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Abstract 
 

 
“Using a Randomized Regression Approach  

to Estimate Hospital Admissions  

to Reduce Emergency Department Holding” 

By Kleber Andres Garcia 

Thesis Advisor: Philip Chan, Ph.D. 

 

Serious patients from the Emergency Department need to be admitted into the 

hospital for more specialized care.  However, beds might not be available, which results in 

the patients being held in the Emergency Department. One reason is difficulty in 

estimating the number of patients accurately, which leads to the challenge of scheduling 

staff appropriately. This study proposes KGERS (K Gaussian Elimination on Randomized 

Subsets), a randomized algorithm for linear regression. KGERS is a good fit for Regression 

Trees that perform piecewise linear approximation (for nonlinear regression) because the 

data at the leaf nodes presents a roughly linear pattern by design. Empirical evidence 

shows that KGERS is able to perform regression on hospital data faster and more precise 

(error of 16%) than other traditional algorithms such as Neural Networks. Additionally, an 

analysis on synthetic data sets shows that KGERS is an efficient algorithm that degrades 

less under regular quantities of noise found in real life data sets. 
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Chapter 1 
Introduction 

 

 
The applications of machine learning have provided valuable contributions to our 

society. From video games to actual industrial applications, they all aim to push the power 

of computing to another level; a level of cognition and true understanding of data. This 

research aims to address an existing problem with hospitals over the nation and use 

modern machine learning techniques to solve it. The problems that hospital faces are 

based on estimation of future admissions that could cause bottlenecks in the workflow 

process, adding holding time for patients. This study aims to show that our proposed 

randomized regression algorithms are better suited for estimation of these admissions 

than some of the existing algorithms. Additionally, we discuss the strengths and 

weaknesses of our algorithms on synthetic data containing properties commonly found in 

the real world. 

 

1.1. Motivation 

Hospitals can be very crowded places, especially in the emergency room. They 

tend to overcrowd, especially when the hospital hasn’t allocated enough resources for a 

particular “spike” day. The Emergency Department (ED) first accepts people coming from 

unexpected accidents or simply very risky sign of sicknesses that need immediate 

attention. If the patients need more care, they are admitted to the hospital. However, 

beds might not be available in the main hospital. Consequently they are being held in the 

ED. This could reduce the capacity of ED to treat new patients. Also the patients are not 

getting specialized care in the main hospital. In this study we investigate admissions to 

the hospital from the ED. 

One reason for patient holding in the ED is staffing. In order to maintain a bed for 

a patient inside the hospital, nurses and doctors must be assigned to it. This requires 

calling ahead of time whichever staff member needs to be there. If the admission rate 

(coming from the ED) is unknown, the hospital has to guess on how and where to allocate 

the staff. A consequence of this problem is not having enough staff, and start adding 

people back to the ED placement. The next consequence is that now the ED is crowded 

with patients that are not supposed to be there, because of understaffing from the 

admissions side. The vicious cycle continues and hence the bottleneck and long waiting 

lines.  
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It is imperative for hospitals around the nation to have some sort of 

computational models that will help dealing with this problem, by estimating future 

admission rates.  Estimating admission values will help with staffing, and hopefully reduce 

holding time for patients waiting to be admitted. 

 

1.2. Problem Statement 

1. Estimation of future hospital Admissions from ED data: 

Given data from the past, the first problem will be to build a model of this data and 

try to estimate future admissions to the hospital. The data comes as patient 

admissions from ED department, PCU, ICU and Floor unit admissions (more details in 

Chapter 4). 

2. Faster Non- Linear Regression: 

Piecewise linear regression will be one of the methods used to do these admission 

estimations. As a result, a fast and reliable algorithm for linear regression is required 

in order to accomplish this goal. 

3. Analysis of algorithms in different environments: 

Amongst the algorithms used, applicability to other data sets will be measured. The 

main question of this sub problem is: how likely are these algorithms to fail under 

noisy environments? 

 

1.3. Overall Approach 

To solve the first problem in the last section a set of existent algorithms will be 

used. On top of this, the data will be treated as a time series and several features will be 

derived. The reason why it is treated as a time series is because this is perhaps the 

simplest way to do an initial study on this data while not considering individual patient 

details. Features in the form of multidimensional vectors will be derived out of these time 

series admissions data sets. 

The second problem will require a new algorithm that will satisfy the requirement 

of fast computation. We proposed a randomized algorithm called KGERS (K Gaussian 

Elimination from Randomized Subsets).  

Lastly, for the third problem we will generate data with noise and irrelevant 

features. We then analyze the behavior of the different algorithms. 

 

1.4. Overview of contributions 

1. We introduced randomized algorithm (KGERS) for efficient linear regression 

and incorporate it into Regression Tree algorithms 

2. For admissions from ED, our proposed algorithm (Regression Tree KGERS) is 

faster and more accurate than Neural Networks. 



3 
 

3. On a trial basis, the hospital using models proposed on this study to estimate 

future admissions. 

4. Estimation of unit types (PCU, ICU and Floor) presents good accuracy in terms 

of the hospital, which spans around 16% of error. 

5. Data degradation does not cause a high increase in errors in the Regression 

Tree KGERS (errors manage to stay around 26%).  

6. KGERS time complexity is independent of N (size of input). KGERS time 

complexity is O(M3) where M is the number of dimensions. 

7. Because the leaves in Regression Trees (using a linear splitting strategy) are 

mostly linear by design, KGERS is a proper efficient algorithm for linear 

regression at the leaves. 

 

1.5. Chapters Overview 

This study is divided into five main chapters. Chapter 2 will be an overall literature 

review and study on this topic. This chapter contains information on the previous 

machine learning algorithms mentioned. The two most important discussed will be 

Regression Trees and Feed Forward Neural Networks trained using back propagation. 

There is also information regarding previous studies done on the subject. These studies 

include semantic analysis on the data (which differs from treating the data as a time 

series problem) and modeling time series using ARMA models. 

Chapter 3 will explain the linear regression algorithm proposed which is based on 

randomized search. This algorithm is KGERS. The purpose of this algorithm are explained 

and later linked to the concept of generating regression trees that perform piecewise 

linear regression. Other algorithms for regression trees are proposed specifically for 

splitting and stopping criteria. 

Chapter 4 will be the experimental results on the hospital data. Contributions, 

weaknesses and results will be discussed here. An overview of the experimental process 

will be also given. 

Chapter 5 will test the performance of the algorithms (algorithms proposed and 

cited in chapter 2) on synthetic data. This synthetic data meant to be an easy target for 

regression, and is used to test the effects of degradation and noise over the respective 

algorithms (noise will be added to this synthetic data). 

Finally, Chapter 6 will give an overall overview of the findings, conclusions and 

further proposal and improvements of this work. 
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Chapter 2 

Related Work 

 

 
In this chapter we will show the resources available on the subject of study. There 

exist a vast number of papers that deal with hospital admission data prediction. This 

chapter is divided into four separate sections, each one containing a brief literature 

review on the subtopic studied. The first section talks about general existent approaches 

to forecasting. Several approaches are discussed here, such as simulation and some of the 

general features used. The second section discusses treating the forecasting problem 

itself as a time series. Several methods are explored, such as ARMA models and Neural 

Networks. The fourth section introduces Neural Networks and existent algorithms related 

to this topic. Finally, the fourth section introduces Regression Trees, its algorithms and 

applications to forecasting problems. 

 

2.1. General Forecasting Approaches 

Many existing forecasting approaches for hospital admission data involve the 

usage of experimental models. These experimental models are then configured under 

several variable constrains and executed. The result of such simulation is what is thought 

to be the actual forecasting which is believed to contain a manageable error range. This 

study’s approach takes a different line, and treats the problem as a machine learning 

challenge.  

 

2.1.1. Hospital admissions features 

There has been several attempts in the past, such as that one by Leegon Jeffrey et 

al. (2006) involving the usage of neural networks. In his paper he attempts to predict the 

admissions of a hospital using a neural network. 

The most interesting aspect of the paper is the features that they decide to 

implement. Most of this involves semantics of the data itself, as in very specific patient 

features. Data is feed from previous patients into the neural network. The neural network 

builds a model of a patient likely to be admitted into the hospital from the symptoms he 

presents to the ER. The new patients arrive, and the neural network tries to identify those 

patients that are likely to be admitted. This information is used to allocate the respective 

resources and staffing that the hospital requires. Additionally to this, the claim states that 

the hospital is also able to predict workload by just using this patient information.  
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A problem with this technique is the lack of flexibility on dates we want to 

predict. If the hospital wants to know the likely demand of patients in a week, they will 

have to wait several days before the actual day of the prediction. The reason is that each 

patient has to go through the learning process of the neural network in a real time 

fashion. Jiexun Li et al. (2009) also proposes a similar technique. This time they use a pre 

processed Chief Complain. Chief Complains (CC) are records that explain the reason for 

the patient to be hospitalized. There isn’t a standard for CCs so several special strategies 

have to be applied in order to extract features out of them. The inputs are patient 

information and the output is hospital admission. The tweak here is that patient 

information is preprocessed (using the Raw's CC) and new features are generated by 

applying a CC standardization algorithm. Jiexun uses several off the shelf machine 

learning algorithms, such as support vector machines and decision trees. The 

standardization algorithm is explained in section 3.1. of Jiexun Li et al. (2009). In order to 

extract features out of these chief complains, the following strategies are applied: 

 

o Using semantic-enhanced features vectors: Here the CC is still a variable, but instead 

of treating each CC as a dummy variable, a value is assigned to a CC feature by 

considering not only its occurrence but its related CCs. This process is explained in 

detail in section 3.2.1 of the Jiexun’s study. 

 

o Performing data transformation: In a high level, this process performs a semantic 

analysis on the chief complains. They also call this Semantic Kernel Learning (Jiexun Li 

et al, 2009). What this does is that several kernel functions are defined (for example 

comparing how similar are two patients or two CC's). At the end a linear combination 

is applied for all patients and the value is normalized, ready to be used by the learning 

algorithm as a feature vector. 

 

Results show that by incorporating semantics an improvement in admission 

prediction was achieved (section 4.1 Jiexun et al. 2009). 

 

2.1.2. Machine learning algorithms 

What these methods have in common is the usage of data for some sort of 

operations prediction. Matsunaga and Fortes (2010) have devised a new approach, based 

on an algorithm called PQR (Predicting Query Time). This is a classification tree algorithm 

that at the end allows a regression problem to be fit at the leaf nodes. The new algorithm 

that they have implemented (PQR2) has better results on their target data set. The data 

set trying to model is execution time, memory and disk consumption of two applications. 
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These applications will also be running under different scenarios, and the goal is to model 

all these as features and apply machine learning algorithms yielding to low error.  

PQR algorithm, just like any regression tree algorithm, consists of three main 

operations. These are: splitting criteria, stopping criteria and regression at leaf nodes. For 

splitting criteria, Matsunaga et al have chosen very simple maximization of normalized 

ranges. They will pick that feature with the biggest range in split. This will become a 

potential split point for the new tree. For stopping criteria, they use maximum number of 

examples filtered at leaf nodes. Whenever the regression tree reaches a maximum 

number of leaf nodes it will stop growing and apply the third operation which is 

regression. During regression the PQR tree does an average of the outputs of these 

remaining training values. A variation of the PQR method will be explored later, for now 

this is perhaps the simplest off the shelf regression tree. What PQR2 does is that it tries to 

fit the best regression model at leafs using a validation set. This of course reduces the 

number of training examples, but gives a hint of the best predictor found under the 

particular leaf. Finally, the best predictor is chosen and incorporated into the tree. The 

steps of PQR2 can be summarized in Figure 2.1. 

 
PQR2 
-inputs:  
X(inputs), Y(outputs), S (max size of examples) 
-outputs: PQR2 Tree 
1: Begin 
2: If (size(X) < S) 
3:   Split X into X’ and Xvalidation using Y’s   
     distribution 
4:   For each regression candidate R choose the best  
     one trained on X’ and evaluation on Xvalidation 
5:   return Leaf node R 
6: Else 
7:   Choose best split for X 
8:   let pqr.left = PQR2(Xleft,Yleft,S) 
9:   let pqr.right= PQR2(Xright,Yright,S) 
10:  return pqr 
11:  END 

Figure 2.1 PQR2 algorithm 

 

While providing good results on the data sets, the algorithm is not tested for over 

fitting. The original source of the PQR tree comes from Chetan et al. (2008). The 

explanation of this original PQR tree is a bit more in-depth than that one shown by 

Matsunaga and Fortes (2010). The real algorithm produces a tree with two patterns: leaf 

node and internal node. The internal node is a range and a classifier function. The range 

represents the possible values this tree can predict well, and the classifier function (k 

means, or any other classification algorithm in general). The classifier will tell the current 

set of attributes to predict on which 2 child nodes to go. This happens recursively until we 
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reach the leaf nodes, the leaf nodes are simply ranges of the possible values for the 

current class. Very similar from regression tree, but differs in the sense that the samples 

are split by distribution rather than a single class attribute. Another interesting thing is 

the introduction of several optimization and post pruning processes involved. Clearly 

these ones are not included in that paper by Matsunaga and Fortes (2010). At the end, 

the big difference here is the flexibility of PQR2, which is able to integrate different 

models into the leaf nodes of the tree. 

So far a couple of machine learning algorithms and features have been exposed 

that tackle problems very similar to that one of hospital admissions. All these algorithms 

and features want to extend the idea of generating a model that reduces error. Perlich et 

al. (2006) propose the idea of using a high quartile model instead of an error reduction 

model. The problem statement they are trying to tackle here is to predict the amount of 

money a customer is willing to pay for a product in the future. This will give good insight 

of how much to produce and how the customer will be allocating resources for the 

product. 

The way this relates to our current problem is that we are also trying to predict 

"how much" customers (patients) are willing to be admitted into the hospital, thus both 

problems describe resource allocation. Perlich et al. (2006) approach this by realizing the 

maximum q quantile as their probability that a price is within a range. Normally, this is 

calculated using the formula P (Y|x) where X is the current information and Y the around 

the customer is willing to spend. 

By using quartiles the goal changes, the new goal now is to do regression on c(x), 

where c(x) is the function that gives the 0.9 high quartile such that (1) satisfies. 

 

                       (1) 

 

The most interesting technique for this prediction is using a regression tree, 

which is similar to a decision tree but offers more specialization towards continuous 

values. While this approach is unused on the current study, it is worth the time to explore 

in the future. It provides a potentially useful new point of view that the hospital might be 

interested in, just like predicting the size of “wallets”. 

 

2.2. Forecasting as a time series problem 

So far literature on semantic analysis of the data has been explored. This means 

that specific features such as patient type or type of consumer are explored. The problem 

could be analyzed from a different perspective in the way which features are derived, and 

instead treat the problem as a time series. A time series is a sequence of events that 

follow a specific order. Each event can be though as the y axis in a sample. The x axis can 
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be though as the time. A simple example would be the number of admissions from the 

hospital in a particular day.  

 

2.2.1. ARMA models 

It has been introduced in the literature many times as the basis for mathematical 

analysis of time series. These are ARMA models (Auto Regressive Moving Average). 

Montgomery and Johnson (1976) describe this model as the composition of two sub 

models. Both sub-models can be observed in equation (2). 
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The auto regressive model is expressed in equation (3). The element c is a 

constant. 
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The ε found in the equation represents the random shocks that each time 

element in the time series has. The moving average segment is represented by the linear 

combination of the αi with respect to the X values. It is called moving average because it is 

assumed that the time series is a stationary stochastic process, whose joint probability 

distribution is not changing. This also means that the underlying model’s mean and 

variance should stay constant.  

The next element in an ARMA model is the Auto Regressive part. This segment 

uses a new set of parameters for ε. These are also called random shocks or errors as 

mentioned before. They should come from a normal distribution with zero mean. Details 

on how to derive these random shocks from the data is out of the scope of this study, but 

what is important is that the error is modeled in some sense from these ARMA models.  

Several problems can be inferred of this. The first one being that the time series 

studied must be stationary. Generally, stationary time series do not exist in practice, and 

many of the real life problems vary vastly from them. However, there are techniques 

proposed by Montgomery (1976) that will convert or estimate a stationary time series 

from a non stationary. The conversion must be done at the end to get back to the original 

time series. To test for stationary and non stationary time series, several measures have 

been explored, such as autocorrelation and autocovariance. The result of the graph 

generated by these measurements will surely tell the nature of the time series being 

studied. Equation (4) shows a transformation proposed by many sources. 
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This transformation involves converting the time series to a new one. The new 

time series would be a time series of derivatives of the original. Every time a derivative is 

taken, the time series becomes simpler, and closer to a stationary one. 

Other transformation steps are available on the literature. Bagnall and Janacek 

(2004) propose a technique based on fitting a model and then applying a clustering 

method. The first step is that the time series is transformed into a binary series. This 

decision is done based on an equation similar to (5). 
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 This method is called 'clipping'. The next step tries to recognize hidden time 

series within the data by using clustering techniques. 

The way this is done is by fitting an ARMA model to each series then cluster based 

on similarity of the fitted parameters α and θ shown in equation (3). The reason to use 

clipped data is that it helps in calculation of several heuristics such as auto-correlation. It 

also helps with a more compact representation as bit vectors, speeding up the model 

fitting process. They use several methods to cluster, including Euclidean distance and 

Cosine similarity of parameter vectors.  

