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1 Introduction

Computer security research has two major aspects: intrusion prevention and
intrusion detection. While the former deals with preventing the occurrence of
an attack (using authentication and encryption techniques), the latter focuses
on the detection of successful breach of security. Together, these complemen-
tary approaches assist in creating a more secure system.

Intrusion detection systems (IDSs) are generally categorized as misuse-
based and anomaly-based. In misuse (signature) detection, systems are mod-
eled upon known attack patterns and the test data is checked for occurrence of
these patterns. Examples of signature-based systems include virus detectors
that use known virus signatures and alert the user when the system has been
infected by the same virus. Such systems have a high degree of accuracy but
suffer from the inability to detect novel attacks. Anomaly based intrusion de-
tection [1] models normal behavior of applications and significant deviations
from this behavior are considered anomalous. Anomaly detection systems can
detect novel attacks but also generate false alarms since not all anomalies are
hostile. Intrusion detection systems can also be categorized as network-based,
which monitors network traffic, and host-based, where operating system events
are monitored.

There are two focal issues that need to be addressed for a host-based
anomaly detection system: cleaning the training data, and devising an en-
riched representation for the model(s). Both these issues try to improve the
performance of an anomaly detection system in their own ways. First, all the
proposed techniques that monitor system call sequences rely on clean training
data to build their model. Current audit sequence is then examined for anoma-
lous behavior using some supervised learning algorithm. An attack embedded
inside the training data would result in an erroneous model, since all future
occurrences of the attack would be treated as normal. Moreover, obtaining



2 Gaurav Tandon, Philip Chan and Debasis Mitra

clean data by hand could be tedious. Purging all malicious content from audit
data using an automated technique is hence imperative.

Second, normal behavior has to be modeled using features extracted
from the training set. It is important to remember that the concept of nor-
malcy/abnormality in anomaly detection is vague as compared to a virus de-
tector which has an exact signature of the virus it is trying to detect, making
anomaly detection a hard problem. Traditional host-based anomaly detection
systems focus on system call sequences to build models of normal application
behavior. These techniques are based upon the observation that a malicious
activity results in an abnormal (novel) sequence of system calls. Recent re-
search [2, 3] has shown that sequence-based systems can be compromised by
conducting mimicry attacks. Such attacks are possible by astute execution
of the exploit by inserting dummy system calls with invalid arguments such
that they form a legitimate sequence of events, thereby evading the IDS. A
drawback of sequence-based approaches lies in their non-utilization of other
key attributes, namely the system call arguments. The efficacy of such sys-
tems might be improved upon if a richer set of attributes (return value, error
status and other arguments) associated with a system call is used to create
the model.

In this chapter, we address the issues of data cleaning and anomaly detec-
tion, both of which essentially try to detect outliers, but differ in character:

1. Offline vs. online techniques. We present two enriched representations: (i)
motifs and their locations are used for cleaning the data (an offline proce-
dure) whereas (ii) system call arguments are modeled for online anomaly
detection.

2. Supervised algorithms assume no attacks in the training data. Unsuper-
vised algorithms, on the other hand, relax this constraint and could have
small amounts of unlabeled attacks. We present two modified detection
algorithms: Local Outlier Factor or LOF (unsupervised) and LEarning
Rules for Anomaly Detection or LERAD (supervised).

3. Low false alarm rates are critical in anomaly detection and desirable in
data cleaning. False alarms are generated in anomaly detection systems
as not all anomalies are representative of attacks. For an online detec-
tion system, a human expert has to deal with the false alarms and this
could be overwhelming if in excess. But for data cleaning, we would like
to retain generic application behavior to provide a clean data set. Render-
ing the data free of attacks is highly critical and some other non-attack
abnormalities may also get removed in the process. Purging such anoma-
lies (program faults, system crashes among others) is hence justifiable, if
still within reasonable limits. Thus the evaluation criteria vary in the two
cases.

Empirical results indicate that our technique is effective in purging anoma-
lies in unlabeled data. Our representation can be effectively used to detect ma-
licious sequences from the data using unsupervised learning techniques. The
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filtered training data leads to better application modeling and an enhanced
performance (in terms of the number of detections) for online anomaly de-
tection systems. Our system does not depend on the user for any parameter
values, as is the norm for most of the anomaly detection systems. Our se-
quence and argument based representations also result in better application
modeling and help detect more attacks than the conventional sequence-based
techniques.

This chapter is organized as follows. Sect. 2 reviews some prevalent
anomaly detection systems. In Sect. 3 we present the concept of motifs (in
the context of system call sequences) and motif-based representations for data
cleaning. Sect. 4 presents the argument-based representations and supervised
learning algorithm for anomaly detection. An experimental evaluation is pre-
sented in Sect. 5 and we conclude in Sect. 6.

