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Abstract. Search engines return results mainly based on the submitted
query; however, the same query could be in different contexts because in-
dividual users have different interests. To improve the relevance of search
results, we propose re-ranking results based on a learned user profile. In
our previous work we introduced a scoring function for re-ranking search
results based on a learned User Interest Hierarchy (UIH). Our results in-
dicate that we can improve relevance at lower ranks, but not at the top
5 ranks. In this paper, we improve the scoring function by incorporat-
ing new term characteristics, image characteristics, and pivoted length
normalization. Our experimental evaluation shows that the proposed ap-
proach can improve relevance in each of the top 10 ranks.

1 Introduction

Today’s search engines usually cannot distinguish different users’ needs well.
For example, a computer scientist may use the search query “leopard” to locate
information on Apple OS X Leopard and a biologist may use the same query for
the animal leopard; however, a search engine usually treats the two queries the
same way. Alternatively, personalized search provides customized results.

In our previous work we introduced a scoring function for personalizing search
results [8]. The function uses four characteristics (the depth of a node where a
term belongs to, the length of a term, the frequency of a term, and the em-
phasis of a term) to score a term that matches the user profile (called UIH),
which is learned from the user’s bookmarks. We use the page scores to re-rank
retrieved web pages. Based on precision and recall, we showed that our person-
alized re-ranking approach outperformed a search engine at lower ranks, but not
at the top 5 ranks. In this paper we improve the scoring function by modifying
the features/characteristics used in the function and adding document length
normalization. The main contributions of this paper are:

1. modifying the node depth characteristic to node specificity,
2. adding two new characteristics: term span and term specificity,
3. incorporating image term characteristics by extracting image terms from img

tags,
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Fig. 1. Personalized Search with UIH

4. utilizing pivoted normalization to reduce bias due do document length, and
5. showing our proposed approach can outperform previous work and a search

engine at all top 10 ranks, based on 11 users’ 22 search queries.

We will discuss related work in Sec. 2. Our proposed re-ranking approach is
detailed in Sec. 3 and evaluated in Sec. 4. Sec. 5 summarizes our findings.

2 Related Work

Jeh and Widom [5] proposed a personalized web search by modifying the global
PageRank algorithm [2]. Instead of starting from random pages on the web, the
“random surfer” starts from a set of preferred pages (such as bookmarks). For
re-ranking results returned by a search engine, the scoring function in Compass
Filter [9] favors results in web communities [10] that were also visited by the
user. In [19] user profiles are built based on browsing history. Teevan et al. [20]
investigated using files stored on the user computer as implicit relevant feedback.
Using click-through data on search results, UCAIR [14, 15] extracts words from
snippets of the clicked links for query expansion. Agichtein et al. [1] investigated
click-through, browsing, and query-text features to construct user profiles and
used different ranking methods re-rank the search results.

A few studies explored re-ranking by building user profiles that have different
abstraction levels (general to specific), which can provide different contexts for
personalization. Pretschner and Gauch [11] presented a system that allows for
the automatic creation of structured user profiles, which are built based on an
existing category hierarchy. Speretta and Gauch [18] proposed to build a user
profile as a weighted concept hierarchy, which is created from the Open Directory
Project (ODP). Sieg et al. [16] also used ODP to learn user profiles for person-
alized web search. ODP currently contains more than 590,000 concepts/nodes,
so they only use a few top levels of categories in the ODP hierarchy. Hence,
the user profiles do not cover the low-level categories, which are more specific.
Consequently, this may reduce the ranking quality for individuals with more
specific interests, not represented as high-level categories in ODP. Also, using an
existing hierarchy can make the user profile contain many irrelevant categories
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since all high-level categories are in the user profiles. To avoid these disadvan-
tages of using an existing taxonomy/hierarchy, Kim and Chan [6] proposed a
method to construct a user interest hierarchy (UIH) by learning from implicit
user behavior. We also proposed a scoring function [8] for personalized ranking
with the UIH learned from bookmarks. We can score a page based on the user
profile and the results returned by a search engine as shown in Fig. 1.