These adaptive techniques by Bagnall and Janacek (2004) show good results, and 

are a great example of taking the mathematical background and applying it to computer 

science algorithms such as clustering. For evaluation, Bagnall uses a similar technique 

used in this paper: a sensitivity analysis of the number of clusters used for each ARMA 

model. Within this analysis, it can be learned that clipped data’s response keeps a higher 

accuracy than unclipped data. One of their main arguments is the loss of information, but 

not structure of the time series. When clipping the data, a lot of the noise is blurred away 

and integrated into the model. This decreases the possibility of over fitting and likelihood 

of bad results. 

 

2.2.2. Machine learning on Time series 

As seen previously, there exist many off the shelf machine learning algorithms, 

each one with particular weaknesses and strengths. Many of these algorithms can also be 

mixed with the concept of time series modeling. One example of this is Pissarenko’s 

(2002) research work on neural networks and time series analysis. The problem they 

tackle is very similar in nature of errors. The techniques used have to be noise tolerant 
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and be able to extract unknown patterns present in such. Financial time series analysis is 

a subject of study amongst data miners due to the quantity of data in its nature. In this 

study, there is a discussion about the implication of ARMA models with machine learning, 

and empirical evidence of its limitations. Some of the limitations mentioned by Pissarenko 

(2002) are the following: 

 

 Neural Networks trained in finance require vast number of training cases. 

 There is not known best Neural Network topology. 

 The more complex, the more unreliable a neural network turns out to be. 

 Requirement for statistical relevance on results. 

 A good architecture of features. 

 

In these studies many possibilities for features are used. Some of them include 

average of time windows mixed with speculated error. Others included partial derivatives 

of certain time windows. It was shown that predictability on unstable and non stationary 

time series is a big problem. Pissarenko’s (2002) study shows a lot of literature exposed 

on the area of neural networks with time series, the impact and direction that some of 

them carry on. 

Neural networks are not the possible set of algorithms to pick from when 

modeling a time series. Clustering is another possibility, as proposed by Goldin et al. 

(2006). The main algorithm bases prediction on average of similarity amongs 

subsequences within a time series. The steps of the original Goldin’s algorithm can be 

summarized in the following listing: 

 

 Using time series X, divide it into smaller chunks of length L 

 Use kmeans to cluster these chunks 

 Base predictions on clusters: 

 Identify cluster which prediction best fits into 

 Output prediction 

 

The main sub problem here is figuring out some sort of distance measure that 

could be used for the subsequence. Euclidean distance is used for this, by using each 

element in the subsequence as a member of a vector. Euclidean distance is summarized in 

equation (6). 
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This distance is very linear and evidence in Goldin et al.’s (2006) shows that it is 

not effective measuring similarity of subsequences. They introduce the notion of Cluster 

Shapes. These shapes use Euclidean distances as kernel functions and try to draw (using 

its centroid) a sorted sequence. The sequence composed is normalized against all the 

possible deltas within the kernels. The distance itself is a set of features derived from the 

Euclidean distance. To match the distances they have a special matching algorithm 

composed of the following steps: 

 

 Store the resulting N constellations of clustering into a master table. 

 Compute the shape of each entry that will be matched. 

 Use Euclidean distance on the features described by the kernel functions. 

 

Perhaps one of the simplest methods involving a neural network for time series 

forecasting is the one proposed by Nikolov (2010). In his research work, he proposes the 

usage of a neural network as a pure regression method for time series prediction. He 

describes a set of optimizations for clustering oriented towards time series learning. 

Given a time series for training, a set of vectors is extracted by sliding the window up to 

the end. Each element in the window will represent the “ith” dimension of these vectors. 

Clustering is performed on these vectors. Once clustering is done, for each cluster a 

Neural Network is trained (by splitting each cluster into training and validation sets 

respectively). When a new vector arrives and is queried for a prediction, it is matched 

with a cluster and then sent to its respective neural network. This research work also 

proposes some optimizations on the clustering side. 

A very interesting strategy also proposed by Nicolov is the notion of reusing the 

neural network to generate predictions in which data is not available. This could fall under 

the category of simulation, but it stills uses previously defined data to draw models. The 

process is described in these steps: 

 

 Use the time windows to train a neural network. 

 Predict the unknown time Xt+1 

 Incorporate Xt+1 into the training set, and shift the window further 

 Predict Xt+2 with this new model, and repeat. 

 

The previous steps can also be appreciated in Figure 2.2. 
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Figure 2.2 Recursive prediction (Figure 1 in Nikolov’s research 2010) 

 

What is not good about this research work is the lack of evidence supporting that 

this kind of unsupervised learning generates good results. While the claim that the 

process mentioned before is a good approach might be valid, it is still to be considered as 

an actual practical solution. It is very hard for a neural network to draw and predict a 

function more than its actual boundaries. For this to happen, the neural network would 

need an outstanding number of hidden layer neurons and a viable training set. Also the 

assumption here is that the change in seasonality of the time series remains constant. 

This means that the time series has to be close to stationary. 

Many strategies for regression itself on the time series are also proposed by 

Nikilov (2010). These include self organizing maps, which will be studied in later sections 

of this chapter. 

While contrasting these works on time series forecasting it can be noticed that all 

of them show good grounds of empirical evidence supporting their claims.  

 

2.2.3. Linear Regression 

Linear regression is the process of estimating the weights that would describe a 

hyperplane whose error with respect to a space of points is minimized. The reason why 

we study linear regression is because is very tied to the definition of a time series. As we 

saw in ARMA models, it is all about estimating the weights in a linear combination. Linear 

regression is also useful to understand non linear regression algorithms, such as piece 

wise linear approximation done by a regression tree. These will be explored in later 

sections, but before it will be explained here two of the most common of “the shelve” 

methods. These methods follow the definitions and algebra of Mitchell et al. (1997). 

 

2.2.3.1. Gradient Descent 

The main goal in gradient descent is to minimize the error squared, defined as: 
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We will try to minimize this by setting the derivative of the error with respect to 

the weights (associated with ŷ). Starting we get: 
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Solving the derivative of (8), we get a final partial derivative in terms of the 

weights: 
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Finally, this derivative can be written as a single weight update: 
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The η term represents the learning rate. This term dictates how fast the updates 

for gradient descent should be. Experimental data shows that a stochastic update is 

better for the weights; this means that updating the weight using one data point at a time 

is better than aggregating the entire sum. 

Finally the algorithm proposed by Mitchel et al (1997) can be written as show in 

Figure 2.3. 
Gradient Descent 

-inputs: X, Y,  , T 
-outputs: W 
1: Begin 
2: Initialize wj to small values 
3: For t := 0 to T 
4:   For i := 0 to n 
5:     For j := 0 to M 
6:       If (j equals 0) 

7:         Wj = Wj +  *( Yi - eval(W,Xi)) 
8:         Else 

9:         Wj = Wj +  * (Yi -eval(W,Xi))*(Xij) 
10:Return W 
11:END 

Figure 2.3. Gradient Descent Pseudocode 
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The eval function will do a linear combination of the Xj vector with the current 

weight vectors. At the end, error will be likely minimized, after several iterations that is. A 

problem with this algorithm is its greedy approach, and the fact that it might converge 

into a local minima (not the optimal set of weights). To summarize the steps, step 2 in 

Figure 2.3 will be the loop that performs updates to the weights until the algorithm 

converges and step 4 will go through each data point in the training data. Finally step 5 

will perform the update through each weight in a stochastic manner. 

 

2.2.3.2. Linear Least Squares 

This linear approach starts with the fact that we can arrange each feature Xij into 

a matrix: 

 

   X= 

          

          

    
          

     (11) 

 

Each row represents a data point, and each column a dimension element. With 

this matrix in had we can finally model our predictions (into the ŷ vector) as follows: 

 

             (12) 

 

It can also be written in matrix form, the error squared quantity as show in 

equation (13). 

 

                     (13) 

 

And also the error vector: 

 

                (14) 

 

What we want at the end is to minimize this error E. In order to do this, we can 

use the gradient derivative, and write it as follows: 
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The derivative of R is explained in equation (16). 
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Replacement and rearrangement of the elements gives the normal equations.  
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The final task is to solve this system for W. This is summarized in Figure 2.4. 
Linear Least Squares 
-inputs: X, Y 
-outputs: W 
1: Begin 
2: Initialize matrix A := XTX 
3: Initialize vector B := XTY 
4: Initialize W to be length M 
5: Solve system AW:=B for W 
6: Return W 
7: END 

Figure 2.4 Linear Least Squares pseudocode 

 

Unfortunately this algorithm will not always find the answer. If the matrix XTX is 

not invertible, that means that the system cannot be solved; therefore there is no global 

optimal. Because our chosen method to find the inverse is singular value decomposition, 

whenever there is no global optimal, the algorithm gives a pseudo inverse, which can be 

thought of a sub optimal solution. 

 

2.3. Neural Networks Regression 

So far there has been a lot of talk about neural networks. But what are these data 

structures? Neural networks are data structures capable of approximate any function, 

non-linear continuous. The principle lies in that the function must be continuous and 

differentiable. Neural networks try to represent and break up the problem into smaller 

activation segments, where each segment gets activated as a feature triggers the next 

neuron. This is very similar on how a real neural network works in the animal kingdom. 

The problem is disseminated within the network, and individual neurons process the 

information accordingly.  

It has been shown that neural networks are a widely used technique to model 

both approaches, time series and semantics features. The following sections will show a 

couple of techniques used specifically to train neural networks, and some of their 

architecture. 
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2.3.1. Self organizing maps 

Self organizing maps are a variation of neural networks. Teuvo Kohonen (2008) in 

his research work shows the basic steps for the algorithm to work. The main goal and 

purpose of this structures is to potentially reduce the dimensionality of a problem. In 

addition, it also creates topological relationships in the form of networks helping to 

categorize or even do regression. To explain how these networks work, the first step is to 

look and understand their structure. Figure 2.5 shows the structure of a self organizing 

map. 

 

 
Figure 2.5 Self Organizing map architecture (Figure 4.3.a in Kohonen’s book 2008) 

 

Each internal node in the self organizing map shown in Figure 2.5 is connected to 

the input nodes. These input nodes are displayed in white in Figure 2.5. For simplicities’ 

sake, we will only work with a two dimensional self organizing map, with a neuron 4x4 

mesh. Each SOM contains an N dimensionality input vector (2 dimensions in the case of 

Figure 2.5). Each internal node is a set of weights of the same dimensionality. This means 

that if the input layer consists of Xi, for i = 1, 2 … N then each internal node can be 

described as shown in equation (18). 
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Each node has an x and y coordinate associated with it. In the case of Figure 2.5, 

the map is a 4x4 so it means that x = 1, 2... 4 and y = 1, 2… 4. 

But at the end, what is the output of such data structures? The main purpose is to 

have a final output displaying clustering information that has a continuous nature. One 

famous example is clustering of colors in a two dimensional space. What we want 
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evaluated at the end is the result of linear combination between the weights and inputs 

on each node in the two dimensional special grid. 

Figure 2.6 shows the high level pseudo-code explaining the training process of a 

SOM. 

 
SOM learning 
-inputs:  
X(inputs) 
-outputs: SOM of DxD 
1: Begin 
2: Initialize weights of DxD map to be small 
3: For each x in X 
4:  Select Node whose weights matching x vector the 
    best (known as the best matching unit BMU) 
5:  Calculate radius of BMU’s neighborhood 
6:  Alter weights of BMUs radius so they look more  
    like  
    BMU’s weights. The closer the bigger the update 
7:  Reduce the BMU’s radius rate 
13:END 

Figure 2.6 SOM learning algorithm 

 

As displayed in Figure 2.6, step 4, a best matching unit must be picked. This BMU 

must be the set of weights that appear to be closer to the original input weights. This 

could be done by calculating a simple Euclidean distance measure, which is shown in 

equation (6). As we can see, both the input and the weights are vectors of the same 

dimensionality. Teuvo Kohonen (2008) also argues about other distances, that are 

proportional to the shape of the entire input space, but these go out of scope of this 

study. The main purpose is to keep it simple so it can be later extended and refined. 

Step 5 of Figure 2.6 needs to calculate all the nodes that are within the radius of 

the BMU. These can be done by using a simple Pythagoras theorem for each node, and 

realizing if this is inside the radius of the BMU. These nodes should be selected and kept 

somewhere for the next step which is their update. But before going to these, it is 

important to know that we want to converge at some point. This can be done by 

dampening the radius as each example is examined. Equation (19) shows an exponential 

decay function, which can be used to damper the radius update as each training example 

is presented to the lattice. 
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The σ0 element in the equation denotes the initial radius of the BMU at time t0. As 

each “epoch” progresses this radius decays exponentially. The λ represents the time 

constant, which is a parameter of the algorithm telling it how fast to decay. 
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Finally, each weight should be updated, using the rule in equation (20). 
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As seen before, wi
x,y represents the ith weight of the x and y coordinate node. This 

weight is updated by adding a delta. The delta itself contains the subtraction from the 

corresponding vector i dimension component Xi of the input node. But this delta must be 

multiplied times a learning rate composed of two functions. The first one is the L(t) 

function. This function, similarly to equation (19), decays with time. It is meant to help on 

convergence of the self organizing map after several iterations. The next section of the 

learning rate is the Θ(x,y) function. As seen before, this function is dependent on the 

coordinates of the original internal weight vector. The bigger the distance from the BMU, 

the smaller this learning rate should be. 

With self organizing maps, clustering can be achieved. Not only this, but pseudo 

features can be derived out of a semantically input data. The truth is that these require a 

special training set that perhaps a time series or hospital data wouldn’t match well. It is 

also seen that there is a lack of good literature pointing towards a good feature derivation 

tactic using self organizing maps. In any measure, Teuvo Kohonen has done an impressive 

job in deriving this interesting data structures. 

 

2.3.2. General Regression Neural network 

Clustering is proven to be a useful technique, and its application can also be 

integrated as part of a neural network’s algorithm. Specht (1991) propose a new type of 

neural network, capable of maintaining the original input data. This neural network is 

based on the principle of memorization. We as human beings, tend to mix generalization 

and memorization. Both techniques try to be integrated here and prove some sort of 

success. The main architecture of a General Regression Neural network can be seen in 

Figure 2.7. 
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Figure 2.7 General Regression Neural Network (GRNN) architecture (Figure 1 in Specht’s research 1991) 

 

To properly understand regression and construction of this neural network, the 

first step is to know exactly the way regression occurs. Notice that there are 2 outer most 

layers here, the summation and output layer. The output layer can be explained in 

equation (21). 
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The numerator represents the A neuron of the summation layer. The same 

applies for the B neuron, which is the denominator. At the end the operation is simply a 

division of these two layers. But what does each layer represent? As we can see, A has a 

set of weights Ai where i = 1, 2… m and Bi where i = 1, 2… m. Each weight in I is related to 

a pattern neuron. Pattern neurons can be thought as clusters of the original data. 

Depending on an analysis, and how well the data is memorized, the pattern neurons are 

realized by calculating the centroids of the original data. So for the algorithm, a 

preprocessing step is needed. The definition of these pattern neurons (Ci) is defined in 

equation (22). 
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The distance in (22) is also known as the city block distance. This distance 

represents how far the training example from the cluster being observed is. In simple 

words is the sum of deltas from every element of a cluster minus the observed example. 
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The final step in the learning process is to realize the weight values that each of 

these clusters have with respect for the data. This can be represented using the A and B 

neurons. So this is the generalization part, where as the memorization part involves 

clustering. Equation (23) and (24) show the respective learning rules for A and B. 
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These steps are repeated until k iterations have been met. There is a better 

derivation for these rules, which is more complex. More information can be found in 

Section C of Spechts (1991) research. 

What is interesting about the techniques used in this neural network is the fact 

that the usage of memorization is applied. This helps the system to keep exact track of 

the previous data set and bring a possibility of enhancing regression. As we can notice the 

constants A and B are conceptual nodes. These define how well the pattern nodes 

influence the outcome. This is very similar on how a human brain works, by memorizing 

and then generalizing with certain thresholds and mixture of concepts. 

Back propagation and feed forward neural networks 

The last neural network we saw falls under the category of feed forward neural 

networks. Feed forward networks are those that compromise multiple layers, each 

obfuscating the next one. Communication between layers can be only done directly, and 

not through random wiring. The feed forward neural networks and back propagation 

methods are explained in Mitchell’s book (1997). These algorithms will be explained in 

later chapters of this study, since they are an essential part of the experimental data. 

 

2.3.3. Back propagation 

The most common method to train a neural network is perhaps back propagation. 

Mitchel (1997) shows us the derivation and ways back propagation works. In order to 

understand it, it is also needed to understand the meaning of a Feed Forward Neural 

Network. A Feed Forward Neural Network comes from a biological inspired approach. 