2 Related Work

Traditional host based anomaly detection techniques create models of normal
behavioral patterns and then look for deviations in test data. Such techniques
perform supervised learning. Forrest et al. [4] memorized normal system call
sequences using a look-ahead pairs (tide). Lane and Brodley [5, 6] examined
UNIX command sequences to capture normal user profiles using a fixed size
window. Later work (stide and t-stide) by Warrender et al. [7] extended se-
quence modeling by using n-grams and their frequency. Wespi et al. [8, 9]
proposed a scheme with variable length patterns using Teiresias [10], a pat-
tern discovery algorithm in biological sequences. Ghosh and Schwartzbard
[11] used artificial neural networks, Sekar et al. [12] proposed a finite state
automaton, Jiang et al. [13] also proposed variable length patterns, Liao and
Vemuri [14] used text categorization techniques, Jones and Li [15] learnt tem-
poral signatures, Coull et al. [16] suggested sequence alignment, Mazeroff et
al. [17] proposed probabilistic suffix trees, and Lee at al. [18] used a machine
learning algorithm called RIPPER [19] to learn normal user behavior. All
these techniques require clean or labeled training data to build models of nor-
mal behavior, which is hard to obtain. The data sets used are synthetic and
generated in constrained environments. They are not representative of actual
application behavior, which contains many irregularities. The need for a sys-
tem to filter audit data and produce a clean data set motivates our current
research.

Unsupervised learning is an extensively researched topic in network anomaly
detection [20, 21, 22, 23]. Network traffic comprises continuous and discrete
attributes which can be considered along different dimensions of a feature
space. Distance and density based algorithms can then be applied on this
feature space to detect outliers. Due to the lack of a similar feature space,
not much work has been done using unsupervised learning techniques in host
based systems.
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From the modeling/detection point of view, all the above mentioned ap-
proaches for host-based systems use system call sequences. Parameter effec-
tiveness for window based techniques has been studied in [3]. Given some
knowledge about the system being used, attackers can devise some methodolo-
gies to evade such intrusion detection systems. Wagner and Soto [2] modeled
a malicious sequence by adding no-ops (system calls having no effect) to com-
promise an IDS based upon the sequence of system calls. Such attacks would
be detected if the system call arguments are also taken into consideration,
and this provides the motivation for our work.

3 Data Cleaning

The goal is to represent sequences in a single feature space and refine the data
set offline by purging anomalies using an unsupervised learning technique on
the feature space.

3.1 Representation with motifs and their locations

Let Σ be a finite set of all distinct system calls. A system call sequence (SCS)
s is defined as a finite sequence of system calls and is represented as (c1 c2 c3
... cn), where ci ∈ Σ, 1 ≤ i ≤ n.

After processing the audit data into process executions, system call se-
quences are obtained as finite length strings. Each system call is then mapped
to a unique symbol using a translation table. Thereafter, they are ranked by
utilizing prior knowledge as to how susceptible the system call is to malicious
usage. A ranking scheme similar to the one proposed by Bernaschi et al. [24]
was used to classify system calls on the basis of their threat levels.

Motifs and motif extraction

A motif is defined as a subsequence of length greater than p if it appears
more than k times, for positive integers p and k, within the finite set
S = {s1, s2, . . . , sm} comprising m SCSs. Motif discovery has been an ac-
tive area of research in bioinformatics, where interesting patterns in amino
and nucleic acid sequences are studied. Since motifs provide a higher level
of abstraction than individual system calls, they are important in modeling
system call sequences. Two sets of motifs are extracted via auto-match and
cross-match, explained next.

The set of motifs obtained through auto-match comprise frequently oc-
curring patterns within each sequence. For our experiments, we considered
any pattern at least 2 characters long, occurring more than once as frequent.
While the set of SCSs S is the input to this algorithm, a set of unique motifs
M = {m1,m2, . . . ,mq} is the output. It may happen that a shorter subse-
quence is subsumed by a longer one. We prune the smaller motif only if it
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is not more frequent than a larger motif that subsumes it. More formally, a
motif extracted using auto-match (1) has length ≥ 2, (2) has frequency ≥ 2,
and (3) if there exists a motif mj ∈ M in a sequence sk ∈ S such that mi is
a subsequence of mj but occurs independently in SCS sk.

To illustrate this idea, consider the following synthetic sequence

acggcggfgjcggfgjxyz (1)

Note that in this sequence we have a motif cgg with frequency 3, and an-
other motif cggf with frequency 2, which is longer and sometimes subsumes
the shorter motif but not always. We consider them as two different motifs
since the frequency of the shorter motif was higher than the longer one. The
frequently occurring subsequences (with their respective frequency) are cg(3),
gg(3), gf(2), fg(2), gj(2), cgg(3), cggf(2), ggfg(2), gfgj(2), cggfg(2), ggfgj(2), cg-

gfgj(2). The longest pattern cggfgj subsumes all the smaller subsequences ex-
cept cg, gg and cgg since they are more frequent than the longer pattern,
implying independent occurrence. But cg and gg are subsumed by cgg, since
they all have the same frequency. Thus, the final set of motifsM={cgg, cggfgj}.

Apart from frequently occurring patterns, we are also interested in patterns
which do not occur frequently but are present in more than one SCS. These
motifs could be instrumental in modeling an intrusion detection system since
they reflect common behavioral patterns across sequences (benign as well as
intrusive). We performed pair-wise cross-match between different sequences
to obtain these. In other words, a motif mi extracted using cross-match (1)
has length ≥ 2, (2) appears in at least a pair of sequences sk, sl ∈ S, and
(3) is maximal, i.e., there does not exist a motif mj ∈ M(j 6= i) such that
mj ⊆ sk, sl and mi ⊂ mj . Let us consider the following pair of synthetic
sequences:

acgfgjcgfgjxyzcg (2)

cgfgjpqrxyzpqr (3)

Using cross-match between the example sequences (2) and (3), we get the
motifs cgfgj and xyz, since these are the maximal common subsequences across
the two given sequences.