To build the user profile, called UIH, we used the web pages in user’s book-
marks and the Divisive Hierarchy Clustering (DHC) algorithm [8]. As shown
in Fig. 2 , a UIH organizes a user’s interests from general to specific. Near the
root of a UIH, general interests are represented by larger clusters of terms while
towards the leaves, more specific interests are represented by smaller clusters of
terms. The term refers to a phrase that has one or more words. The root node
contains all distinct terms in the bookmarked web page. The leaf nodes contain
more specific terms of interests to the user. The strength of relationship between
terms is estimated based on their co-occurrence in the same web page. To re-
rank pages in the search results, we proposed four characteristics to calculate
the score for each term that matches the UIH. The experimental results show
that our approach can be more accurate than Google below the top 5 ranks. In
this paper we propose improved features in the scoring function, which can be
more accurate than Google at all top 10 ranks.

3 Personalized Re-ranking

Given a web page from the search results and a UIH, we identify matching
terms (words/phrases) that reside both in the web page and in the UIH. The
scoring function for personalized re-ranking is based on characteristics of the
matching terms.

3.1 Term Characteristics

Each matching term is analyzed according to four characteristics: term fre-
quency, term span, term specificity, and node specificity.
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Term Frequency More frequent terms are more significant than less frequent
terms. A document that contains a matching term a number of times will be more
related to a user’s interest than a document that has the matching term only
once. We estimate the probability, P (Fti), of a matching term ti at frequency
Fti in a web page to measure the significance of the term. In general, frequent
terms have a lower probability of occurring. For example, in a web page most of
the terms occur once, some terms happen twice, and fewer terms repeat three
times or more. A term, ti, is more significant when P (Fti) is lower. We estimate
P (Fti) as:

P (Fti) =
number of distinct matching terms with frequency Fti in a web page

total number of matching terms in a web page
.

(1)

Term Span Although a term with higher term frequency is more significant
to a document, it may not be specific to the whole document if the term occurs
only in certain part of the document. We consider a term is more relevant to a
document if it appears in more diverse locations in the document. We estimate
the probability, P (Sti), of a matching term ti by measuring the span Sti , from
the first occurring position to the last in a web page. When a term occurs only
once, Sti

is zero. In general, terms with a larger span are more significant and
have lower P (Sti), which is estimated as:

P (Sti) =
number of distinct matching terms with span Sti in a web page

total number of matching terms in a web page
.

(2)

Term Specificity A term which occurs in many documents is not a good dis-
criminator, and has less significance than one which occurs in few documents—
the same reasoning for Inverse Document Frequency (IDF). We measure term
specificity by estimating the likelihood P (Eti) of the matching term, ti, appear-
ing in the documents:

P (Eti) =
number of web pages Eti that contain the term ti

total number of returned web pages
. (3)

Node Specificity A UIH represents general interests in large clusters of terms
near the root of the UIH, while more specific interests in smaller clusters of
terms near the leaves. Terms in more specific interests are harder to match and
a term matching a more specific node has more significance than matching a
more general node. A term can appear in multiple nodes; we consider the most
specific node that a term matches. We measure node specificity by estimating
the likelihood P (Nti) of matching term ti at node Nti in the UIH as:

P (Nti) =
number of distinct terms in node Nti

total number of distinct terms in the UIH
. (4)

Nti is more specific when P (Nti) is lower.
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3.2 Image Term Characteristics

As images can speak a thousand words, images can contribute to the significance
of a web page. A meaningful image should be large enough to convey content.
If an image is too small, it might be just an icon that has no relevance to the
content. Hence, we only consider images that satisfy one of these two conditions:

1. Both the image width and height are larger than 50;
2. Either the image width or height is larger than 50, and there is no icon or

arrow term included in the src, name or alt parameter.

From the img tags, we extract the image file name from the src parameter, and
terms from the alt and name parameters. For example, from this img tag:

<img src="graphics/florida.gif" name="florida scene" alt="World
| United States | South | Florida" width="200" height="105" >

we extract: florida, scene, world, united, states, south. But from this img tag:

<img src="graphics/florida.gif" name="icon image" alt="World
| United States | South | Florida" width="40" height="50" >

we extract nothing since “icon” is in name and width is smaller than 50.
After extracting terms from all the qualified img tags, we filter these image

terms by a stop list and a stemmer, then match these terms to the UIH. Each
matching image term, gi, is analyzed according to the same four characteristics
we discussed in the previous section: term frequency (Fgi), term span (Sgi), term
specificity (Egi), and node specificity (Ngi).