This approach dictates that a problem can be explained by individual units called 

“neurons” connected together. Each neuron will process a particular part of the problem, 

and feed its results into the next layer of neurons. This is the basic principle of how the 

human brain works. Many scientists say that this could be an explanation of why human 

thought is heavily based on inspiration (1997). The neuron on this case is something we 

will call a perceptron. A perceptron graphical picture is show in Figure 2.8. 
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Figure 2.8 Unthresholded Perceptron 

 

The perceptron shown in Figure 2.8 represents the linear equation 

                    . Each element in X in this linear equation is the output from a 

previous perceptron. Notice that the perceptron is just the name for a hyperplane. A 

perceptron itself is linear, so a neural network of unthresholded perceptrons will still be 

linear. The non-linearity occurs at the end, by making the perceptron the function 

displayed at (25). 

 

         
                   

 
      

            
     (25) 

 

As seen before, a set of thresholded perceptrons will be able to represent any 

non linear function; given that the last perceptron is unthresholded (this is done so the 

output has a free domain). A neural network can be graphically represented as in Figure 

2.9. 

 
Figure 2.9 Neural network representation 
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Notice in Figure 2.9 the neural network is divided into three separate layers. The 

first layer is the input layer, this layer represents the original inputs (the vector features) 

that will feed into the neural network. These values get propagated to the hidden layer. In 

this layer, which is the first one with thresholded perceptrons, values get to the outer 

most, which is the final output layer. At the end the output should go from here. There 

are networks that have more than one hidden layer, thus requiring specific number of 

hidden neurons. The more hidden neurons, the better coverage of a function a neural 

network model can do. This also brings up the problem of learning the correct weights. If 

there are more neurons, there has to be more data to learn the proper weights. There are 

a lot of algorithms that help learning the weights in a neural network. Back propagation 

was chosen for this study, since it’s the basic algorithm for feed forward networks (as the 

one in Figure 2.9). The basic principle in back propagation is very similar to that of 

gradient descent. Weights are updated gradually by a small derivative. This is done by first 

figuring out the error of the neural network (therefore input propagates to the front first 

and the total error is discovered). After this, error is sent back, and the weights are 

updated layer by layer using this rule. In order to have a smooth derivative approach, it is 

better if the threshold units use a smooth function instead of a non-continuous threshold. 

This is called a sigmoid unit. The sigmoid function is expressed in (26). 

 

         
 

          (26) 

 

A very useful property of this sigmoid unit is that the derivative can be written in 

terms of itself, as show in (27). 

 

   
     

  
            )   (27) 

 

In order to define a proper set of operations to update these weights, a first 

glance to the target function is needed in (28) for the output units. 

 

            
 

 
        

 
            (28) 

 

Where t is the training value for the correspondent k output unit and o is the 

output value of the corresponding output unit. At the end we want the gradient vector 

which describes derivatives. We will want to minimize the outcome of the error function 

by changing the derivatives. The gradient rule is shown in (29), using derivatives chain 

rule. 
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       (29) 

 

The chain rule in (29) tries to extract the weight derivative from the error. Since 

the weights are under the net function (which is the linear combination of weight values 

and input values), its derivative with respect to the weights is the ith input value X of the 

jth unit. The next step involves solving the  
   

     
 derivative. This can be thought of two 

separate cases. The first case involves updating the weights of output layers and the 

second involves the update of any internal node’s weights. This entire section is based on 

Mitchell’s work (1997). Once the update rules have been derived, it’s all about iterating 

through the example set and updating the weights of the neural network for several 

iterations. Figure 2.10 displays the pseudo-code for back propagation.  The main loop in 

gradient descent has to update the neural network iteratively. The updates are done in a 

stochastic fashion, as in one example at a time. For each one of these iterations and for 

each example update, each neuron’s   error is calculated. As shown in the derivation of 

error updates, each neuron gets its own   measurement depending on the layer they are. 

A problem with this is the convergence to local minima. 

 
BackPropagation 
-inputs:  
X(inputs), Y(outputs), η(learning rate), T(iterations) 
-outputs: ANN  
1: Begin 
2:   FOR t = 1 to T 
3:    FOR i=1 to N 
4:      For each output Unit k 
5:          k = (yik - Outputx) 
6:      For each hidden Unit h 
7:          h = Outputh(1 - Outputh)                      

8:      Update every                         
       

5: RETURN ANN 
7:   END 

Figure 2.10 Back Propagation 

 

The main loop starting in Step 2 will update the weights in a stochastic manner. 

Steps 5 and 7 of Figure 2.10 apply the weight update directly. Notice how the loop in Step 

3 starts first from the outer most layers into the inner most hence called back 

propagation. This means that the algorithm might find a set of weights that is not 

necessarily the optimal. Several techniques are available to help the algorithm to fall into 

a local minimum set of weights. The technique used in the Admission data set uses a 

validation set and takes a snapshot of the Artificial Neural Network during each iteration. 
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The ANN that has the least error with respect to the validation set gets picked at the end 

of the iterations. This tries to maximize the accuracy of the function the ANN is modeling. 

 

2.4. Regression trees 

Regression trees are a type of classification and clustering technique used. There 

are many ways of generating and representing a regression tree. Many fields use 

regression trees as a data structure capable of approximating non linear functions. Many 

of this techniques involve some sort of meta algorithm and fitting a the leaf nodes. In this 

section, a couple of the existent methodologies will be discussed. 

 

2.4.1. Regression tree algorithms 

Neural networks have a very powerful representation. Another approach is the 

divide and conquer technique. It would require taking the entire problem and dividing it 

in specific chunks that are solvable through a known technique. The regression tree does 

this, by creating a binary decision tree data structure. Each node in the tree will represent 

a feature of the input space in which a decision is made. The edges connecting the nodes 

represent the respective thresholds that should undergo when facing this decision. The 

leaf nodes are the ones that do the regression of the specific input space. Figure 2.11 

shows an example of a Regression Tree. 

 

 
Figure 2.11 Regression tree 

 

Figure 2.11 shows that each node internally represents a feature, with its 

respective thresholds. A path in the tree will be followed based on the features and a 

specific example picked to do regression on. Figure 2.12 shows the example of a 

continuous function with a regression tree on top. On this case, the regression tree leaf 

nodes consist of trained hyper planes. As we can see each hyper plane fits a segment of 



25 
 

the function and tries to approximate it. The combination of these lines approximate to 

the function. 

 

 
Figure 2.12 Left hand side regression tree, right hand side non linear function. 

 

The representational power of a regression tree is more discrete than that of the 

neural network. This could mean that non continuous functions are potentially better 

represented with a regression tree, whereas in a neural network a differentiable function 

is needed. The problem with a regression tree lies in its building, which requires many sub 

algorithms depending on the function that is being learned. There are three main sub 

problems in a regression tree: splitting criteria, stopping criteria and regression leaf 

nodes. For now, the pseudo code will be shown independently in Figure 2.13, and these 

three sub problems will become three sub procedures. 

 
RegressionTree 
-inputs:  
Features, X(inputs), Y(outputs) 
-outputs: RegressionTree  
1: Begin 
2: if STOPPING CRITERIA is true 
3:   perform REGRESSION in current X|Y 
4: else 
5:   perform SPLITTING CRITERIA and split X|Y into two  
     subsets (left and right) 
6:   Recursively call RegressionTree in left and right 
     Nodes 
7: End 

Figure 2.13 Regression Tree 

 

The algorithm has a recursive nature. There is one main test case, which tests for 

the stopping criteria. If the algorithm meets the stopping criteria, then immediately all the 

examples used become the new leaf node. This will call the REGRESSION sub procedure in 

Step 3. This sub-procedure will be in charge of using the current data to fit a model. If the 

stopping criteria decides otherwise, a serious of splitting steps occur. The first and 
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foremost is the sub procedure that tries to find the best splitting point. There are many 

techniques which will be explained later under the splitting criteria sub procedure. This 

procedure might fail, as in not being able to find a better splitting point. This would mean 

that splitting more the regression tree will actually decrease its accuracy instead of 

helping it. If a splitting point is found, then this point is used to split the input and output 

sets respectively. Then the algorithm is called recursively on these children. The following 

sections explain with detail the type of algorithms needed for this. 

 

Splitting by variance (CART): 

Step 5 of Figure 2.13 calls the subprocedure SPLITTING CRITERIA. There are many 

algorithms and techniques present. We will first study the one implemented by CART, 

which deals with variance. 

Variance split will check for every possible splitting point in the data and perform 

a splitting test. Out of these splitting point candidates it will try to discover that one that 

minimizes the impurity gain. The impurity is calculated using the variance of each subset 

and lastly getting an impurity measurement. When there is more variance there will be 

higher impurity, the least output similarity from the examples.  Figure 2.14 shows the sub 

procedure variance version of PickBestSplit. 

 
PickBestSplit (variance version) 
-inputs:  
Features(F), X(inputs), Y(outputs) 
-outputs: (best_f,best_fv)  
1: Begin 
2: BestGain = 0, (f_best, f_bestv) = null; 
3: AllImpurity = CalcVariance (Y) 
4: For each f in F 
5:  For each split point fv in f 
6:    Split X using (f,fv) into Xleft and Xright 
7:    Split Y using Xleft and Xright into Yleft and Yright 
8:    Gain = Allimpurity – (CalcVariance (Yleft) + CalcVariance (Yright)) 
9:    If (Gain > BestGain) 
10:     BestGain = Gain 
11:     (f_best, f_bestv) = (f,fv) 
12: Return (best_f,best_fv)  
13: END 

Figure 2.14 Pseudo code for PickBestSplit by variance 

 

The main goal is to pick a split in which we have a “gain”. Gain means a possible 

improvement in data granularity. The gain is a measurement that compares the impurity 

before versus the impurity after. For this particular case, as mentioned before, the 

impurity is just the variance that the data has. It can be thought as how far the data is 

from average and how variable it is. If there is such a case of improvement then the split 

that maximizes this gain wins.  Notice that Step 2 of Figure 2.14 initializes the best split 
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point as null. That means that if there is no such split that maximizes gain, the regression 

tree algorithm should decide to stop and fit a regressive model by creating a leaf node. 

There are some variations of these splitting criteria. Popular ones, as used by 

CART, involved a weighted variance. That means that step 8 of Figure 2.14 will use relative 

weights of each split point. It does this to be fair and influence splitting points to be 

proportional. 

 

Stopping Criteria: 

Step 2 of Figure 2.13 queries the STOPPING CRITERIA sub procedure. This sub 

procedure will decide if dividing the regression tree is worth it. If the sub procedure 

dictates to stop, then the regression algorithm must be called and generate a model on 

the data left. There are two kinds of stopping criteria, pre splitting and post splitting. The 

pre splitting stopping criteria analyses the pieces being split. The post splitting analyses 

just after the split point has been picked. The following sections will explain the 4 major 

stopping rules used during earlier experimentation with the admissions data set. 

 

Number of Levels 

This pre splitting stopping criteria will first look at the number of levels being 

traversed in the tree. If the current depth of the tree exceeds a threshold, then STOPPING 

CRITERIA in step 2 of Figure 2.13 should return true and force the algorithm to generate a 

leaf node. The problem with this method is that stopping the tree growth in a level might 

not generate a good fitting. The level forces the tree to be of a single height with no 

chance to have denser nodes than others. This can potentially limit the power of a 

regression tree. Also, intuitively, is very hard to find a correlation with data and the 

number of levels that a tree possesses. 

 

Leaf Size 

Stopping the tree growth whenever the number of examples falls under a 

threshold seems better than stopping by level. While still hard to correlate against the 

data’s semantics it will intuitively generate better trees than those generated by the 

minimum levels stopping criteria. Trees that stop their growth with a leaf size threshold 

do not have to be of a single level, they can be of several levels and depths. This increases 

the power of the regression tree and its shape. 

 

Regression at Leaf Nodes: 

The final sub problem in regression tree formation is the actual step of regression. 

For this there are several techniques proposed, each one with certain advantages and 

disadvantages over data. 
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Simple Average 

The simplest method of regression is an average of the output Y values clustered 

at the leaf nodes. A disadvantage with this is that the size of the tree will be the one in 

charge of deciding its power. The models at the leaf nodes are very naïve and inflexible 

and high amount of errors might be present especially if there are outliers in the training 

data. Splitting methods such as variance splitting and error splitting are appropriate for 

this situation.  

 

Linear Regression 

For linear regression there are many options. Gradient descent could be applied. 

The biggest problems with gradient descent are its greedy nature and time complexity. 

This time complexity might not be feasible and become impractical when the tree has 

several hundred leaf nodes. Another disadvantage of gradient descent is the number of 

parameters, such as the learning rate and iterations numbers. It was argued before that 

such parameters are very linked to the numerical distribution of the Y data. Higher 

averages require high learning rates, and conversely. 

 

2.4.2. Summary of other methodologies 

Wei-Yin Loh (2008) offer a variety of algorithms that could be used for regression 

tree generation.  

The main purpose of a regression tree is to output a data structure as described in 

Figure 2.11. The regression serves as an extra clustering technique that categorizes and 

fits every vector of the input space into a particular leaf node. The simplest method 

described by Wei-Yin (2008) is CART. CART tries to divide the space by minimizing 

variance. Another technique used is QUEST. While CART does a brute force selection on 

the best possible split value, QUEST instead does a selective search. It uses several 

heuristics to categorize the best feature to perform a split. 

After the feature is picked, it will use it to pick the best split point that would fit 

the model. QUEST is said to be an unbiased classification method for this reason, since it 

first selects the feature and then the split point. 

Another interesting algorithm developed by Wei-Yin (2008) is GUIDE. The 

algorithm tries to stay away from a typical greedy tree methodology. It constructs a 

multiple linear and simple polynomial model on a target error function (Wei Yin, 2008). 

This error function could be least squares, quantile or Poisson error distribution. Just like 

QUEST, variable selection is unbiased. It also performs a post pruning step once the tree 

has been formed. 
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Wei-Yin in his study concludes that all these algorithms have their advantages and 

disadvantages. While CART is very simple, and QUEST very complex, CART can actually 

perform very good with noisy data under with Normal error distribution. QUEST on the 

other hand can over fit easily to data, but its representational power is greater, meaning 

that it is better fitting very complex functions. Another problem with QUEST is that is 

restricted by Univariate splits. Amongst these methods, the principal method studied and 

extended is a variation of CART. This variation uses piecewise linear approximation and in 

later chapters it will be explained and supported throughout. 

D. Vogel et al (2007) suggests a technique of building a piece wise approximation 

regression tree, but using not so greedy techniques. The technique consists on 

construction linear models for splitting attempt. This will generate a tree that potentially 

can’t overfit since is spending more computational time in the search of the best tree 

possibility. At a first glance, one would think that doing such thing is very computational 

expensive. For example, fitting linear models per each split possibility sounds very 

expensive. In fact, through several linear algebra simplifications (therefore using Gaussian 

elimination as its leaf node regressive algorithm), Vogel is able to recycle operations and 

minimize the computational expense. The problem with this technique was that he didn’t 

try any other toy data sets. Only practical sets are used, and there is a lack of explanation 

about this data in his research. Maybe it could be biased, but it is always necessary to 

have an artificial data set that tries to contrast the best and worst qualities that a 

regressive algorithm could potentially engage into. 

 

2.4.3. Regression tree applications 

Regression trees have found many applications on the literature. One of the 

biggest reasons why regression trees are preferred is their easy of readability. In principle, 

the regression tree can be easily understood by humans. It can reveal patterns and 

expose them clearly to the audience. Sometimes regression trees don’t have always show 

this behavior. When a tree grows too long in an unbalanced manner, it is very hard to 

distinguish the real patterns hidden behind the node thresholds. Buja and Lee (2001) 

proposes a methodology that is not meant to increase the tree’s accuracy but its 

readability. In CART, the splitting criteria points always towards the split value that 

minimizes the variance impurity measure on a weighted average fashion. This impurity 

measure is simply the weighted variance of the two sets of the split data. Buja on the 

other hand forces the tree to grow into one side. This is done by minimizing the impurity 

measure described in equation (30). 

    ),max( RLimpurity    (30) 
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As shown in equation (36), the impurity is biased towards one side of the tree. 

This will generate one sided imbalanced trees which could be less complex. This can 

relatively help with readability and is a good approach for early data analysis. An example 

of a tree generated using this strategy can be summarized in Figure 2.15.  

 

 
Figure 2.15 Regression tree optimized for readability (Figure 1 of Buja and Lee 2001) 

 

As Buja and Lee (2001) explain, this tree optimized for readability is not meant to 

do complete regression on a data set, but rather expose patterns that can be discovered 

and exploited for feature generation. While this research work introduces this technique 

as a novel approach to improve readability, is very hard to compare against other 

approaches meant for readability. This is a study that does pure analysis of these 

techniques based on visual approaches rather than quantifiable. In any case, it is a good 

idea to see what kind of patterns is discovered if a split is drawn to minimize variance in 

the greediest way. 