A simple method for comparing amino acid and nucleotide sequences called
the MatrixMethod is described by Gibbs and McIntyre [25]. A matrix is
formed with one sequence written across and the other in the downward po-
sition on the left of the matrix. Any common element was marked with a dot
and a series of dots along a diagonal gave a common subsequence between
the two sequences. Using a technique similar to the Matrix Method, motifs
are extracted which occur across sequences but may not be frequent within a
single sequence itself.

Motifs obtained for a sequence (auto-match) or pairs of sequences (cross-
match) are added to the motif database. Redundant motifs are removed. Mo-
tifs are then ordered based upon the likelihood of being involved in an attack.
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The ranking for individual system calls is used here and motifs are ordered
using dictionary sort. The motifs are then assigned a unique id based upon
their position within the ordered motif database.
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Fig. 1. Motif-oriented representation for sequence (2)

Motif-based representation of a sequence

After collecting all the motifs that exist in the set S of sequences in the motif
database M , we would like to represent each sequence in terms of the motifs
occurring within it. For each sequence si ∈ S, we list all the motifs occurring
within it along with their starting positions within the sequence.

This creates a two-dimensional representation for each SCS si, where the
X-axis is the distance along the sequence from its beginning, and the Y-axis is
the motif ID of those motifs present in si. A sequence can thus be visualized
as a scatter plot of the motifs present in the sequence. Fig. 1 depicts such a
representation for the synthetic sequence (2), where the motifs cg, cgfgj and xyz
are represented at the positions of occurrence within the respective sequence.
A total of 4 unique motifs (cg, cgfgj, pqr and xyz), obtained from auto-match
and cross-match of sequences (2) and (3), are assumed in the motif database
for the plot in Fig. 1. At the end of this phase, our system stores each SCS as
a list of all motifs present within along with their spatial positions from the
beginning of the sequence.

All the SCSs are modeled based upon the contained motifs. Malicious
activity results in alterations in the SCS which is reflected by the variations
in the motifs and their spatial positions. Plotting all the SCSs (based upon
their motif-based representations) in a single feature space could reflect the
similarity/dissimilarity between them.
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Fig. 2. Sequence space for two applications (a) ftpd and (b) lpr

A single representation for multiple sequences

After creating a motif-based representation for each sequence, all the test
sequences S are plotted in a feature space called the sequence space. In this
representation we measure the distance between pairs of SCSs along each of
the two axes (motifs and their locations). Utilizing one (arbitrarily chosen)
SCS from the set S as a reference sequence s1, we measure (dx, dy) distances
for all SCSs. Thus, the sequences are represented as points in this 2D sequence
space, where the sequence s1 is at the origin (reference point) on this plot.
Let s2 be any other sequence in S whose relative position with respect to
s1 is to be computed. Let x1i

(x2i
) be the position of the ith motif in s1

(s2). Inspired by the symmetric Mahalanobis distance [26], the distance is
computed as follows:

dx =

∑

n1

i=1
(x1i

−x̄2)

σx2

+

∑

n2

j=1
(x2j

−x̄1)

σx1

n1 + n2
dy =

∑

n1

i=1
(y1i

−ȳ2)

σy2

+

∑

n2

j=1
(y2j

−ȳ1)

σy1

n1 + n2
(4)

where s1 has n1 motif occurrences and s2 has n2 motif occurrences, (dx, dy) is
the position of s2 w.r.t. s1, and (x̄, ȳ) is the mean and (σx, σy) is the standard
deviation along the x and y axes. Using this metric, we try to calculate the
variation in motifs and their locations in the two sequences.

After computing (dx, dy) for all sequences in S with respect to the reference
sequence (s1), we plot them in the sequence space, as represented by the two
plots in Fig. 2. The origin represents the reference sequence. It is important
to note that the position of another sequence (calculated using Eq. 4) with
respect to the randomly selected reference sequence can be negative (in X
and/or Y direction). In that case the sequence space will get extended to
other quadrants as well, as in Fig. 2(b).
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3.2 Unsupervised training with Local Outlier Factor (LOF)

Similar sequences are expected to cluster together in the sequence space. Mali-
cious activity is known to produce irregular sequence of events. These anoma-
lies would correspond to spurious points (global outliers) or local outliers in
the scatter plot. In Fig. 2(a), the point on the top-right corner of the plot is
isolated from the rest of the points, making it anomalous. In this section we
will concentrate on outlier detection, which has been a well researched topic
in databases and knowledge discovery [27, 28, 29, 30]. It is important to note
that an outlier algorithm with our representation is inappropriate for online
detection since it requires complete knowledge of all process sequences.