3.3 Scoring a Web Page

Based on the term and image term characteristics, we calculate a score for each
term. Let P (Fti , Sti , Eti , Nti) be the joint probability of all four characteris-
tics for the matching term ti. The four characteristics are generally indepen-
dent, except for term frequency and term span (higher frequency could imply
larger span). For simplicity, we assume the four characteristics are independent:
P (Fti , Sti , Eti , Nti) = P (Fti)×P (Sti)×P (Eti)×P (Nti) and calculate the neg-
ative log2 likelihood:

− log2 P (Fti , Sti , Eti , Nti) = − log2 P (Fti)−log2 P (Sti)−log2 P (Eti)−log2 P (Nti).
(5)

In information theory [12] − log2 P (e) is the number of bits needed to encode or
the amount of information in event e. Hence, Eq. 5 yields the amount of infor-
mation in the four characteristics. We also consider that some characteristics are
more important than the others. Term frequency Fti

, term span Sti
, and term

specificity Eti represent the term relevance to a web page; however, node speci-
ficity Nti represents the term relevance to a user’s interests. A simple heuristic
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used in this paper assumes Nti is twice as important as the other characteristics.
Thus the weights w1 = 0.2, w2 = 0.2, w3 = 0.2, and w4 = 0.4 are assigned to:

STi = −w1 log2 P (Fti)− w2 log2 P (Sti)− w3 log2 P (Eti)− w4 log2 P (Nti). (6)

Similarly, we calculate the image term score SGi for image term gi. Consider
n is the number of terms and m is the number image terms that match the
UIH, the score Spj

for page pj , combining the scores from term and image term
characteristics, is:

Spj =
n∑

i=1

STi +
m∑

i=1

SGi. (7)

The user profile (UIH) contains user preference, but it does not know the
importance of a document among all documents on the web. We use the rank
order R(Googlepj ) returned by Google as our “public” score for page pj . The
combined personal and public page score (PPS) for page pj is:

PPSpj = c×R(Spj ) + (1− c)×R(Googlepj ), (8)

where R returns the reverse rank number such that a smaller rank number
(higher rank) yields a higher score. The personal page score and the public page
score are weighted by parameter c. According to [8], c = 0.5 shows the highest
performance and is used in our experiments.

3.4 Document Length Normalization

Since longer documents have more terms, they are likely to have more matching
terms. Thus longer documents might have a bias of getting higher scores and
are more likely to be retrieved. Cosine normalization [13] is commonly used to
reduce the bias. The cosine normalization factor is computed as:

CST =
√

ST 2
1 + ST 2

2 + ST 2
3 + · · ·+ ST 2

n . (9)

Similarly, CSG for image terms is calculated. Page score in Eq. 7 is adjusted to:

Spj =
n∑

i=1

STi/CST +
m∑

i=1

SGi/CSG. (10)

Singhal et al. [17] showed that retrieval is more effective when a normaliza-
tion strategy retrieves documents with probability similar to their probability
of relevance. When the probability of retrieval is larger than the probability of
relevance, some non-relevant documents can be retrieved and we ned to decrease
the probability of retrieval. On the contrary, when the probability of retrieval is
smaller than the probability of relevance, some relevant documents may not be
retrieved and we need to increase the probability of retrieval. When the prob-
ability of retrieval is similar with the probability of relevance, all the relevant
documents may be retrieved, which is the most effective.
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Fig. 3. P (retrieval)− P (relevance) based on (a) term and (b) image term scores

We analyzed the data set from 22 searches collected in Section 4. For each
search query, we ordered the top 100 retrieved web pages by their byte lengths
and divide them into 10 equal sized bins and each bin contains 10 web pages, thus
there are a total of 220 bins. Then by using cosine normalization, we calculate
the total term scores and combine them with the public score to get a rank
order for the 100 web pages (Eq. 8). We calculate total image term scores and
combine them with the public score to get another rank order. After that we
compute the probability of relevant/retrieved web pages belonging to a certain
bin based on term scores and image term scores separately. The probability of
relevant/retrieval, P (relevance)/P (retrieval), are estimated as:

P (relevance) =
number of relevant web pages in a bin

total number of relevant web pages in query results
(11)

P (retrieval) =
number of web pages at top 10 rank in a bin

10
(12)

We plot P (retrieval)−P (relevance) obtained from the 220 bins against the
median web page byte length in each bin based on term scores in Fig. 3(a) and
based on image term scores in Fig. 3(b). From Fig. 3(a), we found for web pages
longer than about 70000 bytes, P (retrieval) is higher than P (relevance), and
for the pages shorter than about 20000 bytes, P (retrieval) is usually smaller
than P (relevance). That is, even after cosine normalization has been applied,
longer web pages still have a bias to be ranked higher and shorter web pages to
be ranked lower. From Fig. 3(b), we can also make a similar, but less prominent,
observation for image terms.