While regression trees improve readability over neural networks, they are 

obviously good for what they were meant for which is regression. A study drawn by 

Yohannes and Webb (1999) show that regression trees can also be used for outlier 

detection. Their splitting nature helps separating concepts that present different patterns 

within the features chosen. In their study, they use data from a famine vulnerability data 

set. This is meant to identify “outliers” that are targeted as areas of low protection. Some 

of the features are discrete. The way a regression tree handles discrete features is by 

creating Boolean attributes for each value of the discrete ones. For example, the attribute 

DAY_OF_THE_WEEK in their classification data has seven values. Each value represents a 

day of the week. When preparing these attributes values to be inserted in the regression 

tree, a pre step approach is used. This involves taking each value (such as Monday, 

Tuesday, Wednesday etc) and converting it into its own independent attribute. The single 

discrete DAY_OF_THE_WEEK attribute will now become seven distinct synthetic 
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attributes, each one with its own Boolean value. These will be IsMonday, IsTuesday and 

etc, each with its possibility of being true or false. 

While exploring attributes information and preprocessing, Yohannes and Webb 

(1999) also show possible ways of avoiding over-fitting. Like a neural network, it is 

possible for regression trees to over fit. This happens when the tree either grows too 

large, or the model themselves at the leaf nodes “memorize” the training data. In CART 

this occurs when the splitting point is wrongly chosen, without checking its validity 

instead a validation set. This is one of the solutions that Yohannes suggests. Another 

interesting solution is the concept of a K-fold cross validation. Cross validation is a 

method used when there is a lack of training data. While using the entire training data, it 

makes sure not to oversee the entire data at once. Each piece will take turns into being a 

validation and a training set. At the end this will dictate the predictability and at the same 

time take the most advantage of the training data. 

Huang and Townshend (2003) propose models that have their applications on 

subpixel land cover. The problem here is to try to associate land pieces with similar 

topological properties by just using images. The images contain aerial photos of a rural 

area around Annapolis Maryland. The purpose here is to allow the machine learning 

algorithm correctly identify areas of similar topological area properties. These properties 

include plantation types, type of soil temperature amongst others. Surprisingly the trees 

formed are not as big, containing only around 6 nodes. The small tree contains several 

hundred paths, and is able to produce a highly non-linear relationship of the pixels in the 

image. While the model is not perfect, it demonstrates a low error and good fitting with 

respect to the test data. The test data involves maps pre-categorized by human beings, 

based on the same features. For regression, they use a method called Stepwise Linear 

Regression. This method searches all possible combination of lines performed, and picks 

the one that minimizes the error with respect to other points in the line. Splitting criteria 

involves solving SLR (stepwise linear regression) for each possibility of a split. The problem 

with this technique is time complexity, and this constrains are not analyzed in Huang and 

Townshend (2003) research work. This type of computation could take hours and is very 

unpractical. If the dimensionality of the problem is big enough, it can be unfeasible to 

apply such algorithm.  

While the power of piece wise linear regression is in fact very useful for non linear 

problems, computing a linear regression tree is no easy task. In later chapters further 

concepts will be explored, motivated by many of the weaknesses shown in these 

methods. Is it necessary to explore every combination of splitting points? Is it necessary 

to explore every single point when doing linear regression on a set of points? All these 

questions lead to the motivation of new methods that use modern randomization 

techniques to solve these difficult problems. 
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2.4.4. Regression tree novel approaches 

This section focuses on the new approaches that many researchers have taken 

into optimizing and improving known regression tree algorithms. It was already seen that 

many fields of study prefer regression trees as their off the shelf algorithms. The biggest 

reasons being their simplicity and readability and sometimes the speed in which this data 

structures could be converged.  

Izrailev and Agrafiotis (2000) suggest a novel approach involving a controlled 

randomized algorithm. They use Artificial Ant Colony Systems to find tree structures. This 

technique is based on the biological and organizational aspects in which an ant colony 

works. As we know, ant colonies consist of several tunnels and paths leading to the food 

chambers, yet ants can easily find their way through the most optimal path. Now the 

problem here is how the ants collaborate to find the shortest path between the food 

source and the nest. Ants leave a pheromone scent on the ground and the accumulation 

of this pheromone defines the shortest path. 

The algorithm suggested by Izrailev and Agrafiotis (2000) is of a randomized 

nature. The representation of ants is given by each tree. Each proposed tree represents 

an ant, and the composition of their leaves represents the path they have taken. On the 

outside there is a binary topological union of these ants that stores the probability of 

paths by accumulating the ants finding the correct paths. Paths that lower the error 

(regression here is done by using average just like CART) will be rewarded with more 

probability. Those with less will be rewarded with least probability. At the end a sum is 

made and the topological probabilistic tree will contain an agglomeration of the best 

paths. It is up to here that either the path with max probability is chosen, or simply picked 

at random with the respective probabilities. 

Results are impressive in a couple of data sets. These data sets happen to be of 

high dimensionality, so it seems to be a correlation between high dimensionality and 

guided randomized search. In fact, the reason why the algorithm performed better might 

be because its comparison was done against a random algorithm (which chooses paths at 

random). The higher dimensionality, the less correct paths there will be then the random 

algorithm has a broader set of paths to choose from, reducing the probability equally for 

everyone. The other baseline algorithm was the RP (recursive portioning), which is a 

greedy algorithm very similar to CART. At the end results show that in general ant search 

is better, but not in a degree of significance that can totally discard RP algorithms. Izrailev 

and Agrafiotis (2000) also failed to present customized toy data sets testing for over 

fitting. While not really practical, these kinds of toy data sets show a specific feature of 

the algorithm that might be desired or undesired. It forces the algorithm to explore its 

weakest and strongest points, which might be hidden in a regular data set. 
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Randomization techniques are a good choice when exploring a big problem space. 

Interestingly, Wei Fan et al. (2006) propose a very simple technique. It involves generating 

a set of random trees and combining them in an average to perform regression on data. 

There is a mathematical proof showing how entropy influences and at some point 

combines to produce a factual answer to a problem. The algorithm is very simple. It starts 

by producing random trees (and by random it is meant that splitting criterion picks 

random attributes and split points). At the end these random trees combine to produce 

final regression. Since there is less hypothesis bias, due to the nature of the algorithm, 

statistically the combination of each random tree reduces the variance in the final 

outcome. This means that each tree acts as a little helper to find the final regression 

model to the problem. At the end the trees outputs are combined by doing an average, 

and this average is the final answer for the regression. Interestingly they showed the 

random regression tree under several data sets, proven to work for a variety of 

dimensionalities. The results show that the tree doesn’t always performs better than 

other algorithms, but it does in a great amount of times. The contribution here is that a 

random regression tree doesn’t cost as much when learning it, compared to other 

algorithms such as CART. 
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Chapter 3 
A Randomized Approach to Regression 

 

 
This chapter will propose algorithms based in the guided randomized search 

principle in hopes to overcome these problems. The chapter is divided in two main 

sections of the study. The first one talks about our proposed randomized linear regression 

algorithms KGERS. Linear regression takes an important role in the formation of 

regression trees that perform piece wise linear approximation. The second part will talk 

about the new algorithms devised for a regression tree, and how KGERS be integrated to 

be able to perform modeling on non-linear problems. 

 

3.1. Motivation for KGERS 

KGERS has two important properties. The first property is the subset nature of the 

algorithm, by only analyzing part of the data and not the entire set. The second property 

the randomized nature of KGERS, by only picking random sets of the data through each 

trial. The motivations for these properties of KGERS are under the main assumption that 

the input points do follow roughly a linear pattern. By this, it means that there exists a 

line that minimizes the error against other points, and that this error is relatively small. 

The motivation for the subset nature of the algorithm comes from the 

assumption that we are dealing with a set of points that follow a roughly linear pattern. 

By roughly linear we mean error relatively low that would make algorithms such as 

Gradient Descent converge. Assuming we have a perfect data set where all the points are 

on a hyperplane it doesn’t matter which subset is picked. Any subset of size M+1 (where 

M is the dimensionality) will always produce the same hyperplane. Under this property 

the motivation for randomized subsets is used.  

The next property involves the randomized nature of KGERS. Figure 3.1.A 

illustrates the subset property. This shows the sample data set, which involves 4 points 

that roughly follow the shape of a line. To illustrate this example we will use a few data 

points in a 1 dimensional problem. For this set of 4 points there is a total possibility of six 

subsets generating lines (subsets must be size 2 since is a 1 dimensional problem). Out of 

these six lines, only 1 is not similar to the optimal solution. 



35 
 

 
Figure 3.1 Illustration of randomization property from KGERS 

 

Figure 3.1.C of the diagram shows what happens when a new point is added. It 

only generated two lines (the new dashed lines) that are far from the optimal solution. 

The probability that a line is picked and is close to the optimal solution is 7/10. Notice that 

this decremented from an original probability of 4/5 displayed in Figure 3.1.B. Based on 

these properties the motivation for a randomized subset arrives, due to the likelihood of 

generating good hyperplanes does not decrease dramatically as more points (that are 

roughly follow a linear pattern) are added. 

 

3.2. KGERS Algorithm 

Solving linear systems is a problem that has many applications. As seen before, it 

helps modeling hyper-planes of m dimensionality when several feature vectors are 

shown. It is proven that any function can be approximated by splitting it into several 

linear equations. This process of function discretization into hyper-planes shows good 

results with toy data sets, and so with the EDInpt data presented in future chapters.  

In simple terms, the problem we are trying to solve is that we are given X, which 

is a set of vectors defined as:  

 

   mjnixX ij ..1;..1;      (1) 

 

where m is the dimensionality, and n the number of points we are given. At the 

same time, we are also given Y, which is defined as: 

 

   niyY i ..1;                  (2) 

 

This Y is the set of values that we want to do linear regression based on X. At the 

end we want to figure out the weights of this function: 
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such that the value of ŷ(Xi) approximates y. This chapter will focus on the 

proposal of KGERS, a newly devised randomized search algorithm that is motivated on the 

necessities of piece wise linear regression. 

Regression and splitting at the leaf nodes of a regression tree requires an 

algorithm that is less complex, decidable and fast. This means that there is the need for a 

technically fast algorithm that can still be likely to find a good linear equation to fit. KGERS 

stands for K-Gaussian Elimination on Randomized Sub Sets.  

 

 
Figure 3.2 KGERS line visualization 

 

Figure 3.2 shows the motivation behind KGERS. This figure is showing a 2 

dimensional problem, which requires 2 points for each K random set. This will generate 

lines and each line will have an error with respect to the rest of the points (Step C). The 

dashed lines represent the error that the selected subset has against the rest of the 

points in the figure. Lines with higher error (larger set of dashed lines) will have less 

impact on the final hyperplane generated. Figure 3.3 shows the pseudo code for KGERS. 

In step 3, the algorithm uses randomized sets of data (of size M) and arranges them into 

separate sub sets. Each of these data sub sets will generate a line that has exactly 0 errors 

with respect to the original points, which is done in step 5 of the algorithm. Finally each of 

these generated lines will be weighed against its error with respect of a random set of 

data (of size M again) from the validation set, described in Step 6 and 7 respectively. 
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K-GERS 
-inputs: X, Y, K (M is dimensionality) 
-outputs: W 
1: Begin 
2: For k=1 to K 
3:   Let S be randomly selected M+1 rows in [XY] 
4:   Let S’ be [XY] - S 
5:   H[k] = GenerateHyperplane(S) 
6:   R[k] = CalculateHyperplaneWeight(H[k], S’) 
7: W = GenerateFinalHyperplane(H, R) 
8: Return W 
9: END 

Figure 3.3 K-gers pseudo code 

 

Step 3 of Figure 3.3 makes a random selection of a subset. This random selection 

will use a uniform distribution for now. The motivation behind this is to have chance for 

every single point in the training set. The distribution in which the pseudo number 

generator works could change, but this would be entirely dependent on the input data 

statistical properties. As a general case a uniform distribution will be used. Sampling is the 

field in statistics that seeks to extract subsets from individual observations. The way these 

subsets are picked can follow a specific distribution, such as Gaussian. For the case of this 

algorithm, a uniform distribution will be used. Step 5 generates a hyper plane using the 

randomized subsets that were picked. This hyper plane of course will have zero error with 

respect to the original points that created it, but this is when the validation set enters. 

Figure 3.4 shows how a hyperplane is generated. Steps 2 through 4 define the elements 

required in the linear system. In Step 5, Gaussian elimination to solve the linear system, 

resulting into a hyperplane that has 0 error with respect to these data points used. 

 
GenerateHyperplane 
-inputs: set S of M + 1 points 
-outputs: H (hyperplane H) 
1: Begin 
2: let H be a hyperplane weight vector of size M 
3: let A be the feature matrix from S of size M+1 x M+1 
4: let B be the target vector from S of size M+1 x 1. 
5: Solve the system AH=B for H 
6: Return H 
7: END 

Figure 3.4 GenerteHyperplane pseudocode 

 

To calculate the weight errors, we need a target error function, which is described 

in step 6 of Figure 3.3. For now is the squared error function. Figure 3.5 explains how to 

get the error weights. 
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CalculateHyperplaneWeight 
-inputs: S (a set of points), H (hyperplane weight vector) 
-outputs: r (weight) 
1: Begin 
2: Let A be the feature values from set S 
3: Let B be the target values from set S 
4: Let r = 0 
5: For i=0 to M 
6:   Y_hat = eval(A[rand() % Length(A)],H) 
7:   r += 1/(y_hat – B[i])2 
8: Return r 
9: END 

Figure 3.5 CalculateHyperplaneWeight pseudocode 

 

 

Equation (4) shows the equation representing the calculation of the weights that 

will be incorporated in step 7 of Figure 3.5.  

 




 

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i ii yxy
W     (4) 

 

Notice the denominator is the error squared. Bigger errors will generate smaller 

weights, though less influence of that particular line. Once the weights are ready (and 

normalized), the final step is to aggregate everything by doing a summed weight of the 

errors, as described by step 7 of Figure 3.3. Figure 3.6 describes this aggregation step 

formally. Notice how each weight is iterated through in the outer loop in step 2 of Figure 

3.6. After this, the most internal loop does an update of each weight respectively by 

aggregating all weights, in step 4 through 5 of Figure 3.6. 

 
GenerateFinalHyperplane 
-inputs: H (set of hyperplanes), R (set of hyperplane weights) 
-outputs: W 
1: Begin 
2: Initialize vector W to 0 of size M+1 
3: For j=0 to M 
4:   For k=1 to K 
5:     W[j] += R[k] * H[k][j] 
6: Return W 
7:   END 

Figure 3.6 GenerateFinalHyperplane pseudocode 

 

By the end of step 7 in Figure 3.3, the final result should penalize those hyper 

planes that have a big error with respect to their validation sets. KGERS is an algorithm 

that doesn’t require to access all the data points, and later on this will be shown in its 
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time complexity. Notice how in step 5 of Figure 3.5 the loop goes up to the size of M, 

which is the dimensionality of the problem. We could ask ourselves why not just get the 

best hyper plane: that one with the maximum weight? The answer to this question has to 

do with over fitting. We don’t want to discard information given from other corners in the 

data. Because this randomized algorithm only looks at certain points, it must make the 

most of it, and assume that actually noisy data points also influence the final hyperplane, 

but still penalizing them. Notice that if we have data that follows a linear pattern, except 

for one point, the hyperplanes generated using this point will be heavily penalized and 

have weights that go to 0. 

One advantage of this algorithm is that it uses only one parameter. The only 

parameter here is K, which can be somehow though as the probabilistic value that a line 

can be fit. If in the extreme case, the data completely has linear tendencies, this algorithm 

should be able to find the weights with K = 1 (any set of different points should be able to 

draw the line). Algorithms such as gradient descent require at least the number of 

iterations and learning rate. This could be a problem, since in a regression tree each leaf 

node model might require different parameters to find a proper line. For example, one 

leaf node clusters data points with a distribution using high numbers, then to find a 

proper hyper plane the learning rate requires a low value. Conversely, a set of points with 

low numbers requires a high learning rate. A single learning rate and iterations number 

will not be able to cover every single sub model in the regression tree. KGERS will be 

competing against two traditional algorithms, therefore a time complexity analysis is 

required. This will be shown in the next section. 

 

3.3. Time Complexity Analysis 

This section will break up the algorithms into their basic operations, and give a 

raw time complexity table. This time raw complexity table will include the external 

algorithm parameters. The next table is the true time complexity, which will reduce the 

parameters into functions of the input size. KGERS will be a competitor of Gradient 

Descent, in order to improve the performance in a regression tree. The linear least square 

algorithm is used to measure how far are the algorithms from reaching a global optimal. 

Since linear least squares do not guarantee an answer, it is not a good idea to use in the 

hospital data. It is important however to do some sort of comparison of its time 

complexity, so this algorithm is used as a baseline. 

 

3.3.1.1. K-GERS Analysis 

K-GERS outer most loop goes through the constant K, shown in step 2 of Figure 

3.3. Inside is the procedure of solving a linear equation (step 5). This small procedure has 

a time complexity shown in (5). 
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)( 3kMO     (5) 

 

The evaluation of errors (step 6 Figure 3.3) has to iterate through M + 1 random 

example. This involves a time complexity reciprocal to M. 

 

)( 2kMO     (6) 

 

 Finally is the step of aggregation (step 10 Figure 3.3). 

 

)(kMO     (7) 

 

  All these steps are summarized here in respective order of summation: 

 

)( 23 kMkMkMO      (8) 

 

The constant K can be usually disregarded, since it’s usually much less than N. 