LOF [28] is a density-based outlier finding algorithm which defines a local
neighborhood, using which a degree of outlierness is assigned to every object.
The number of neighbors (MinPts) is an input parameter to the algorithm.
A reachability density is calculated for every object which is the inverse of the
average reachability distance of the object from its nearest neighbors. Finally,
a local outlier factor (LOF ) is associated with every object by comparing its
reachability density with each of its neighbors. A local outlier is one whose
neighbors have a high reachability density as compared to that object. For
each point this algorithm gives a degree to which that point is an outlier as
compared to its neighbors (anomaly score). Our system computes the anomaly
scores for all the SCSs (represented as points in sequence space). All the points
for which the score is greater than a threshold are considered anomalous and
removed.

We made some modifications to the original LOF algorithm to suit our
needs. In the original paper [28], all the points are considered to be unique
and there are no duplicates. In our case, there are many instances when the
sequences are exactly the same (representative of identical application behav-
ior). The corresponding points would thus have the same spatial coordinates
within the sequence space. Density is the basis of our system and hence we
cannot ignore duplicates. Also, a human expert would be required to analyze
the sequence space and suggest a reasonable value of MinPts. But the LOF
values increase and decrease non-monotonically [28], making the automated
selection of MinPts highly desirable. We present some heuristics to automate
the LOF and threshold parameters, making it a parameter-free technique.

Automating the parameters

To select MinPts, we use clustering to identify the larger neighborhoods.
Then, we scrutinize each cluster and approximate the number of neighbors in
an average neighborhood. We use the L-Method [31] to predict the number of
clusters in the representation. This is done by creating a number of clusters

vs. merge distance graph obtained from merging one data point at a time
in the sequence space. Starting with all N points in the sequence space, the
2 closest points are merged to form a cluster. At each step, a data point
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with minimum distance to another cluster or data point is merged. At the
final step, all points are merged into the same cluster. The graph obtained
has 3 distinct areas: a horizontal region (points/clusters close to each other
merged), a vertical region (far away points/clusters merged), and a curved
region in between. The number of clusters is represented by the knee of this
curve, which is the intersection of a pair of lines fitted across the points in
the graph that minimizes the root mean square error. Further details can be
obtained from [31].

Assume k clusters are obtained in a given sequence space using L-Method
(with each cluster containing at least 2 points). Let αi be the actual number
of points in cluster i, 1 ≤ i ≤ k. Let ρi be the maximum pair-wise distance
between any 2 points in cluster i; and τi is the average (pair-wise) distances
between 2 points in cluster i. Let βi be the expected number of points in
cluster i. Its value can be computed by dividing the area of the bounding
box for the cluster with the average area occupied by the bounding box of
any 2 points in the cluster (for simplicity we assume square shaped clusters).
Therefore, we get

βi =

(

ρi

τi

)2

(5)

This gives us the expected number of points within the cluster. But the actual
number of points is ai. Thus, we equally distribute the excess points among
all the points constituting the cluster. This gives us an approximate value for
MinPts (number of close neighbors) of the cluster i (= γi)

γi =

⌈

αi − βi

βi

⌉

(6)

After obtaining MinPts for all k clusters, we compute a weighted mean over
all clusters to obtain the average number of MinPts for the entire sequence
space.

MinPts =

⌈

∑k

i=1 γiαi
∑k

i=1 αi

⌉

(7)

Only clusters with at least 2 points are used in this computation. But
this approach gives a reasonable value for the average number of MinPts

in a sequence space if all the points are unique. In case of duplicates, Eq. 5
is affected since the maximum distance still remains the same whereas the
average value is suppressed due to the presence of points with same spatial
coordinates. If there are q points corresponding to a coordinate (x, y), then
each of the q points is bound to have at least (q-1) MinPts.

Let p be the number of frequent data points (i.e. frequency ≥ 2) in cluster
i. Let ψj be the frequency of a data point j in cluster i. In other words, it is
the number of times that the same instance occurs in the data. We compute
γ′ the same way as Eq. 6, where γ′ is the MinPts value for cluster i assuming
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unique points (no multiple instance of the same data point) in the sequence
space.

γ′i =

⌈

αi − βi

βi

⌉

(8)

This value is then modified to accommodate the frequently occurring
points (corresponding to sequences sharing the same spatial positions in the
sequence space). We compute a weighted mean to obtain an appropriate value
of MinPts in cluster i as follows:

γi =

⌈

γ′iαi +
∑p

j=1 ψj(ψj − 1)

αi +
∑p

j=1 ψj

⌉

(9)

Average MinPts for the entire plot can then be computed using Eq. 7.
LOF only assigns a local outlier factor for a point in the sequence space

which corresponds to its anomaly score. If the score is above a user specified
threshold, then it is considered as anomalous and hence filtered from the data
set. If the threshold is too low, there is a risk of filtering a lot of points,
many of which may depict normal application behavior. On the contrary, if
the threshold is too high, some of the data points corresponding to actual
intrusions (but close to many other data points on the sequence space) may
not get filtered. We present a heuristic to compute the threshold automatically
without the need of any human expert. One point to note here is that the effect
of false alarms for data purification is not as adverse as that of false alarm
generation during online detection, if still within reasonable limits which are
defined by the user. We compute the threshold automatically by ordering
the LOF scores and plotting them in increasing order (with each data point
along the X-axis and the anomaly/LOF score along the Y-axis). Since the
normal points are assumed in abundance, their LOF scores are ideally 1.
We are interested in the scores after the first steep rise of this plot, since
these correspond to outliers. Ignoring all the scores below the first steep rise
(corresponding to normal sequences), the cut-off value can be computed as the
median of all the scores thereafter. This heuristic gives a reasonable threshold
value for the various applications in our data sets.

