea wherein they were successful in modeling a  
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malicious sequence by adding null operators to make it consistent with the sequence 
of system calls. The sequence based techniques dealing with short sub-string patterns 
can be bypassed by spreading the attack over longer duration (or longer sub-
sequences). Our technique uses variable length motifs and also takes the relative 
positions of the motifs for anomaly detection, and hence will be robust against such 
evasion. In essence, our system models sequences at two different levels – at the 
individual motif level and also at the level of spatial relationship between motifs 
within the audit sequence. The latter level adds to the security of the system and 
would make it even harder for the attacker to evade the system, since he has to now 
not only use the “normal” audit event patterns, but also to place those event-
sequences/motifs within the respective sequence at proper relative positions. 

5 CONCLUSIONS AND FUTURE WORK 
 
We have described two different lines of approach for extracting motifs from finite 
length strings. We were successful in generating frequently occurring motifs using the 
first technique (auto-match) and motifs that were common (but not necessarily 
frequent) across different sequences using the cross-match technique. Motifs obtained 
from the cross-match technique displayed better coverage across all the sequences. 
These pattern-extracting techniques can also be used for data reduction without much 



loss of information, since we now deal with only the subsequences (motifs) and not 
the whole audit trail. The structure of a sequence is accurately captured by the motifs 
and a good coverage across the sequence implies low inherent loss of information. 

We have also presented an abstract motif-based representation of sequences 
that preserves the relative positions between the motifs in a sequence. This abstract 
representation enhances the efficiency and effectiveness of the resulting intrusion 
detection system. Our results suggest that not only are the novel system call 
sequences important, but also the relative positions of the motifs/patterns are 
important in modeling the activities over a host-system. Of course, if an attack occurs 
with an event or a motif not existing in our motif database we will not able to detect 
it. However, our model can be extended to incorporate such cases. 

We intend to use an unsupervised learning technique in future, which will 
not only be able to distinguish the activities as normal or abnormal but also will be 
able to classify a richer repertoire of system behaviors. Such knowledge of a 
particular attacker’s behavior may also help in tracking him (or them) down.  
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