Also, empirical evidence shows that it doesn’t have to grow linearly with respect to N. As 

a result, the final time complexity in terms of M and N gives: 

 

)( 3MO  
 

If the size of K is big enough (for certain data set whose linearity is very low), then 

it can be said that K grows linearly with N. 

 

3.3.1.2. Gradient Descent Analysis 

Gradient descent outer most operation depends on T which is the number of 

iterations. For each of these iterations, all the examples are traversed. For each time the 

examples are traversed, each vector component is updated. This gives a raw time 

complexity of: 

 

)**( MNTO     (9) 

 

As discussed before, T represents the iteration parameter, N represents the 

number of data points, and M represents the dimensionality of each data point. A proper 

implementation of Gradient descent will require a validation set. Still, we always traverse 
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all the data at least once. Empirical evidence shows that the parameter T has to be at 

least the size of N. Smaller values usually don’t converge into a solution. A rough 

estimation suggests that T grows linearly with respect to N. This means that in terms of 

dimensionality and N, the time complexity of gradient descent is: 

 

    )( 2MNO     (10) 

 

3.3.1.3. Linear Least Squares Analysis 

A recapitulation of linear least squares can be found in Figure 3.7. 

 
Linear Least Squares 
-inputs: X, Y 
-outputs: W 
1: Begin 
2: Initialize matrix A := XTX 
3: Initialize vector B := XTY 
4: Initialize W to be length M 
5: Solve system AW:=B for W 
6: Return W 
7: END 

Figure 3.7 Linear Least Squares pseudo code 

 

For step 2 and 3 of Figure 3.7 we need XT. This means that during this first pre-

operation, the time complexity is: 

 

)(NMO     (11) 

 

Matrix multiplication is an expensive operation. On this case, the XT matrix is of 

dimensions DxN. This means that the time complexity for the matrix multiplication (XTX) 

in step 2 of Figure 3.7 is: 

 

)( 2NMO     (12) 

 

Similarly, step 3 involves the matrix multiplication of XTY which will give as a time 

complexity of: 

 

)(NMO     (13) 

 

Added all these previous steps to the solving of the linear equation, adds up to a 

final time complexity: 
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   )2( 32 NMMNMO     (14) 

 

This is because Gaussian elimination has a cube time complexity. Finally the 

reduced form will give us a final time complexity shown in (15). 

 

    )( 32 MNMO     (15) 

 

3.3.2. Analysis Summary 

Table 3.1 shows the summary of time complexities. The last Column displays the 

final time complexity by approximating the algorithm’s parameters to the size of the input 

vector set. 

 
Algorithm Time  Complexity Parameter 

Estimation 
Time complexity with 
parameter estimation 

Always 
Produces a 
valid 
solution 

Optimal 
solution 

Linear 
Least 
Squares 

)2( 32 NMMNMO   
-no 
parameters- )( 32 MNMO   

No Yes (if a 
valid 
solution 
exists) 

Gradient 
Descent 

)**( MNTO  NT ~  )( 2MNO  
Yes Yes (only if 

learning 
rate is 
sufficiently 
small, 
which could 
take a long 
time) 

KGERS 
)( 23 kMkMkMO   

The value of 
K is 
uncorrelated 
to the size of 
the set, but 
the linearity 
of it. 

if K is Small 

)( 3MO
  

 
If K is large (K ~ N) 

)( 3NMO
 

 

Yes No 

Table 3.1. Summary of time complexity 

 

The last two columns in Table 3.1 show the nature of the computational answer 

of each algorithm. Liner Least Squares might have a matrix that is not invertible, therefore 

step 5 of Figure 3.7 will fail to give an answer. This means that a valid solution is not 

guaranteed, given that this matrix is not invertible. The advantage of Linear Least Squares 

is that if it finds a solution, this solution is guaranteed to be the global optimal. That is the 

hyperplane with least error for the data set. Gradient Descent and KGERS in the other 
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hand do not follow this rule. These algorithms are capable of achieving the global optimal, 

but it is not guaranteed. For Gradient Descent it is possible only when the learning rate is 

sufficiently small, but this might use extended computational time. When dealing with a 

training set and a test set, KGERS has the probability of doing better than the global 

optimal due to its randomized nature. 

 

3.4. Regression Tree Algorithms 

It was seen before that linear regression is possible through a variety of methods. 

Techniques go from randomized approaches to decidable linear algebra operations. The 

problem addressed in this section is regression on non linear functions. The purpose of 

this study is based on the hospital admission data. We picked a regression tree as the 

target algorithm for improvements. The reason being is that the nature of a regression 

tree, as mentioned before, allows seeing actual readable data. This helps to understand 

the data being analyzed and hopefully catch patterns with the naked eye. It also helps 

seeing which features of the data are not helping with the model, and which ones are. In 

this section a new set of splitting criteria, stopping criteria and leaf regressive method is 

proposed. Recall in chapter 2, the regression tree pseudo code shown in Figure 3.8. 

 
RegressionTree 
-inputs:  
Features, X(inputs), Y(outputs) 
-outputs: RegressionTree  
1: Begin 
2: if STOPPING CRITERIA is true 
3:   perform REGRESSION in current X|Y 
4: else 
5:   perform SPLITTING CRITERIA and split X|Y into two  
     subsets (left and right) 
6:   Recursively call RegressionTree in Left and right 
     Nodes 
7: End 

Figure 3.8 Regression Tree 

 

Typically, the three main steps of a regression tree involve stopping criteria, 

splitting criteria and regression. 

 

3.4.1. New splitting criteria 

To fit the needs of the hospital data, and the later approaches taken, we have 

devised a set of modifications to a regression tree algorithm. These modifications are 

meant to improve time and accuracy specifically for piece wise linear regression. 

 

 



44 
 

 

3.4.1.1. KGERS Splitting 

As seen before, variance splitting might help, but the problem with it is the fact 

that splitting is done by Euclidean distance of clustered points. If at the leaf nodes we 

want to fit a line, then variance will not do a good job. Variance will work for average 

regression at leafs, but not so much for a hyperplane. There must be splitting criteria that 

split the data by its linearity rather than its distance to average. We can run KGERS on 

each candidate example cluster and then use the error squared as impurity. This is shown 

in Figure 3.9. 

 
PickBestSplit (KGERS version) 
-inputs:  
Features(F), X(inputs), Y(outputs) 
-outputs: (best_f,best_fv)  
1: Begin 
2: BestGain = 0, (f_best, f_bestv) = null; 
3: let P be hyperplane fit on X using KGERS 
4: AllImpurity = CalcError (X,P,Y) 
5: For each f in F 
6:  For each split point fv in f 
7:    Split X using (f,fv) into Xleft and Xright 
8:    Split Y using Xleft and Xright into Yleft and Yright 
9:    Let Pleft be hyperplane fit on Xleft using GD 
10:    Let Pright be hyperplane fit on Xright using GD 
11:    Gain = Allimpurity – (CalcError (Xleft,Pleft,Yleft) + CalcError (Xright,Pright,Yright)) 
12:    If (Gain > BestGain) 
13:     BestGain = Gain 
14:     (f_best, f_bestv) = (f,fv) 
15: Return (best_f,best_fv)  
16:  END 

Figure 3.9 Pseudo code for PickBestSplit by KGERS hyperplane fit 

 

Steps 4 and 8 calculate the errors generated by the new hyperplane with respect 

to the training data. This function will try to maximize the split that generates the smallest 

gain, where gain is defined as the squared error of the hyperplane before and after 

splitting.  Impurity can be defined in equation (16). 

 

2))(ˆ( YXfI     (16) 

 

Impurity could be defined as the squared error of the current hyperplane. What 

matters is that impurity increases if the model has a lot of error, and vice-versa. Step 11 

of Figure 3.9 shows the definition of gain. This idea is very parallel to that of splitting by 

variance, but instead optimizes the data for linear regression at the leaf nodes. KGERS is 

very fast too, so this splitting criterion method will be efficient and practical. 
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3.4.1.2. Gradient Descent Splitting 

This technique is the same as shown in Figure 3.9 but using Gradient Descent to 

fit a line instead of KGERS. While this technique will certainly help achieving a good 

splitting pattern for linear regression at leafs, it is slow (high time complexity) and each 

run of Gradient Descent requires several parameters. Because during a split of data the 

distribution of Y values might change this could mean that the same learning rate will not 

be sufficient to achieve convergence. Instead of using Gradient Descent, KGERS can be 

used. It has to be kept in mind that when choosing a splitting method, every single 

feature and every single threshold value of this feature has to be explored for possible 

splitting points. If the algorithm that calculates the impurity of splitting points is 

computational expensive then the splitting criteria decision itself might be non-solvable. 

The final and biggest advantage on KGERS over gradient descent is the usage of a single 

parameter. With this, KGERS split should be the splitting criteria of choice when using 

linear regression at leaf nodes. 

 

3.4.2. New Stopping Criteria 

The new stopping criteria devised is to make it more automatic, without the need 

to know the data distribution or any other measurement directly related to the data. The 

only parameter required for the following is a single confidence interval (a threshold) that 

if bigger, means a deeper tree with more leafs and if smaller a more compact tree. 

 

3.4.2.1. T-Test on Error 

The motivation for the T-Test Error stopping criteria is the splitting scenario. At 

the end, we want to split only if this is going to improve the performance on error and we 

want to stop otherwise. For this, we can see if the changes in error from splitting and 

stopping are significant. The T Statistic test is a measurement that tells how different two 

averages are. Depending on the confidence interval, measurements above the T threshold 

will indicate a high difference in the distributions. Low values indicate no such difference.  

This measurement can be used to measure error differences, as shown in (17). 

 

      
                

                                  
  (17) 

 

If the D measurement is bigger than T it means that the two distributions are 

different. The symbol δ represents the average error of the current node (on its own 

subset of data). This means that δbefore is the average error of the current node before 

splitting and δafter is the average error after splitting. The symbol σ represents the 
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standard deviation. Depending on the state, standard deviation of this distribution is from 

before and after splitting. If these two distributions have a value of D that passes the 

threshold T (derived from a confidence interval table), it means that it should continue 

splitting, since there is a significance change in error. If the D value is lesser than T, then 

the algorithm should stop splitting since further splitting doesn’t decrease the error 

significantly (from a statistical point of view). 

It has to be clear, this stopping criteria is generic and can be applied to any 

Regression Tree with any particular regression model at the leaves. As long as there is the 

calculation of error before and after splitting, this stopping criterion will work. 

 

3.4.2.2.  T-Test on shape 

The motivation for this is that if the shape of two hyperplanes fitted is different 

and doesn’t change, then there is no reason to keep dividing. If the hyperplane 

candidates generated before are no different from the candidate hyperplanes generated 

after splitting, then splitting would be silly and wouldn’t really change the nature of the 

regression, therefore a stopping condition is met. If the opposite happens, the shape of 

the hyperplanes is very different before and after splitting, it means that the algorithm is 

potentially discovering new ways of fitting a model, and that the model below certainly 

lacks of a linear behavior, therefore the splitting continues. This stopping criterion can 

only be applied to those trees with linear regressive model at the leaves (KGERS or 

Gradient Descent). 

The statistical test on shape of the split data looks at the linearity shape instead of 

taking an error perspective. It is also a post splitting stopping criteria so requires an 

analysis of before and after splitting (just like T-Test on Error). The same equation in (17) 

applies, but there is a difference in the meaning of the average and variance. The average 

in this case is the average cosine similarity measure. This measure is defined in (18). 

 

                
   

           
   (18) 

 

The cosine similarity is a measurement that dictates how similar two vectors are. 

If the value of CosSim is 1, it means that both vectors are equal; otherwise -1 means that 

they are the complete opposite of each other. 

The T-Test is done on the average cosine similarity of all the KGERS hyperplane 

candidates fitted before and after splitting. The vectors used in the cosine similarity 

function are the weight vectors of the candidate hyperplane.  For all the possible pair of 

vectors in each group, an average cosine similarity mean and variance is extracted, being 

these the two averages. 
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3.4.3. Regression at Leaf Nodes 

KGERS represents a viable new regression algorithm. It’s an algorithm that 

requires much smaller time complexity and only one parameter independent of the Y’s 

distribution. 

The regression methods are not limited to linear regression; neural networks can 

be also applied, but then lays the question of splitting criteria, which seems a little bit out 

of scope of this study. For the purpose of this study the focus will be on piece wise linear 

approximation. KGERS at the leaf nodes will be ultimately compared against gradient 

descent and a mean. 

 

3.4.4. Summary of regression tree algorithms 

Table 3.2 summarizes the sources of each algorithm. It also clarifies the current 

proposed ones as a contribution to the computer science field. 

 

Source Splitting criteria Stopping Criteria Regression 

Yohannes 
and Webb 
(1999) 

Variance Number of Nodes Average 

D. Vogel et 
al (2007) 

Clustering Levels Gradient 
Descent 

Huang and 
Townshend 
(2003) 

Variance Number of Nodes Gradient 
Descent 

Proposed 
approach 

KGERS Split T-Test on Error KGERS 
Regression 

Proposed 
approach 

KGERS Split T-Test on Shape KGERS 
Regression 

Table 3.2. Summary and Sources of regression tree algorithms 

 

3.5. Summary 

This chapter proposed a new algorithm for linear regression, KGERS. The objective 

of this algorithm is to be faster than regular approaches, like Linear Least Squares and 

Gradient Descent. It was shown through time complexity analysis that KGERS is not 

dependant on N, a crucial variable when estimating time complexity. Although KGERS still 

depends on K, which is the main iterations parameter, and this parameter is straightly 

linked to the linearity of the data. If the data tends to be linear, K should be lower. The 

main purpose of KGERS is to be used in a regression tree as both, splitting criteria and 
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regressive model. Two methods for stopping criteria are proposed. These are performing 

T statistic tests on Error and shape of potential curves.  

Chapter 4 
Estimating Hospital Admissions 

 

 
As seen in the introduction of this study, one of the main goals is to successfully 

model hospital data to solve the staffing problem. This chapter will describe the data 

being used, along with some of its features. The contributions in this section will help with 

the modeling of demand in emergency department admissions and specific care unit 

admissions. As recalled in previous chapters, there exist two sub problems. The first one 

involves the estimation of admissions from the emergency department (ED) into the main 

hospital. This can be thought as the patients going out of the emergency department into 

a hospital room for a span of time. The second sub problem involves the estimation of 

demand into one of the three types of care units, which will be described later. 

 

4.1. Hospital admissions data 

The hospital admission data consists of four specific sets. These were kindly 

provided by Holmes Regional Medical Center, located in Melbourne Florida. This is 

important since the results discussed in this chapter do not necessarily reflect the 

behavior of patients around the nation, but from a specific town. These four sets can be 

divided into two groups. The first group is concerned with sub problem A and the second 

to sub problem B. These sub problems are explained in detail in the introduction of this 

study. The sets are summarized in Table 4.1. The first problem is the admission of patients 

from the emergency department to the hospital internal beds (EDInpt which stands for 

Emergency Department Inpatients). As explained before, this is a big problem in hospitals 

nationwide. If a hospital knew in advance the number of people who will be admitted, or 

at least an estimate, staffing nurses and doctors would be a fairly simple task. The second 

sub problem deals with the actual supply of care units that need to be given. A care unit is 

the composed by a bed and the additional devices and items that a patients need. Since 

this data is unavailable, we will use the demand for the specific care units (which is 

available) assuming that the hospital can match the supply if it knows the demand. 
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Figure 4.1 Outline of Hospital data 

 

Figure 4.1 shows the main outline of the hospital data studied in this chapter. 

People admitted from the ER to the main hospital are represented by the arrow going 

from the ED box to the main hospital. The other arrow (coming from outside) represents 

the demand coming from other sources that are not the emergency room. These will not 

be studied on this research work. Once inside the main hospital, both demands “merge”. 

The total demand is then split into three types of bed units, PCU ICU and Floor. Notice 

that these units include both, demand coming from the inside and the ER. 

 

Data set Training Set Test Set 

Hospital Admissions from 

Emergency Room  

(EDInpt) 

 

April 2008 – May, 2009 April 2010 – May 2010 

Demand of ICU beds 

 

April 2008 – May, 2009 April 2010 – May 2010  

Demand of PCU beds 

 

April 2008 – May, 2009 April 2010 – May 2010 

Demand of Floor beds 

 

April 2008 – May 2009 April 2010 – May 2010 

Table 4.1 Training and Test sets for hospital data 
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Table 4.1 shows the distribution of each bed in the hospital. Here a training set 

will be used solely for model building. The test set is meant as an evaluation reference 

point that will help measuring the accuracy of the algorithm. Staffing requires calling 

personal ahead of time, and assigning them specific beds depending on the workflow of 

the hospital. Treating the problem as a time series is a very promising strategy due to the 

prior studies done in the entire data sets. The next three data sets deal with the actual 

type of bed used from this EDInpt demand plus external demand. These are numbers that 

tell how many types of beds are taken. As seen before there are three types of bed and 

each type of bed is described in Table 4.2. Each bed’s description and type is an important 

part of staffing. Each type requires different kind of personal and equipment. Knowing 

them in advance will certainly proof useful for the hospital personal. 

 

Type 

of bed 

Meaning Description 

ICU Intensive Care Units. Beds with patients who are in critical condition. These beds are most 

costly and require special equipment. Nursing ratio is 1 nurse for 2 beds. 