4 Anomaly Detection

The filtered data set obtained above can provide attack-free training input to
any supervised learning algorithm that performs anomaly detection.

4.1 Representation with arguments

System call sequences have been effectively used in host based systems where a
sliding window of fixed length is used. We introduce the term tuple to represent
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an instance of the sliding window. The simplest representation (denoted by
S-rep) would therefore consist of 6 contiguous system call tokens (since length
6 is claimed to give best results in stide and t-stide [7]):

s0 s1 s2 s3 s4 s5

where si is the system call at a distance i from the current system call within
the 6-gram.

Consider the following sequence of system calls: open, read, write, ... close.
This would seem like a perfectly normal sequence of events corresponding to a
typical file access. But what happens if the file being accessed is passwd? Only
the super-user should have the rights to make any modifications to this file.
Malicious intent involving this file would not be captured if only the system
call sequences are monitored. This lays stress on the enhancement of features
to enrich the representation of application behavior at the operating system
level. The enhancement for host-based systems, as is obvious from the example
above, is to scrutinize the system call arguments as well.

The argument-based representation, denoted by A-rep, takes into consid-
eration the various attributes like return value, error status, besides other
arguments pertaining to the current system call. Let the maximum number
of attributes for any system call be . The representation would now consist of
tuples of the form:

s0 a1 a2 a3 ... aη

where s0 is the current system call are ai is its ith argument. It is important to
note that the order of the attributes within the tuple is system call dependent.
Also, by including all possible attributes associated with the system call, we
can maximize the amount of information that can be extracted from the audit
logs. We fix the total number of arguments in the tuple to the maximum
number of attributes for any system call. If any system call does not have a
particular attribute, it is replaced by a NULL value.

S-rep models system call sequences whereas A-rep adds argument infor-
mation, so merging the two representations is an obvious choice. The merged
representation, called M-rep, comprises tuples containing all the system call
within the 6-gram (S-rep) along with the attributes for the current system
call (A-rep). The tuple is thus represented as

s0 a1 a2 a3 ... aη s1 s2 s3 s4 s5

A further modification to the feature space includes all the system calls in the
fixed sliding window and the η attributes for all the system calls within that
window. This enhanced representation is denoted as M*-rep.

4.2 Supervised training with LERAD

The efficacy of host-based anomaly detection systems might be enhanced by
enforcing constraints over the system calls and their arguments. Due to the
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enormous size and varied nature of the applications, manual constraint for-
mulation is a tedious task. Moreover, due the nature of the attributes it might
not be feasible for even a group of human experts to develop a complete set
of constraints in a short span of time. The workaround to this problem is to
use a machine learning approach which can automatically learn the impor-
tant associations between the various attributes without the intervention of
a human expert. An important aspect of rule learning is the simplicity and
comprehensibility of the rules. The solution can be formulated as a 5-tuple
(A, Φ, I, ℜ, ς), where A is the set of N attributes, Φ is the set of all possible
values for the attributes in A, I is the set of input tuples which is a subset of
the N -ary Cartesian product over A, ℜ is the rule set, and ς is the maximum
number of conditions in a rule.

LERAD is an efficient conditional rule-learning algorithm. A LERAD rule
is of the form

(αi = φp) ∧ (αj = φq) . . . ςterms⇒ αk ∈ {φa, φb . . .}

where αi, αj , αk are the attributes, and φp, φq, φa, φb are the values for
the corresponding attributes. Algorithms for finding association rules (such
as Apriori [32]) generate a large number of rules. But a large rule set would
incur large overhead during the detection phase and may not be appropriate to
attain our objective. We would like to have a minimal set of rules describing
the normal training data. LERAD forms a small set of rules. It is briefly
described here; more details can be obtained from [33].

For each rule in ℜ LERAD associates a probability p of observing a value
not in the consequent:

p =
r

n
(10)

where r is the cardinality of the set in the consequent and n is the number
of tuples that satisfy the rule during training. This probability estimation of
novel (zero frequency) events is due to Witten and Bell [34]. Since p estimates
the probability of a novel event, the larger p is, the less anomalous a novel
event is. During the detection phase, tuples that match the antecedent but
not the consequent of a rule are considered anomalous and an anomaly score
is associated with every rule violated. When a novel event is observed, the
degree of anomaly (anomaly score) is estimated by:

AnomalyScore =
1

p
=
n

r
(11)

A non-stationary model is assumed for LERAD since novel events are
bursty in conjunction with attacks. A factor t is introduced, which is the time
interval since the last novel (anomalous) event. When a novel event occurred
recently (i.e. small value for t), a novel event is more likely to occur at the
present moment. Hence the anomaly should be low. This factor is therefore
multiplied to the anomaly score, modifying it to t/p. Since a record can deviate
from the consequent of more than one rule, the total anomaly score of a record
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is aggregated over all the rules violated by the tuple to combine the effect from
violation of multiple rules:

TotalAnomalyScore =
∑

i

(

ti

pi

)

=
∑

i

(

tni

ri

)

(12)

where i is the index of a rule which the tuple has violated. The anomaly score
is aggregated over all the rules. The more the violations, more critical the
anomaly is, and the higher the anomaly score should be. An alarm is raised
if the total anomaly score is above a threshold.