Pivoted Normalization From Equation 10, we know that a higher normaliza-
tion factor decreases the score. Thus the probability of retrieving a web page is
inversely related to the normalization factor. Since we observe longer web pages
have a bias to be ranked higher than shorter web pages with cosine normaliza-
tion factor, we should further increase the normalization factor for longer web
pages and decrease it for shorter web pages.

Singhal et al. [17] proposed pivoted normalization, which is based on cosine
normalization. Their observation is opposite to ours: P (retrieval) is larger, not
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smaller, than P (relevance) for shorter documents and P (retrieval) is smaller,
not larger, than P (relevance) for longer documents. Thus when the cosine nor-
malization factor is less than a “pivot,” they increase the pivoted normalization
factor to decrease P (retrieval) for shorter documents, otherwise they decrease
the pivoted normalization factor to increase P (retrieval) for longer documents.
However, in our case, we need to decrease the pivoted normalization factor for
shorter documents and increase it for longer documents. We illustrate the rela-
tionship between our pivoted normalization P (x-axis) and cosine normalization
C (y-axis) as a solid line in Fig. 4. The amount of tilting of the solid line at
the pivot away from the identity (C = P ) dotted line is the slope, which is a
parameter. Since slope = tan α = (P −Ppivot)/(C −Cpivot) and Cpivot = Ppivot,

P = Cpivot + slope× (C − Cpivot). (13)

P is smaller than C on the left side of pivot, and P becomes negative when C is
smaller than the x-intercept. In order to avoid a negative value for P , we draw
an additional line from the origin to a point (Clow, Plow) on the solid line:

P = tan β × C = Plow/Clow × C, (14)

where Plow is the smallest positive pivoted normalization factor for a search
query and Clow is the corresponding cosine normalization factor according to
Eq 13: (Plow − Cpivot)/slope + Cpivot. The revised pivoted normalization is:

P =
{

Cpivot + slope× (C − Cpivot) if C ≥ Clow

Plow/Clow × C if 0 < C < Clow.
(15)

Consider PST is the pivoted normalization factor for terms and PSG for image
terms, page score in Eq. 7 becomes:

Spj
=

n∑
i=1

STi/PST +
m∑

i=1

SGi/PSG. (16)

Similar to [17], we choose the average cosine normalization factor as the pivot.
For the data set we collected, we found slope = 1.2 is the best value for term
scores in Equation 15 and slope = 1.1 for image term scores. The difference is
consistent with the trend being steeper in Fig. 3(a) for term scores than Fig. 3(b)
for image term scores.
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4 Experimental Evaluation

To measure the ranking quality, we use Discounted Cumulative Gain (DCG) [4].
DCG is a measurement that gives more weight to higher ranked documents by
discounting the gain values G(r), where r is the rank, for lower ranked docu-
ments. Also, the gain values can be of different magnitude for different relevance
levels. DCG(r) is defined as:

DCG(r) =
{

G(1) if r = 1
DCG(r − 1) + G(r)/ log(r) otherwise (17)

In our experiments, we used G(r) = 1 for non-relevant results, G(r) = 2 for
relevant results, and G(r) = 3 for highly relevant results.