PCU Progressive Care Units. This care units present less critical patients, with a nursing ratio of 1 

nurse for 4 beds. 

Floor Floor units (other). General patients, nursing ratio being 1 nurse for 6 beds. 

Table 4.2 Hospital bed types. 

 

The EDInpt data consist of a set of rows. Each row represents a patient, with its 

respective admission time to the hospital. Admission times are already in six daily hour 

intervals; each interval being of four hours each. PCU, ICU and Floor come also as row 

data, but this time, without the hour. This means that they come packed in terms of 

hours. The goal is to treat the problem as a time series, so at the end the raw data needs 

to be processed and put into buckets. For EDInpt each number in the time series will 

represent the number of admissions that happened in a particular hour. This means that 

each bucket in EDInpt represents a 4 hour interval. On the other hand, PCU, ICU and Floor 

data are sampled in a daily bases. This means that each bucket from these data will 

represent the number of PCU/ICU/Floor beds used in the particular day. Just like the 

previous chapter, each data set consists of a training set and a validation set. 

 

4.2. Experiment procedures 

In this chapter one set of experiments will be driven on the EDInpt data, ICU, PCU 

and floor untis. These will provide evidence on accuracy and time complexity of the newly 
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devised regression tree on the hospital data. A summary of the algorithms used is 

available in Table 4.3, each with a particular description. 

 

Name Algorithm Description 
Neural network Feed Forward Neural network 

trained with Back Propagation 
Most common “off the shelf” neural 
network algorithm. Will be used to 
be contrasted in computational 
power and accuracy against 
regression trees. 

Regression Tree KGERS Regression Tree with KGERS for 
splitting, t-Test on shape 
stopping criteria and KGERS for 
regression. 

Algorithm proposed. Aims to provide 
faster and similar results to those of 
Regression tree with Gradient 
Descent. 

Regression Tree Mean  Regression Tree with Variance 
splitting, t-Test on Error for 
stopping criteria and average for 
regression. 

Control algorithm, since it takes no 
parameters it will be used as 
reference due to its minimalistic 
nature. 

Regression Tree Gradient 
Descent 

Regression Tree with Gradient 
Descent splitting, t-Test on shape 
stopping criteria and Gradient 
Descent for regression. 

Typical algorithm that performs 
piecewise linear regression, with 
usually good results. Aims to be 
compared and contrasted with 
Regression Tree using KGERS. 

Table 4.3 algorithms for non linear regression experiments 

 

Each data set will contain three types of analysis. The first one is an evaluation of 

computation time; this is done by plotting a chart of CPU time versus size of input (the N 

variable in time complexity). The second sub experiment is an evaluation of error versus 

value of the algorithm’s main parameter. This will be done for each algorithm 

respectively. Finally the last sub experiment is an analysis of CPU time versus error for 

each algorithm. This third part should be able of identifying the strongest algorithms that 

take the most advantage of computational power. Later in Chapter 5 we will look into the 

algorithms from a computer science point of view and evaluate those using synthetic 

data. In this chapter the algorithms will be evaluated for performance on regression of 

hospital data, and not in other criteria such as resistance to noise. 

 

4.3. Evaluation Criteria 

The main evaluation criteria used for the experiments is the root mean squared 

error (RMSE) of the regression. The RMSE summarizes the error at about 90% confidence 

interval, and displays the units by which the regression is off. Other measurements 

include using the RMSE as a percent error, by diving it to the total mean of the Y values in 

the experiment. Equation (1) summarizes the RMSE of a model. 
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The RMSE takes three inputs. The first one is f, this represents the model (the 

output of our regression algorithms in this case). The model can be thought as a function 

itself. The next input is x. This is the respective test set for the model. Adjunct to this is y, 

which represents the actual outputs of the test set. The RMSE is simply the average error 

amplified using the quadratic property. This RMSE can curiously be greater than the 

average values of the Ys.  

For the hospital’s interest, the Mean Absolute Error is also calculated. This can be 

described in equation (2). 
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The MAE describes exactly in average by how much is the model diverging from 

the test set. Notice that the difference operation is not exponential; this naturally causes 

the MAE to be lesser than the RMSE since it doesn’t “exaggerate” errors. 

Another evaluation criterion is represented by the CPU clock cycles. The 

experiments were performed on an Intel Core Duo© machine, running Microsoft 

Windows 7 32 bit operating system. The CPU clock cycle function was extracted using the 

c runtime library clock() function, declared in the <time.h> header file. We use CPU as a 

measurement of how well the algorithms take advantage of the computing power, and 

therefore measure the most efficient one using this empirical evidence. 

Finally, for the hospital data set, each algorithm will be evaluated using the RMSE 

measurement. In the case of randomized algorithms (such as Regression Tree KGERS) the 

RMSE used will be the minimum amongst all its trials. 

 

4.4. Preliminary analysis for feature selection 

Before drawing any features and start doing regression, we need a prior study; a 

guide that will tell us the data’s trends and possible features that could be derived. We 

have chosen to first sample the data as a time series. This is done by counting the patients 

being admitted into buckets. Once the counting is done, the result is a list of numbers, 

which represents a time series. Each number in the list will represent the number of 
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admissions or beds in the time span that a bucket takes. As mentioned before, EDInpt 

uses 4 hour buckets, while PCU/ICU and Floor use daily buckets. 

Once the time series is at hand, the next step is to perform an FFT analysis of 

such. Fast Fourier Transform is a method of decomposing a signal into its primitive cycles, 

helping to identify any cyclical patterns into the data. A summary of the FFT analysis 

values is summarized on Figure 4.2. While running the FFT analysis on the EDInpt data, 

three patterns were discovered. The three cycles are listed below: 

 

 Daily cycle:  hour of the day (out of the 6 possible hours) shows similarities.  

 Yearly cycle: same days of years show similarities. 

 Weekly cycle: Same days of the week share similar patterns. 

 

 
Figure 4.2 FFT analysis cycle prominence of EDInpt data. 

 

Figure 4.2 shows six different bars. Each bar represents the prominence of a cycle 

in the EDInpt data. As seen here, the first two bars show a high prominence of daily 

cycles. The next biggest cycles happen to be the yearly repetitions. Finally the weakest 

one, but still present is the weekly cycle. All these cycles are normalized against an epsilon 

measurement which represents no cycle at all. So while the weekly cycle happens to 

appear very low, it is in fact still prominent, in the exact proportion shown with respect to 

the daily cycle. 

Figure 4.3 shows the FFT analysis performed on the other three data sets. We 

decided to plot them on the same chart since their sampling is different from that one on 

the EDInpt data. 
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Figure 4.3 FFT analysis cycle prominences of PCU, ICU and Floor data. 

 

The PCU, ICU and Floor data related to subproblem B clearly show a prominence 

of weekly cycles. The only cycles identified were those in the span of a week. This means 

that days will be showing a specific pattern that is repeated throughout the data. 

As seen before, there are three major cycles being prominent in the EDInpt data. 

The next step is to plot these cycles and analyze the respective shapes that each one 

present. Figure 4.4 shows the respective shape of daily cycles in data. 

 

 
Figure 4.4 Shape of daily cycles. 

 

Each entry in the X axis represents the given time interval. This data is plotted as 

the average a number of admissions that each time interval (or bucket as we mentioned 

before in the time series manner) possesses. As it can be appreciated, the busiest times 

for the target hospital are always close to noon and afternoon. Early hours in the morning 
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seem not to be as demanded. A logical explanation is that usually people sleep during the 

night. The likelihood of getting injured while sleeping is less than actually during active 

hours. But this is just speculation and the causes could be different; however it seems 

very logical that the highest hours of hospital admissions happen to be in the rates of the 

mid day. 

Figure 4.5 shows the admission pattern for monthly cycles. That is, using the 

original sampled data, now displays the monthly average for the entire data set. Figure 

4.5 summarizes the years into their twelve respective months, each with its average 

number of admissions. It shows that months around early in the year (spring in the case 

of the United States) is a choke point of high admissions while months closer to the 

summer have less admission. 

There exists a considerable difference in month averages, strictly saying that the 

least demanding month differs for at least 12 patients from higher ranked months. Finally 

Figure 4.6 shows the behavior of the weekly cycle, which is the least powerful amongst 

the data. It can be appreciated that Figure 4.6 displays two waves in one. The first one 

starts around the early days of the week, achieving its peek on Monday and a recessive 

period on Wednesday.  

 

 
Figure 4.5 Shape of yearly cycles. 

 

It can be noted that after this recessive period, the admission rates picks up and 

then drops suddenly during the weekend. It’s very surprising that not many admissions 

occur during the weekend. A possible logical explanation is the way people act during the 

weekends, and sometimes the lack of activities they are involved in. During the week, it is 
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for sure that transportation moves predominately in the local area, and this is the case in 

the city of Melbourne. 

 

 
Figure 4.6 Shape of weekly cycles. 

 

As it was seen before, the three remaining hospital data sets also show a weekly 

pattern, which seems to be the most prominent amongst the cycles. This pattern is 

graphically shown in Figure 4.7. 

 

 
Figure 4.7 PCU, ICU and Floor weekly cycle shape 
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The weekly pattern of the bed data seems to have its peek around the middle of 

the week, especially Monday. It can be appreciated that each data set (Floor, PCU and 

ICU) has different rate of admissions, floor beds being the most abundant. ICU beds are 

the most costly and hard to maintain. Usually patients residing in these beds require more 

nurses and more life support equipment, which is expensive and scarce. Floor beds seem 

to be the most abundant since usually the hospital gets overcrowded easily, and patients 

overflowing form the emergency department have to be sent through here. 

Finally this complete cyclical analysis can lead to feature investigation and 

extraction. The algorithms discussed in the previous chapters will need at the end a set of 

vectors for each point in the data (where each point is a bucket sitting in a time series). 

Each one of these points will have a vector associated with it that will summarize 

information of the past. The goal is to be able to forecast the future using the past, and 

surely the FFT analysis with combination of the time series bucket plots will give us hints 

to do so. 

 

4.5. Processing of data and Feature Vectors 

In order to be able to use the data into the machine learning algorithms 

mentioned before, the data must take the form of feature vectors. Each point should 

consist of a vector with its respective regression value. The case of the EDInpt data, the 

data comes as 6 time intervals per day. This means that each day consists of 6 numbers 

that represent 4 hour time intervals during the day. PCU, ICU and Floor data sets have 

one number per day instead; data is not sampled by hour but by day for these last 3 data 

sets. 

 

 
Figure 4.8 Feature Extraction from time series 

 

Figure 4.8 shows the process of extracting features from an admission time series. 

The vertical timeline represents the admission numbers on each bucket for the respective 
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time series. This is the raw version of the data given by Holmes Regional Medical Center. 

The feature extraction process consists of extracting a window time frame as shown in 

Figure 4.8. For this example two feature vectors are used, point A and B. Each point has 

an association with the respective time line, acting like a window that traverses time. This 

“time window” uses data from the past to derive features specifically. The next section 

will describe exactly what each element in the feature vectors represents. 

 

4.6. Feature selection 

The feature vector designed for the EDInpt data is entirely based on the prior 

studies and FFT analysis explained before. These features will be extracted from the 

timeline data. To recap the entire process, we first start with rows of patients. After the 

data is sampled into buckets each bucket being on a specific time. For the EDInpt data, 

each bucket represents a 4 hour span during the day. The next step is extracting features 

for each possible prediction date. For example, if we want to know the number of 

admissions to the hospital next Monday in the second bucket (that is, from 4 am to 8 am), 

we will use data from the past and feed it into our regression algorithm, that supposedly 

already has created a model. Figure 4.9 shows the derivation of the first feature. 

 

 
Figure 4.9 First feature of EDInpt data 

 

The first feature involves the same hour, 52 weeks ago (which is a year ago, but 

the same day of the week) using the same hour. Figure 4.9 shows a Monday 3rd of 

October from 4 am to 8 am (second bucket of the day) as the green arrow. From now on, 

every feature will always involve the same day of the week and the same hour bucket of 

the day. The green arrow is the target prediction date. The end of the arrow shows the 

same Monday, but 52 weeks ago in October, same hour. This will be the first element of 

the feature vector. Figure 4.10 shows the second element of features. The second feature 

uses the average of the four days surrounding the past day. This is based on the 

assumption that days surrounding the past might also influence the future prediction 
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which occurs a year after. It also helps smoothing out the influences of days. We use two 

weeks span since a month shows consistency in earlier FFT analysis. It is out of the 

interests to see this span. 

 

 
Figure 4.10 Second feature of EDInpt data 

 

Figure 4.11 shows the third feature of the EDInpt data. This feature consists of 

365 days ago. The reason being is that a year ago means the same date. Consequently 

holidays like the 4rth of July are likely to present the same amount of inflow in patient 

data. We believe that such patterns do influence potential prediction and modeling. 

 

 
Figure 4.11 Third feature of EDInpt 

 

Figure 4.12 shows the fourth feature. The fourth feature uses the average of the last 

three exact days in a span of 3 weeks. This means that it will use 1 week exactly before 

the prediction, in addition to the previous week, and the week before the previous week 

to do an average. 
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Figure 4.12 Fourth feature of EDInpt data 

 

Again, the reason to pick the average is the assumption that we are smoothing 

the influence patterns (potentially smoothing noise) and using adjacent days that could 

influence the prediction. The fifth feature is shown in Figure 4.13. 

 

 
Figure 4.13 fifth feature of EDInpt Weekly change feature 

 

The weekly change represents the step that a week took. It works as a delta, a 

result from the subtraction of the previous week minus the week before the previous, 

same hour and same day respectively. Finally, Figure 4.14 shows the last feature of the 

EDInpt data. This feature represents the yearly change, and it is a delta between the last 

week (because this is the most recent day we have) minus exactly 52 weeks ago, same 

hour and same day of the week. 
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Figure 4.14 sixth feature of EDInpt Yearly change feature 

At the end we have a total of 6 features, each one covering a pattern that was 

found during the FFT analysis. 

Since the PCU, ICU and Floor data present the same cyclical patterns in the prior 

FFT analysis, they will all contain the same set of features. The first feature of PCU ICU 

and Floor is described in Figure 4.15. 

 

 
Figure 4.15 First PCU ICU Floor feature, last week value. 

 

The first feature utilizes the concept of a weekly cycle. Simply extracts the last 

week’s value and uses it as its first vector value. The second feature is displayed in Figure 

4.16.  

 

 
Figure 4.16 Second PCU, ICU and Floor feature, last 3 weeks average. 

 

This involves the average of the past three weeks. We have to keep in mind that 

all of these three data sets are sampled in one day intervals (single day buckets). 

Therefore there is no specific hour like in the EDInpt data set. The third feature involves 

the weekly delta, which can be seen in Figure 4.17. 
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Figure 4.17 Third PCU ICU Floor feature, weekly difference. 

 

As seen before, this data set also represents the weekly difference, but this time 

it is done with a single day because of the nature in which the data is sampled. This 

difference should give information to the algorithm about potential differences between 

weekly jumps. Finally the last feature can be appreciated in Figure 4.18. This feature is 

exactly the amount of beds used 52 weeks ago. 

 

 
Figure 4.18 Fifth PCU ICU Floor feature, 52 weeks ago 

 

We have to keep in mind that 52 weeks ago represents exactly one year (falls into 

the same year, unlike 365). Throughout the feature extraction process it has to be kept in 

mind that leap year could exist. In any case, in such situation the respective time 

corrections should be done. As explained, all these features will play an important role, 

and they are the result of an evolutionary process of trial and error. We found out that 

these are the features that work probably the best from the spectrum explored. 

 

Vector id Feature Description Figure 

X1 52 weeks ago, same hour same day 4.9 

X2 52 weeks ago, same hour average of 2 
previous and next weeks 

4.10 

X3 365 days ago, same hour same day 4.11 

X4 Past 3 weeks average 4.12 

X5 Weekly change 4.13 

X6 Yearly change 4.14 

Table 4.4.a Summary of EDInpt feature vector 
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Vector id Feature Description Figure 

X1 Last week value 4.15 

X2 Last 3 weeks average 4.16 

X3 Last week difference 4.17 

X4 52 weeks ago 4.18 

Table 4.4.b Summary of ICU, PCU and Floor features. 

 

4.7. Empirical Results 

This section will show the experimental results on the hospital data. For each data 

set there are 4 figures. The first three figures will deal each one with a particular 

algorithm applicable to that data set. The algorithms are Regression Tree Gradient 

Descent, Neural Network and Regression Tree KGERS. Each graph will be of error vs main 

parameter of the respective algorithm. The fourth Figure will illustrate the Error vs CPU 

time that each algorithm performs. 

 

4.7.1. Performance on EDInpt data set 

Figure 4.19.a shows the performance of a Regression Tree Gradient Descent.  

 
Figure 4.19.a Regression Tree Gradient Descent on EDInpt data 

 

As it can be appreciated, these first batch of experiments deal with the EDInpt 

data. Gradient Descent surprisingly shows a stable result even with a low value of 

iterations. One possible explanation for this is that the splitting criteria performs well 

enough, such that the entries at the leaf nodes don’t need many updates. 
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Figure 4.19.b Neural network on EDInpt data 

 

Figure 4.19.b shows the convergence of the neural network as its iterations 

increase. This is expected, due to the nature of this machine learning algorithm. Notice 

though, how the neural network requires as many iterations as the amount of data 

present. This shows that the iterations parameters in back propagation is proportional to 

the size of the input data. 