We used the various feature representations discussed in Sect. 4.1 to build
models per application using LERAD. We modified the rule generation pro-
cedure enforcing a stricter rule set. All the rules were forced to have system
call in the antecedent since it is the key attribute in a host based system. The
only exception we made was the generation of rules with no antecedent.

Sequence of system calls: S-LERAD

Before using argument information, it was important to know whether LERAD
would be able to capture the correlations among system calls in a sequence.
So we used the S-rep to learn rules of the form:

(s0 = close) ∧ (s1 = mmap) ∧ (s5 = open) ⇒ s2 ∈ {munmap}
(1/p = n/r = 455/1)

This rule is analogous to encountering close as the current system call (repre-
sented as s0), followed by mmap and munmap, and open as the sixth system
call (s5) in a window of size 6 sliding across the audit trail. Each rule is as-
sociated with an n/r value. The number 455 in the numerator refers to the
number of training instances that comply with the rule (n in Eq. 11). The
number 1 in the denominator implies that there exists just one distinct value
of the consequent (munmap in this case) when all the conditions in the premise
hold true (r in Eq. 11).

Argument-based model: A-LERAD

We propose that argument and other key attribute information is integral
to modeling a good host-based anomaly detection system. We used A-rep to
generate rules. A sample rule is

(s0 = munmap) ⇒ a1 ∈ {0x134, 0102, 0x211, 0x124}
(1/p = n/r = 500/4)

In the above rule, 500/4 refers to the n/r value (Eq. 11) for the rule, that is,
the number of training instances complying with the rule (500 in this case)
divided by the cardinality of the set of allowed values in the consequent. The
rule in the above example is complied by 500 tuples and there are 4 distinct
values for the first argument when the system call is munmap.
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Merging system call sequence and argument information of the
current system call: M-LERAD

A merged model (M-rep) is produced by concatenating S-rep and A-rep. Each
tuple now consists of the system call, various attributes for the current system
call, and the previous five system calls. The n/r values obtained from the all
rules violated are aggregated into the anomaly score, which is then used to
generate an alarm based upon the threshold. An example of an M-LERAD
rule is

(s0 = munmap) ∧ (s5 = close) ∧ (a3 = 0) ⇒ s2 ∈ {munmap}
(1/p = n/r = 107/1)

Merging system call sequence and argument information for all
system calls in the sequence: M*-LERAD

All the proposed variants, namely S-LERAD, A-LERAD and M-LERAD, con-
sider a sequence of 6 system calls and/or take into the arguments for the
current system call. We propose another variant called multiple argument
LERAD (M*-LERAD) in addition to using the system call sequence and the
arguments for the current system call, the tuples now also comprise the ar-
guments for the other system calls within the fixed length sequence of size 6
(M*-rep).

Can a rule learning algorithm efficiently generalize over the various features
extracted? Does extracting more features, namely arguments along with sys-
tem call sequences, result in better application modeling? More specifically,
does the violation of rule(s) relate to an attack? And would this result in an
increase in attack detections while lowering the false alarm rate? These are
some of the questions we seek answers for.

5 Experimental Evaluations

We evaluated our techniques on applications obtained from three different
data sets:

1. The DARPA intrusion detection evaluation data set was developed at the
MIT-Lincoln Labs [35]. Various intrusion detection systems were evalu-
ated using a test bed involving machines comprising Linux, SunOS, Sun
Solaris and Windows NT systems. We used the BSM audit log for the
Solaris host;

2. The University of New Mexico (UNM) data set has been used in [4, 7, 13];
and

3. FIT-UTK data set consists of excel macro executions [36, 17].
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Table 1. Effect of LOF MinPts values

Application Total Attacks Number of attacks detected
(with false alarm count) for
different values of MinPts
(% of total population)

5% 10% 15% 20% Automated

eject 2 1(1) 2(1) 2(0) 2(0) 2(0)
fdformat 3 3(0) 3(0) 3(0) 3(0) 3(0)
ftpd 6 0(6) 0(11) 6(6) 6(1) 0(11)
ps 4 0(6) 4(1) 4(1) 4(2) 4(49)
lpr 1 0(123) 1(193) 1(198) 1(157) 1(97)
login 1 0(1) 0(2) 1(2) 1(2) 1(2)
excel 2 2(0) 0(3) 0(0) 0(0) 2(0)

Total 19 6(137) 10(211) 17(207) 17(162) 13(159)

5.1 Data cleaning

Evaluation Procedures and Criteria

From the DARPA/LL data set, we used data for ftpd, ps, eject and fdformat
applications, chosen due to their varied sizes. We also expected to find a good
mix of benign and malicious behavior in these applications which would help
us to evaluate the effectiveness of our models. We used BSM data logged
for weeks 3 (attack-free), 4 and 5 (with attacks and their timestamps). Two
applications (lpr and login) from the UNM data set and excel logs from the
FIT-UTK data set were used. LOF was used to detect outliers in the sequence
space for all the applications. The number of true positives was noted for
different MinPts values 5%, 10%, 15%, 20% of the entire population, as well
as the value obtained using our heuristic.