In our experiments we used the same data set in our previous work [8], the
data were collected from 11 different users and each user submitted 2 search
queries that can contain any Boolean operators. Some examples of the search
queries used are: review forum +”scratch remover”, cpu benchmark, aeronau-
tical, Free cross-stitch scenic patterns, neural networks tutorial, DMC(digital
media center), artificial intelligence , etc. Then for each search query we used
the top 100 web pages returned by Google. So there are 2200 web pages used in
our evaluation. To evaluate the ranking quality, we asked each user to submit
relevance ratings for the retrieved web pages. The relevance rating is divided to
three scales: highly relevant, relevant and not relevant. For UIHs, the profile data
are bookmarks from the 11 users and an UIH is learned for each user using the
DHC algorithm [6]. Web pages from both Google and bookmarks were parsed
to retrieve only words, which are stemmed and filtered through a stop list [3]. A
phrase-finding algorithm [7] was used to identify variable-length phrases. Words
in selection boxes/menus were also removed because they did not appear on the
screen until a user clicked on them. Irrelevant information such as comments
and styles were also removed. To remove any negative bias to Google, broken
links that were still ranked high erroneously by Google were excluded from the
evaluation, since those web pages are non-relevant to the user for sure. Visual
Basic and Java were used for implementation, and the program ran on an Intel
Pentium 4 CPU with 1.5GB memory.

4.1 Previous and Proposed Individual Term Characteristics

In our previous work [8], we used four characteristics for a term: term frequency,
term length, term emphasis, and node depth. We analyze the top 10 DCG scores
for each of these four characteristics. The x-axis in Fig. 5(a) is top rank r and
the y-axis is the average DCG improvement of personalized ranking over Google
(DCGpersonalization(r)−DCGGoogle(r)). Our personalized ranking can outper-
form Google at top 1 and top 10 ranks based on term depth, at top 10 rank
based on the term length, at top 1, top 7, top 8, top 9 and top 10 ranks based
on term frequency, and none based on the term emphasis.

Since the performance of term depth, term length and term emphasis are
poor, we introduced term specificity and term span, and modified node depth to
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Fig. 5. DCG improvement based on Previous (a) and Proposed (b) Individual Term
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Fig. 6. DCG Improvement based on Term (a) and Image Term (b) Characteristics

node specificity as described in Section 3.1. The experimental results from the
three new characteristics are shown in Fig. 5(b). Our approach can outperform
Google at top 1, top 7, top 8, top 9 and top 10 ranks based on term specificity,
at top 1, top 6, top 7, top 8, top 9 and top 10 ranks based on term span, at
top 1, top 5, top 6, top 9 and top 10 ranks based on node specificity, each of
these three new characteristics can outperform Google at least half of the 10 top
ranks. Including the original tem frequency, we use four characteristics in our
scoring function. In the following sections, all the evaluation results are based
on these four characteristics.

4.2 Combining Term Characteristics

We next combine these four characteristics to score each page and compare the
results with our previous approach and Google in Fig. 6(a). We can see our
personalized ranking based on term characteristics can outperform Google at
top 1, top 7, top 9 and top 10 ranks. In most top ranks it performs better than
our previous work, which can only outperform Google at top 1, top 9 and top
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10 ranks. However the result is not ideal since we can only outperform Google
at 4 top ranks out of 10.

4.3 Combining Image Term Characteristics

In this section we evaluate the combination of image term characteristics. The
average DCG scores at top ranks are illustrated in Fig. 6(b). Our personalized
ranking quality based on image terms can only outperform Google at top 1 and
top 10 ranks. The results are even worse than the results based on term scores.
This is reasonable since images generally provide less information than terms.
So we combine these two sources of information to improve the ranking quality
in the next section.

4.4 Combining Term and Image Term Characteristics

In Equation 7 the personalized score is based on both term scores and image term
scores. After combining with Google rank in Equation 8, we re-rank each search’s
results, and compare the ranking quality with Google and our previous work. The
average DCG scores at top 10 ranks are illustrated in Fig. 7. Our personalized
ranking quality based on the combination of term and image characteristics can
outperform Google at top 1, top 5, top 8, top 9 and top 10 ranks (half of the 10
top ranks). And it performs better than our previous work at all 10 top ranks.
This shows using the combined score is better than using only term scores or
image term scores.

4.5 Document Length Normalization

We have found term information is more robust for personalized scoring than
image information, and the combination of them produces a better result. But
in certain top ranks Google still performs better. This is because longer pages
have a bias to obtain higher scores than shorter pages, so the chance for relevant
short pages to be ranked high is reduced. In order to remove this bias we utilized
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Fig. 8. DCG Score based on Term Characteristics (a) and Combining Term and Image
Characteristics (b) with Pivoted Normalization

pivoted normalization (Equation 16). Fig. 8(a) shows the average DCG results
based on only term scores with pivoted normalization. Our personalized ranking
can outperform Google at almost all top ranks except top 2, and it performs
better than our previous work at all 10 top ranks.