 

 
Figure 4.19.c Regression Tree KGERS on EDInpt data. 
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Figure 4.19.c shows the performance of a Regression Tree KGERS under the 

EDInpt data. KGERS converges very quickly and stabilizes at the very end. This sort of 

stabilization shows that the splitting criteria have done a fairly good job and that KGERS 

can find the correct answer quickly. 

 

 
Figure 4.19.d Error vs CPU time analysis for algorithms under EDInpt data 

Finally, it can be shown in Figure 4.19.d the real cpu speed for each of the 

mentioned algorithms under the EDInpt data. Figure 4.19.e shows a zoomed in version of 

the error displayed. It can be seen that KGERS has a faster approach than the other 

algorithms and the lowest error, unlike the Regression Tree Gradient Descent, which 

seems not appearing in the graph. 
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Figure 4.19.e Error vs CPU time analysis for algorithms under EDInpt data, ZOOM 

 

 Regression Tree KGERS is the algorithm that converges the fastest amongst the 

candidates, while Gradient Descent takes some more time to reach this error. The Neural 

Network performs also fairly slow compared to the regression trees. It can be shown that 

while the Regression Tree Mean provides the best time complexity, it over fits and 

doesn’t converge to the lowest possible error. 

It can be noted that the CPU cycle performance of the Regression Tree is falling 

into 3 buckets, there are around 250, 550 and 800. The reason this happens is explained 

by the time complexity nature of the algorithm. Regression Tree KGERS’ most expensive 

operation is the splitting criteria. This is when the algorithm has to choose amongst all the 

possible splitting points the one which maximizes gain. Because KGERS is independent of 

the input size, varying K doesn’t necessarily produce a higher CPU consumption. Instead, 

the randomized nature of the splitting criterion discovering patterns is what causes the 

algorithm CPU consumption to be between these buckets. 

Figure 4.19.f shows how the CPU cycles increase as the number of leaf nodes in 

the tree increase. 
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Figure 4.19.f Leaf Nodes vs CPU cycles 

 

Notice how the number of leafs and the CPU cycles used is almost a linear 

relationship. This explains the bucket concentration in Figure 4.19.e. Table 4.5 

summarizes the CPU cycles and the number of leaf nodes that each Regression Tree 

KGERS has on average. 

 

CPU Cycle Bucket Number of Leaves 

200-300 1 

500-600 2 

700-800 3 
Table 4.5 Average Leaf sizes with respect to CPU time 

 

Table 4.6 shows a comparison of algorithms in terms of RMSE.  

 

Algorithm Best RMSE 

Regression Tree KGERS 3.31 

Regression Tree Mean 3.75 

Regression Tree Gradient Descent 3.33 

Neural Network 3.35 
Table 4.6 Error comparison of Algorithms under EDInpt data 
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The algorithm producing the best Root Mean Square Error is the Regression Tree 

KGERS. It has to be shown though, that these errors do not necessarily show a more 

powerful contribution. But still, for the sake of forecasting and estimation, this 

information is useful for the hospital. The special property about KGERS is the freedom it 

possesses when being trained due to its randomized nature. This certainly helps into 

giving flexibility to the algorithm when exploring the solution space. The difficulties are 

that KGERS’ regression tree is still tied up to greedy partitioning, and as a consequence of 

being a randomized search algorithm it shows several signs of instability. Still, stability can 

be verified in Figure 4.19.f, where it is shown that the probability of error falls thoroughly. 

 

 
Figure 4.19.f Error distribution in KGERS for EDInpt 

 

Because KGERS is randomized, several trials are required to know the best error. 

It happens that most of the trials fall under the 3.4 RMSE bin value. This means that for 

this data set the algorithm behaves very stable, and the majority of trials hint towards the 

minimum error. 

 

4.7.2. Performance on ICU data set. 

This section will perform the experiments on the ICU data presented on prior 

sections. 
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Figure 4.20.a Regression Tree Gradient Descent on ICU data 

 

Results for the Regression Tree Gradient Descent are not very pleasing, these are shown 

in Figure 4.20.a. The algorithm takes much more time than Regression Tree Mean, and 

still performs worse. The nature of the data shows a lot of noise present. This sort of 

noise can confuse the splitting criteria and therefore generate a very unstable model. 

 
Figure 4.20.b Neural Network on ICU data 

Figure 4.20.b shows the performance of the Neural Network on the ICU data. The 

Neural Network quickly converges to an error value, and seems to stay under that range. 

This is an indicator that the Neural Network does perform well on the data. The 

Regression Tree Mean has a similar RMSE to that one found by the Neural Network. 
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Figure 4.20.c Regression Tree KGERS leaves on ICU data 

 

The Regression Tree KGERS at the leaf nodes seems very unstable. Although 

unstable, is the algorithm that got the lowest RMSE amongst the others. Instability can be 

due to the low mean and high variance of the data. Usually when the variance is really 

high, this confuses the algorithm due to its randomized nature. Splitting criterion doesn’t 

seem to help much, since the Neural Network could fit the problem without any trouble. 

 
Figure 4.20.d Error vs CPU time analysis for algorithms under ICU data 

 

Finally, Figure 4.20.d shows a summary of the results. The three algorithms 

converge to similar errors, with Regression Tree Mean being the one with least 
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computational time. Figure 4.20.e shows a closer view to the Error vs CPU on the ICU data 

set. 

 

 
Figure 4.20.e Error vs CPU time analysis for algorithms under ICU data, ZOOM 

 

  Regression Tree KGERS shows a significant improvement into the error results. 

These show the potential of KGERS to be into the least amount of errors within a 

respectable range, doing better than any other algorithm with low computational time. 

 

Algorithm Best RMSE 

Regression Tree KGERS 3.27 

Regression Tree Mean 3.31 

Regression Tree Gradient Descent 3.39 

Artificial Neural Network 3.29 

Table 4.7 Error comparison of Algorithms under ICU data 

 

Table 4.7 shows a contrast of the performance of the algorithms with respect to 

this data set. Although KGERS performed better error-wise, this low error quantity came 

from a very unstable distribution. The probability of KGERS landing into such error is 

relatively small due to its instability. Out of all the algorithms the most reliable for this 

data set appears to be a Neural Network. Noise is perhaps too big and confuses general 

split in regression trees. 
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Figure 4.20.f Error Distribution for KGERS on ICU data 

 

Figure 4.20.f shows that the probability of landing into a small error (3.3) is very small. 

This is reflecting that the Regression Tree KGERS tends to land in an error bucket of 

around 3.4. 

 

4.7.3. Performance on PCU data set. 

The next set of experiments will include results of the algorithms using the PCU 

data set. The first algorithm ran into this data set is show in Figure 4.21.a. 

 
Figure 4.21.a Regression Tree Gradient Descent on PCU data 
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The performance of the Regression Tree Gradient Descent on the PCU data is not 

satisfactory. It seems that the tree is having trouble splitting and fitting gradient descent 

at the leaves. This can be seen by the fact that the algorithm seems very unstable, varying 

sometimes even more than the error of the Regression Tree Mean.  

 

 
Figure 4.21.b Neural Network on PCU data 

 

As typically seen, Neural Networks trained on back propagation tend to find their 

way into local minima. This can be seen in Figure 4.21.b where the Neural Network 

converges. Surprisingly the Regression Tree Mean seems to be doing a better job, with a 

difference of 0.1 in error. So much better that the neural network can’t converge easily 

below this value. A possible explanation for this is noisy data. Having an average could be 

better in some sense, since its very similar to the idea of blurring an image. These 

properties can also show that the error in the data tends to have a Normal distribution, 

meaning that the Regression Tree Mean is capable of finding that measurement that can 

be in between this error. 
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Figure 4.21.c Regression Tree KGERS on PCU data 

 

Figure 4.21.c shows the performance of KGERS on top of the PCU data. This 

Regression Tree performs significantly better than the Regression Tree Gradient Descent. 

Interestingly, this algorithm shows more stability than gradient descent. A possible reason 

for this is the way splitting and stopping criterion is being used. Splitting is done through 

KGERS and stopping criteria is done strictly through t test on shape. The RMSE discovered 

by this algorithm shows a better settlement to that one of the previous two algorithms. 

 
Figure 4.21.d Error vs CPU time analysis for algorithms under PCU data 

 

Figure 4.21.d shows the average cpu power in clock ticks versus the error 

discovered by the particular algorithm. A closer view can be appreciated in Figure 4.21.e. 
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This closer view reveals that the error on PCU coming from the Regression Tree KGERS is 

low. Computational complexity is also the lowest amongst the other algorithms. However 

the error is very close to that one of the Regression Tree Mean. 

 

 
Figure 4.21.e Error vs CPU time analysis for algorithms under PCU data, ZOOM 

 

Like previous results, Regression Tree Gradient Descent seems to be doing better 

using less CPU power. The neural network takes too long and doesn’t converge to a really 

small error. 

 

Algorithm Best RMSE 

Regression Tree KGERS 6.01 

Regression Tree Mean 6.23 

Regression Tree Gradient Descent 6.12 

Artificial Neural Network 6.41 

Table 4.8 Error comparison of Algorithms under PCU data 

 

Table 4.8 shows a summary of the algorithms final performance on the PCU data. 

Notice that the PCU data has an average of 36.6 admissions in a 4 hour period. PCU beds 

are very common since they involve usually walk in patients. Therefore the demand of 

these is higher. The Regression Tree KGERS performed better in terms of error, and was 

able to retrieve the least error amongst the other algorithms. Figure 4.21.f shows the 

error distribution that the Regression Tree KGERS generated. 
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Figure 4.21.f Error Distribution for KGERS on PCU data 

 

The error distribution shows a high probability of the error to be on the 6.2 bucket from 

the Regression Tree KGERS. This shows that this algorithm is very stable for this data set, 

and tends to find a proper answer. 

 

4.7.4. Performance on Floor data set. 

The final data set to be analyzed is the floor admissions. The next set of 

experiments will run the procedures on the Floor data set. 

 

 
Figure 4.22.a Regression Tree Gradient Descent on Floor data 
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Figure 4.22.a shows the Regression Tree not converging into a specific RMSE 

error. This shows an untied relationship between iterations and level of precision that the 

tree possesses. Error is significantly lower than that one of Regression Mean.  

 

 
Figure 4.22.b Neural Network on Floor data 

 

Figure 4.22.b shows that the Neural Network converges perfectly into a low error. 

The advantage of this is the stability shown by the algorithm, which is superior than that 

of the previous regression tree. 

 

 
Figure 4.22.c Regression Tree KGERS leaves on Floor data 
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Figure 4.22.c shows the behavior that the Regression Tree KGERS presents on the 

FLOOR data. While not perfect the algorithm still presents a better level of stability than 

that of Regression Tree Gradient Descent. This figure also shows that while increasing K, 

the algorithm starts converging slowly. 

 

 
Figure 4.22.d Error vs CPU time analysis for algorithms under Floor data 

 

Finally Figure 4.22.d shows the relationship between the algorithms and CPU time 

usage. As it can be appreciated the Regression Tree KGERS has the least cpu power and a 

low error. The neural network however seems to perform better. The Regression Tree 

Mean leaf nodes doesn’t perform very well, and is unable to give a low error. However, 

when zooming in into figure 4.22.e, it can be appreciated that the Regression Tree KGERS 

is still the one capable of achieving the lowest error in the least amount of time, even if 

this error difference is not significant. 

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

0 500 1000 1500 2000 2500

Er
ro

r 
(r

m
se

)

CPU Clock Ticks

Error vs CPU Time

Regression Tree Mean

Neural Network

Regression Tree Gradient 
Descent

Regression Tree KGERS



79 
 

 
Figure 4.22.e Error vs CPU time analysis for algorithms under Floor data, ZOOM 

 

Algorithm Best RMSE 

Regression Tree KGERS 10.08 

Regression Tree Mean 11.37 

Regression Tree Gradient Descent 10.14 

Artificial Neural Network 10.08 

Table 4.9 Error comparison of Algorithms under Floor data 

 

From these algorithms, Regression Tree KGERS for leaf nodes and the Neural 

Network were able to get a minimum error. KGERS presents an unstable pattern and 

lower CPU consumption, in contrast to the other algorithms, but is still able to get  into a 

low error. The Regression Tree Gradient Descent for the leaf nodes seems to do better 

than Regression Tree mean at the leaf nodes. The way noise is distributed in this data set 

shows the different behaviors of these algorithms. Another key factor for this is the mean 

and variance of the data, both are high thus providing more instability to the Regression 

Trees. 
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Figure 4.22.f Error Distribution for KGERS on Floor data 

 

Figure 4.22.f shows the error distribution for the Regression Tree KGERS on the 

Floor data. It shows that this algorithm has high degree of instability due to the 

distribution portrayed here. While the algorithm is able to fall into the lowest possible 

error (which is an RMSE of 10.1) it has higher possibilities to fall under the 10.2 through 

10.4 bins. This shows that the data might contain a lot of noise, therefore making it hard 

for the Decision Tree to achieve a low error. 

 

4.8. Contributions to hospital 

Previous algorithms show the result of the actual prediction executed in real 

hospital admissions data from Holmes Regional Medical Center in Melbourne Florida. 

During the following weeks of presenting these results to the hospital, staff and directors 

were pleased with the results and proposed to use the models in weekly bases. So far 

three weeks have been forecasted and they have been using the data successfully. As a 

start, only the EDInpt admission data has been processed for real application and staffing 

purposes. A summary of the results can be seen in Table 4.10. 
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Week time RMSE Mean Absolute 
Error 

90% confidence 
interval 

% error 

Feb 25th – Mar 3rd 3.6 2.8 -6.2 to 5.2 26% 

Mar 4th – Mar 10th 3.3 2.7 -6.2 to 5.2 24% 

Mar 11th – Mar 17th 3.6 2.9 -6.0 to 5.2 26% 

Mart 18th – Mar 24th  3.8 3.2 -6.0 to 5.2 28% 

Mar 25th – Mar 31st 3.1 2.5 -6.0 to 5.2 23% 

Apr 1st – Apr 7th  4.0 3.4 -6.0 to 5.2 30% 

Apr 8th – Apr 14th  3.0 2.4 -6.0 to 5.2 19% 
Table 4.10 Hospital runs using models with EDInpt data 

 

This summary of results shows that for now errors tend to be high. Nevertheless, 

the hospital is mostly interested in the confidence interval calculated for such runs. 

Before this the hospital used to run simple regression techniques involving only looking at 

the exact value of that admission bucket one year ago. This provided noisy results with 

higher error than those of the models shown here. Holmes Regional Medical Center has 

future plans with these models and potentially put them in operation. 

 

4.9. Summary 

As seen before, previous algorithms show a general good performance in the 

hospital data. Noisy data such as ICU present a difficulty for randomized algorithms such 

as KGERS. Nevertheless, the Regression Tree KGERS at the leaf nodes showed more 

accuracy, especially in PCU and EDInpt data. The Regression Tree KGERS also is able to get 

the least RMSE in the FLOOR and ICU data. The only problem with these is the instability 

of the algorithm, showing a lot of spikes. For these previous ones, the Neural Network 

would be a better fit, since it’s more stable and able to perform as close. The hospital is 

more interested in the absolute error and the confidence intervals. To their terms, these 

are very satisfactory and could meet the necessary qualities to make the models 

operational, and help with the staffing problem. 
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Chapter 5 
Empirical Evaluation with Synthetic Datasets 

 

 
This chapter will cover the experimental procedures that evaluate and compare 

both, linear and non linear regression algorithms on the synthetic data set. As seen 

before, each algorithm presents advantages and disadvantages. In other words, there 

can’t be an algorithm that follows the “one size fits them all” rule. To discover the 

advantages and disadvantages of the algorithms used, it will be required to evaluate 

carefully and assess each one of them with a respective data set. The synthetic data set 

was prefabricated to test certain aspects of these machine learning algorithms such as 

accuracy under noise and over fitting. While these aspects might not be present in the 

hospital data set, they serve as a guide to see how the algorithms would behave against 

other types of noise. This data set will be referred as synthetic data set. As mentioned 

before, the objective of this chapter is to evaluate the potential contributions that the 

newly devised algorithms have on time complexity, accuracy of prediction and over fitting 

in other algorithms that show different characteristics from the hospital data set. The 

following experiments will show the robustness of the new algorithms with respect to a 

data set that degrades in quality. 

 

5.1. Data Sets Overview 

There are 6 data sets used to evaluate the performance of the algorithms. These 

data sets can be divided in two groups. These six synthetic data sets contain two separate 

groups. Because the experiments are divided into two sub sections (nonlinear and linear 

regression), there exists to flavors of this synthetic data set group. One is on top of a multi 

dimensional linear function; the second one is in a non linear function. Later on, the 

purpose and application of this data set will be explained. 

It must be noted, that there will be a training set and validation set for each data 

set. 

 Training Set: The set of vectors used as training data. The model will be generated 

from these set of points. 