Results and Analysis

For various values of the MinPts parameter to LOF, our technique was suc-
cessfully able to detect all the 19 attacks in the data set, as depicted in Table 1.
But no single value of MinPts was ideal to detect all the attacks. The two
parameter values 15% and 20% seem to have the maximum number of detec-
tions (17 each). The only attacks missed were the ones in the excel application
where a reasonable value ofMinPts is best suggested as 5%. Our methodology
for automated MinPts calculation was successful in computing the correct
number for the parameter and hence successfully detected the attack sequence
as outlier (for which the 15% and 20% values failed). The automated LOF
parameter detected all the attacks except the ones in the ftpd application.
Inability of LOF to detect the anomalies in this representation is attributed
to the fact that all the points in the cluster correspond to attacks. The auto-
mated technique successfully detected all other attacks, suggesting that the
MinPts values computed using our heuristic are generally reasonable.
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The number of false alarms generated is very high for the lpr applica-
tion, which constitutes of over 3700 sequences and approximately 3.1 million
system calls. The data was collected over 77 different hosts and represents
high variance in application behavior. Though we were able to capture the lpr
attack invoked by the lprcp attack script, we also detected other behavioral
anomalies which do not correspond to attacks. We reiterate that our goal is to
retain generic application behavior and shun anomalies. Peculiar (but normal)
sequences would also be deemed anomalous since they are not representative
of the general way in which the application functions.

The reason why our representation plots attacks as outliers is as follows.
An attack modifies the course of events, resulting in (a) either the absence of
a motif, or (b) altered spatial positions of motifs within the sequence due to
repetition of a motif, or (c) the presence of an entirely new motif. All these
instances affect the spatial relationships amongst the different motifs within
the sequence. Ultimately, this affects the distance of the malicious sequence
with respect to the reference sequence, resulting in an outlier being plotted on
the sequence space. It is this drift within the sequence space that the outlier
detection algorithm is able to capture as an anomaly.

5.2 Anomaly detection with arguments

Evaluation Procedures and Criteria

For the DARPA/LL data set, we used data for ftpd, telnetd, sendmail, tcsh,
login, ps, eject, fdformat, sh, quota and ufsdump applications, chosen due to
their varied sizes - ranging from very large (over 1 million audit events) to very
small ( 1500 system calls). We used week 3 data for training and weeks 4 and
5 for testing. We also used data for three applications (lpr, login and ps) from
the UNM data set and as well as logs from the FIT-UTK excel macro data
set. The input tuples for S-LERAD, A-LERAD, M-LERAD, and M*-LERAD
were as discussed in Sect. 4.2. For tide, stide, and t-stide we used a window
size of 6. For all the techniques, alarms were merged in decreasing order of
the anomaly scores and then evaluated for the number of true detections at
varied false alarm rates.

Results and Analysis

When only sequence based techniques are compared, both S-LERAD and t-
stide were able to detect all the attacks in UNM and FIT-UTK data sets.
However, t-stide generated more false alarms for the ps and excel applications
(58 and 92 respectively) as compared to 2 and 0 false alarms in the case of
S-LERAD. For the DARPA/LL data set, tide, stide and t-stide detected the
most attacks at zero false alarms, but are outperformed by S-LERAD as the
threshold is relaxed (Table 2). It can also be observed from the table that
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Table 2. Comparison of sequence and argument based representations

Technique Number of attacks
detected at different
false alarm rates

(×10−3% false alarms)
0.0 0.25 0.5 1.0 2.5

tide 5 6 6 8 9
stide 5 6 9 10 12
t-stide 5 6 9 10 13
S-LERAD 3 8 10 14 15
A-LERAD 3 10 13 17 19
M-LERAD 3 8 14 16 19
M*-LERAD 1 2 4 11 18

A-LERAD fared better than S-LERAD and the other sequence-based tech-
niques, suggesting that argument information is more useful than sequence
information. A-LERAD performance is similar to that of M-LERAD, imply-
ing that the sequence information is redundant; it does not add substantial
information to what is already gathered from arguments. M*-LERAD per-
formed the worst among all the techniques at false alarms rate lower than
0.5 × 10−3 %. The reason for such a performance is that M*-LERAD gener-
ated alarms for both sequence and argument based anomalies. An anomalous
argument in one system call raised an alarm in six different tuples, leading to
a higher false alarm rate. As the alarm threshold was relaxed, the detection
rate improved. At the rate of 2.5×10−3 % false alarms, S-LERAD detected 15
attacks as compared to 19 detections by A-LERAD and M-LERAD, whereas
M*-LERAD detected 18 attacks correctly.

The better performance of LERAD variants can be attributed to its
anomaly scoring function. It associates a probabilistic score with every rule.
Instead of a binary (present/absent) value (as in the case of stide and t-stide),
this probability value is used to compute the degree of anomalousness. It also
incorporates a parameter for the time elapsed since a novel value was seen for
an attribute. The advantage is twofold: (i) it assists in detecting long term
anomalies, and (ii) it suppresses the generation of multiple alarms for novel
attribute values in a sudden burst of data. An interesting observation is that
the sequence-based techniques generally detected the U2R attacks whereas the
R2L and DoS attacks were better detected by the argument-based techniques.