We also combined the term score and image score with pivoted normaliza-
tion, the results are shown in Fig. 8(b). Our personalized ranking can outperform
Google and previous work at all 10 top ranks. Moreover, the improvement over
Google increases at 8 of the 10 top ranks. In summary, our results indicate the
significance of incorporating image term characteristics and pivoted normaliza-
tion for improving personalized re-ranking.

4.6 Analysis of Search Queries and Bookmarks

We also investigated which search queries yielded higher DCG score with per-
sonalized search than with Google. Out of the 22 search queries (11 users × 2
search queries), our approach outperformed Google in 8 search queries (36%)
at all 10 top ranks and partially (over half of the 10 top ranks) outperformed
Google in 5 queries (23%). Google outperformed completely in 5 search queries
(23%) and partially in 4 queries (18%). The search queries that our approach
outperformed completely are: aeronautical, Caribbean History, Free cross-stitch
scenic patterns, XML Repository, ddr2 memory, Australia adventure tours. Aus-
tralia ecology, java design patters, and partially are: boston pics, complex vari-
ables, beos operating system, artificial intelligence, sniper rifle. The queries that
Google outperformed completely are: aerospace, cpu benchmark, review forum
+”scratch remover”, windows xp +theme +skin, neural networks tutorial, and
partially are: DMC (digital media center), military weapons, extreme program-
ming principles, woodworking tutorial.

For the search queries that our algorithm did not outperform Google, we an-
alyzed the search results and found that relevant web pages in the search results
are few. For example, when a user searched review forum +”scratch remover”,
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there were only 4 highly relevant web pages rated by the user out of 100 search
results. Hence, improving the ranking quality for this search is quite difficult.

We also analyzed the bookmarks, which are used for learning the user profiles.
When we compare the bookmarks with the highly relevant retrieved web pages,
we found that they are unrelated. For example, a user used woodworking tutorial
as a search query, but he never bookmarked web pages related to that query.
That is, additional sources of interests beyond bookmarks would be useful for
building user profiles. However, naturally, the user can always perform a search
that is different from any source of interests that can be collected.

5 Conclusion

This paper improves our previous work on personalized ranking by enhancing the
accuracy of scoring function. We eliminated two term characteristics, term length
and term emphasis, from the previous scoring function because we found they
made little contribution to the rank quality. We also modified the node depth
characteristic to the node specificity characteristic, which is more effective. Also
we proposed two additional term characteristics, term term specificity and term
span, which we found are very useful to score a term. Consequently, the four
characteristics used in our new scoring function are: term frequency, term span,
term specificity, and node specificity.

After re-ranking the search results by our proposed scoring function, we eval-
uated the performance by comparing with Google search and our previous work.
Our previous work showed it could not perform better than Google at top 5
rank. By calculating average DCG scores from a collected data set, we found the
improved personalized search based on term score without pivoted normalization
factor can outperform Google at 4 top ranks out of 10, and can outperform our
previous work at 9 top ranks out of 10. While combining term score and image
score without pivoted normalization factor as our personalized search score the
result was better, it can outperform Google at 5 top ranks out of 10, and can
outperform our previous work at all 10 top ranks. After we added pivoted nor-
malization factor into the scoring function to normalize the document length,
our approach can outperform Google at 9 top ranks out of 10, and can outper-
form our previous work at all 10 top ranks. Our personalized search based on
combination of term score and image score with pivoted normalization factor
can outperform both Google and our previous work at all 10 top ranks. So the
new term characteristics, extracted image terms and pivoted normalization help
to improve our personalized ranking.

Although the new scoring function performed well on average for the 22
search queries, our algorithm did not outperform Google for some queries. We
found some search queries were too specific that the relevant retrieved results
were very few. This makes the scoring function difficult to improve the ranking
quality of these search queries. We also found some search queries are not related
to the user’s bookmarks. Hence, improving ranking quality with only information
from bookmarks is not sufficient. Our future work may capture user’s recent
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interested web pages by implicit indicators like mouse movement, mouse click
etc, and use these recent interested web pages to construct a short-term UIH to
improve our personalized ranking.
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