Our argument-based techniques detected different types of anomalies. In
most of the cases, the anomalies did not represent the true nature of the
attack. Some attacks were detected by subsequent anomalous user behavior;
few others were detected by learning only a portion of the attack, while others
were detected by capturing intruder errors. Although these anomalies led to
the detection of some attacks, some of them were also responsible for raising
false alarms, a problem inherent to all anomaly detection systems.
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Table 3. Effects of filtering the training data on the performance in test phase

Application Number of attacks detected Number of attacks detected
(false alarms generated) - stide (false alarms generated) - LERAD
Without filtering With filtering Without filtering With filtering

ftpd 0(0) 3(0) 0(0) 3(0)
eject 1(0) 1(0) 1(0) 1(0)
fdformat 2(0) 2(0) 1(0) 1(0)
ps 0(0) 1(0) 0(1) 1(1)

5.3 Anomaly detection with cleaned data vs. raw data

Evaluation Procedures and Criteria

Only the MIT-Lincoln Labs data set was used for this set of experiments since
they contained sufficient attacks and argument information to be used in both
adulterated training and test data sets. We combined the clean week 3 data
with the mixed week 4 data of the MIT-Lincoln lab data set to obtain an
unlabeled data set. We use this to train stide and LERAD. We then tested
on week 5 data (containing attacks with known timestamps). Subsequently,
we filtered out the outliers detected from the combined data set. The refined
data set was then used to train stide and LERAD. Week 5 data was used for
testing purposes. The input to stide and LERAD was discussed in Sect. 5.2.
In all cases, alarms are accumulated for the applications and then evaluated
for the number of true detections and false positives. The results are displayed
in Table 3.

Results and Analysis

For the four applications in the data set, stide was able to detect 3 attacks
without filtering the training data compared to 7 attacks after refining the
training set. For LERAD, there were 2 detections before filtering versus 6
true positives after purging the anomalies in training data. Thus, in both
cases, there was an improvement in the performance of the system in terms of
the number of attack detections. The better performance is attributed to the
fact that the some of the attacks in the adulterated training and testing data
sets were similar in character. With the adulterated training data, the attacks
were assumed normal resulting in the creation of an improper model. Hence
both the systems missed the attacks during the test phase. But our filtering
procedure was able to remove the anomalies from the training data to create
a correct model of normal application behavior. This led to the detection of
the attacks during testing.

It can also be noted from the table that no false alarms were generated in
any experiment with stide. For LERAD, there was only one false alarm for
the ps application (with and without filtering). Our results indicate that the
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filtering mechanism was effective in purging out anomalies in training data,
resulting in the detection of more attacks without increasing the number of
false alarms in the test phase.

6 Concluding Remarks

In this chapter, we present two enriched representations: (i) motifs and their
locations are used to represent sequences in a single sequence space, this be-
ing an offline procedure, and (ii) system call arguments modeled for online
anomaly detection. We also presented two different aspects of machine learn-
ing: unsupervised learning and supervised learning for anomaly detection. Our
techniques cater to the various issues and can be integrated to form a complete
host-based system.

Most of the traditional host based IDSs require a clean training data set
which is difficult to obtain. We present a motif-based representation for system
call sequences (SCSs) based upon their spatial positions within the sequence.
Our system also creates a single representation for all SCSs called sequence
space - using a distance metric between the motif-based representations. A
local outlier algorithm is used to purge this data void of all attacks and other
anomalies. We demonstrate empirically that this technique can be effectively
used to create a clean training data set. This data can then be used by any
supervised anomaly detection system to learn and create models of normal
application behavior. Results from our experiments with two online detection
systems (stide and LERAD) indicate a drastic improvement in the number of
attacks detected (without increasing the number of false alarms) during test
phase when our technique is used for filtering the training set.

Merging argument and sequence information creates a richer model for
anomaly detection. This relates to the issue of feature extraction and utiliza-
tion for better behavioral modeling in a host-based system. We portrayed the
efficacy of incorporating system call argument information and used a rule-
learning algorithm to model a host-based anomaly detection system. Based
upon experiments on well known data sets, we claim that our argument-
based model, A-LERAD, detected more attacks than all the sequence-based
techniques. Our sequence-based variant (S-LERAD) was also able to general-
ize better than the prevalent sequence based techniques, which rely on pure
memorization.

The data cleaning procedure can be integrated with a hybrid of signature
and anomaly based systems for better accuracy and the ability to detect
novel attacks. Our system can also be used for user profiling and detecting
masquerade. In terms of efficiency, the only bottleneck in our system is the
motif extraction phase where cross-match is performed pair-wise. Speed-up is
possible by using other techniques like suffix trees [37, 38, 39, 40]. We are also
working on refining the motif relationships in the motif-based representation.
Our argument and sequence based representations assume fixed size tuples.
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A possible extension to variable length attribute window for more accurate
modeling. Also, more sophisticated features can be devised from the argument
information.
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