 Test Set: The set of vectors used as evaluation criteria. The test set is never seen by 

the algorithm and doesn’t take any part from the model. The model’s task is to use 

the test set as verification on its accuracy and fitness. 
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The two previous points are standard protocols of machine learning that are 

necessary for evaluation and the scientific process. As argued in earlier chapters, when 

evaluating algorithms, it is always important to test several aspects that might jeopardize 

the performance of a machine learning algorithms. Such criteria are things such as over 

fitting and accuracy under noise. We will see later in the experimental section that there 

is the evaluation of two types of algorithms: linear and non linear regression algorithms. 

Although different, the Synthetic data sets contain the same variations. The variation list 

is summarized in Table 5.1, in conjunction of a brief explanation of the purpose. 

 

Synthetic data 
set variation 

Description Motivation 

No error Data contains no error in training set and 
test set. Derived strictly from a custom 
function. 

None, used for control. 

Low Error Data strictly derived from a custom 
function, with 1% of noise. Noise follows a 
normal distribution. 

Accuracy under noise 

Medium Error Data strictly derived from a custom 
function, with 13% of noise. Noise follows a 
normal distribution. 

Accuracy under noise 

High Error Data strictly derived from a custom 
function, with 30% of noise. Noise follows a 
normal distribution. 

Accuracy under noise 

High Error on 
train, no error 
on test 

Data strictly derived from a custom 
function, with 30% of noise. Noise follows a 
normal distribution. Noise only in training 
set, not in test set. 

Accuracy under noise and 
over fitting 

One irrelevant 
feature 

One of the features is completely irrelevant 
to the target value. 

Accuracy under noise and 
over fitting 

1/3 of 
irrelevant 
features 

One third of the features are completely 
irrelevant to the target value. 

Accuracy under noise and 
over fitting 

Table 5.1 Variations of SYNTHETIC data sets. 

 

The variation of Synthetic data sets helps comparing the two main weaknesses 

present in most of machine learning algorithms. It helps not only to show their strength 

and precision, but also under what circumstances are they more feasible to use. This is a 

good contribution and could certainly be applied to other fields and applications. 

The synthetic data set for the linear features consists of a simple hyper plane of 

16 dimensions. It can be summarized in equation (1). 
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The weights chosen are described in Table 5.2. Here the algorithms task is to 

figure out the weights of the hyperplane. Later on we will see the accuracy of these 

algorithms and explanations of why some of them take longer to converge. The contents 

of the non linear Synthetic data set is a simple sine function, it is meant to provide a 

simple base, in which all non linear regression algorithms can converge and represent. 

With a base like this, it will be easier to see the reactions and potential disadvantages 

derived from noise and over fitting. 

 

Weight Value 

W0 8 

W1 .25 

W2 23 

W3 -7 

W4 0.25 

W5 6 

W6 10 

W7 40 

W8 30 

W9 2 

W10 7 

W11 89 

W12 10 

W13 2 

W14 8 
Table 5.2 List of weights used by linear function. 

 

The exact function used for non linear regression is described in equation (2).  

 

     )sin(10 xy     (2) 

 

The respective weights for equation (2) are described in Table 5.3. 

Weight Value 

α0 2.0 

α1 7.0 
Table 5.3 List of weights used by non linear function. 
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Notice that these two functions have a ε symbol at the end, that is, equations (1) 

and (2). It happens that this is going to be the noise added during feature alteration 

described in Table 5.1. This noise will have a normal distribution, and depending on the 

intensity the mean and variance parameters are adjusted. A normal distribution is defined 

in equation (3). 
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This is a well known probability of density function, where x is the desired noise, 

and the output is the probability that it would occur. The two parameters are σ2 which 

represents the variance of the noise distribution and μ the mean. As mentioned before, 

noise percentage contains three levels. These are displayed in Table 5.1, and these levels 

will be the desired mean used for that particular level of noise. The variance remains 

constant, is represented by a 20% of the error mean. This helps in exploring a broad range 

of the total noise spectrum. 

 

5.2. Experiment procedures 

There exist two sets of the experiments. The first set will evaluate the 

performance on linear functions. The second set will focus on the non linear algorithms. 

The reason why there are two groups of experiments is because there is a level of 

granularity for piece wise linear regression. The ultimate goal is to propose a regression 

tree that performs piece wise linear regression in the most optimal way, targeted towards 

hospital data. In order to have this, linear regression must be explored at its lower level. 

The algorithms proposed for the leaf nodes of the regression tree must be compared to 

those already existent. This is done to demonstrate that the advantages behind the 

motivations for KGERS are empirically valid. For the second group of experiments, the 

proposed regression tree will now be tested using the newly devised linear regression 

algorithms. This comparison is done against other methods of regression. The algorithms 

chosen for the linear regression experiments are described in Table 5.4. 

 

 

 

 

 

 

 

 



86 
 

Algorithm Description 

KGERS Algorithm proposed. Aims to provide same and closer results 
to those of Least Squares. Empirical evidence will have to proof 
that its time complexity is lower, and that it can sometimes 
achieve global optimal. 

Gradient Descent Most common linear regression method. This algorithm will be 
compared to KGERS and empirical evidence should contrast 
advantages and disadvantages. 

Least Squares Algorithm that returns global optimal. The problem with this 
algorithm is that it might not be decidable, as in one of the 
matrixes might not be invertible, therefore unable to find a 
solution. It is used as a benchmark on accuracy on the 
regression. 

Table 5.4 algorithms for linear regression experiments 

The second experimental part contains the same procedures mentioned in 

chapter 4, section 4.2. This will be on the non linear regression algorithms on the second 

set. The algorithms used are summarized in table 4.3 of chapter 4. 

 

5.3. Linear Regression Experiment results 

Each run of KGERS is the average of 5 runs itself. Same process applies to the CPU 

usage of KGERS. Since KGERS is considered a randomized algorithm, an average is always 

required to know the correct inclinations under different parameters. Given this 

overview, the subsections here are going to deal with the experimental results directly. 

 

5.3.1. Computation time  

Figure 5.1 shows the comparison of the three algorithms in terms of N. Notice 

that the scale of the Y axis is logarithmic. The X axis is the size of the training of the 

Synthetic data with no error associated with it. The Y axis represents the total CPU time 

spent by each algorithm. The CPU time is measured in clock cycles, meaning that each 

cycle is a burst of instructions being executed. All the experiments in this study were run 

on the same machine, a dual core Pentium. The machine was not running any extra CPU 

intensive software and was hardened to the most. It is important to know that still the 

operating system has other tasks in between that could be the source of the spikes. In 

general, the tendency is likely remain constant and this kind of noise can be ignored. As 

expected, by the theoretical complexity analysis done in previous sections, Gradient 

descent grows linear, while KGERS and Least Squares remain constant. Equation (5) 

reviews Gradient Descent’s time complexity. 

 

    )( 2MNO     (5) 



87 
 

 

We have to remember that while equation (5) shows a quadratic growth of N, in 

the experiments the iterations parameter remains constant. This means that the 

complexity of Gradient Descent in the experimental data is O(N) instead of O(N2). Figure 

5.1.a shows this behavior. Dimensionality also remains constant so that’s why the 

mentioned complexity remains the same. 

 

 
Figure 5.1.a Linear regression algorithm speed analysis 

 

A closer look in Figure 5.1.b. reveals the gradual increase of KGERS and Least 

squares. It has to be noted that the reason why KGERS shows an increase in clock ticks is 

because the algorithm still needs to parse and process the data. The more data, the more 

time this overhead takes. This overhead is already included in the other algorithms. 
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Figure 5.1.b Linear regression algorithm speed analysis zoom 

As expected, the time complexity for Gradient Descent grows much faster than 

that of KGERS and Linear Least Squares. Interestingly, Linear Least Squares also shows 

trends of linear increase with respect of the size of N. The only difference is that this 

growth is much smaller. Also, Linear Least Squares contains a matrix multiplication 

operation, which causes a very subtle increase with respect to N. After 11000 examples 

used Least Squares CPU clock tick usage passes that one of KGERS. KGERS remains almost 

at a constant speed, reason being that KGERS is independent of N. If KGERS wants to aim 

for accuracy, it will have to fix the K parameter depending on how linear the data tends to 

be. 

 

5.3.2. Performance on noisy data  

As mentioned before, this experiment will try to explain the performance of 

algorithms and behavior based on varying noise. There are three levels of noise that have 

been recorded. Before comparing the levels of noise though, a control experiment is 

needed.  

 

5.3.2.1. No Noise 

Figures 5.2.1.a, 5.2.1.b and 5.2.1.c. show that the algorithms can ultimately 

converge and perfectly perform regression on a line data. KGERS doesn’t show any sign of 

error, gradient descent converges very fast and linear least squares can achieve an error 

of 0. 
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Figure 5.2.1.a Kgers on Synthetic data, no noise. 

 

As seen in Figure 5.2.1.a, KGERS can easily achieve a perfect regression if there is 

no noise. This is because KGERS extracts chunks of the data and tries to fit a line. If the 

data contains no error, this means that any m+1 points (where m is the dimensionality) 

will generate a perfect hyperplane. 

 

 
Figure 5.2.1.b Gradient Descent on Synthetic data, no noise. 

 

Gradient Descent requires some CPU power to converge. Because it keeps 

updating weights step by step, the error will be directly dictated by how many iterations 

the algorithm experiences. The more iterations, the closer it gets to the answer. Notice 

how it converges since the scale in the Y axis is logarithmic. After several iterations the 
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error stays the same. Interestingly, the algorithm gets really close to the answer but not 

quite, unlike KGERS and linear least squares, which immediately get to the answer. 

 

 
Figure 5.2.1.c Algorithm comparison on synthetic data without noise. 

Notice how KGERS and Linear Least Squares perform much better with the data. 

They show straight convergence and a good answer. 

 

5.3.2.2.  Low Noise 

Figures 5.2.2.a, 5.2.2.b and 5.2.2.c show the performance of the algorithms with 

low noise. 

 
Figure 5.2.2.a Kgers on Synthetic data, low noise. 

 

Figure 5.2.2.a show that KGERS gains some inaccuracy with a little noise, although 

this quantity is very small, we are talking about exponent to the -12. This is surely a tiny 

number, and can be thought as if KGERS actually converges to 0 in error. 
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Figure 5.2.2.b Gradient Descent on Synthetic data, low noise. 

 

Gradient descent converges into not the global optimal, which is dictated by 

Linear Least squares in Figure 5.2.2.b. Although the noise and error it gets is very small, is 

considerably bigger than that of KGERS.  

 

 
Figure 5.2.2.c Algorithm comparison on synthetic data, low noise 

 

The CPU Time analysis in Figure 5.2.2.c shows that KGERS is slightly slower than 

Linear Least Squares, although not significantly. It does show that with little noise, KGERS 

is capable of finding a better answer than that of Gradient Descent. 
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5.3.2.3. Medium Noise 

 
Figure 5.2.3.a KGERS on Synthetic data, medium noise. 

 

Figure 5.2.3.a shows a very similar pattern for KGERS. With medium level noise it 

is capable to converge into small values. This shows that small amounts of noise do not 

affect KGERS in a big manner. The slight upward convergence of KGERS shown in this 

graph displays that KGERS’s inaccuracy is growing linearly with the value of parameter K. 

This means that in some way, with small noise, KGERS could over fit. This however can be 

discarded since the RMSE reported by KGERS is very small, close to 0. 

 
Figure 5.2.3.b Gradient Descent on Synthetic data, medium noise. 

 

Gradient Descent shows a very similar convergence to a local minimum than that 

of low noise data. Figure 5.2.3.b shows this, and it seems that Gradient Descent cannot 

find a lower error than that found by KGERS. 
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Figure 5.2.3.c Algorithm comparison on synthetic data, medium noise 

 

The CPU analysis displayed in Figure 5.2.3.c shows that KGERS is still close to the 

global optimal found by Linear Least Squares. Gradient Descent seems much slower and 

converges into a larger error for medium noise. These results are very similar to those 

mentioned in Figure 5.2.2.c, which is CPU speed analysis of low noise data. 

 

5.3.2.4. High Noise 

 

 
Figure 5.2.4.a KGERS on Synthetic data, high noise. 

 

High noise data imposes a new error threshold, much larger than those displayed 

in the Figures 5.2.2.x. Figure 5.2.4.a shows that KGERS is able to stick up with the global 

minimum imposed by Linear Least Squares, even in large amounts of errors.  
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Figure 5.2.4.b Gradient Descent on Synthetic data, high noise. 

 

Figure 5.2.4.b shows that Gradient Descent is converging to a much larger error, 

this error which rounds around 18%. As seen here, Gradient Descent is again very far from 

the global optimal error imposed by Linear Least Squares. 

 

 
Figure 5.2.4.c Algorithm comparison on synthetic data, high noise 

 

High noise error on the synthetic data shows that KGERS is very well accurate, by 

preserving at rmse almost constant at 1e-12. Figure 5.2.4.c. shows that KGERS is able to 

resist this noise, and completely perform as well as Linear Least Squares. On top of this, 

unlike Linear Least Squares, KGERS is guaranteed to return an answer (as long as there are 

enough points). 
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5.3.3. Performance on Over fitting 

Previous experiments show how KGERS is able to successfully resist noise and 

maintain itself at a good RMSE rate. Even with high noise, we saw how Gradient Descent 

scales up in its RMSE, while KGERS remains constant and true to the global optimal. The 

next set of experiments performed is meant to test over fitting and performance analysis 

using the linear synthetic data. 

 

5.3.3.1. Noise Only on Test Set 

 

 
Figure 5.3.1.a KGERS on synthetic data, Noise only on Test Set 

 

Figure 5.3.1.a shows KGERS converging to an RMSE of 12e-7, and not over fitting. 

The noise level in the training sets is very high, around 30%. This displays that KGERS can 

even perform better than Linear Least Squares, almost half of the time. 
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Figure 5.3.1.b Gradient Descent on synthetic data, Noise only on Test Set 

 

Figure 5.3.1.b shows that gradient descent converges (notice that the scale in the 

Y axis is logarithmic). This means that gradient descent has found a local minima to fall 

into, and will not reach the global optimal proposed by Linear Least Squares. 

 

 
Figure 5.3.1.c Algorithm comparison on synthetic data, high noise only on training data 

 

An overview of the CPU performance of these algorithms on top of the noisy 

training data is shown in Figure 5.3.1.c. It can be appreciated that KGERS can sometimes 

surpass the error discovered by Linear Least squares. 
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5.3.3.2. One Irrelevant Feature 

 
Figure 5.3.2.a KGERS on synthetic data, one irrelevant feature 

 

Figure 5.3.2.a shows the behavior of KGERS under synthetic data with one 

irrelevant feature. In the case of this linear regression, one of the weights is unused. The 

algorithm should be able to set this weight to 0 in the hyperplane, since it is irrelevant. 

KGERS shows a quick convergence to the global optimal. 

 

 
Figure 5.3.2.b Gradient Descent on synthetic data, one irrelevant feature 

 

Again, in Figure 5.3.2.b, gradient descent shows similar patterns. These display 

the algorithm converging to a high error, being very sensible with only 1 irrelevant 

attribute. 
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Figure 5.3.2.c Algorithm comparison on synthetic data, one irrelevant feature. 

 

Finally the CPU performance for this data set reveals that KGERS can match and 

stay at the same level of Linear Least Squares. Reasoning behind this is the random nature 

of KGERS, which allows for the algorithm to punish those sets with high error with respect 

to the rest of the data. 

 

5.3.3.3. 1/3 Irrelevant Features 

 
Figure 5.3.3.a KGERS on synthetic data, 1/3 irrelevant features 

 

Figure 5.3.3.a shows that KGERS resists to the extra noise against one third of the 

weights being irrelevant. Also it shows that KGERS manages to do even better than Linear 

Least Squares in a couple of points. This means that KGERS is not as greedy as other 
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algorithms, and can actually explore areas of the solution space that any other non-

randomized algorithm wouldn’t. 

 

 
Figure 5.3.3.b Gradient Descent on synthetic data, 1/3 irrelevant features 

 

Gradient Descent is showing worst results as noise and more irrelevant features 

are added to the synthetic data pool. Figure 5.3.3.b. shows this. Although smooth 

convergent, the curve that Gradient Descent displays is incapable of hitting a very low 

error, unlike Linear Least Squares. 

 

 
Figure 5.3.3.c Algorithm comparison on synthetic data, 1/3 irrelevant features. 

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400

Er
ro

r(
rm

se
)

Iterations

Gradient Descent - iterations vs error

Gradient Descent

Linear Least Squares

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0 50 100 150 200 250 300 350 400

Er
ro

r 
(r

m
se

)

Cpu Clock cycles

Algorithms error vs cpu time

kgers

gradient descent

Linear Least Squares



100 
 

 

The final analysis of CPU time and error for each algorithm, shown in Figure 

5.3.3.c, demonstrates that the initial speculated motivations behind KGERS design are 

correct. KGERS is able to converge, and in similar CPU time like Linear Least Squares. 

KGERS certainly offers some contributions based on speed, accuracy and resistivity to 

noise and over fitting. All these features mentioned are essential for the correct 

construction of a Regression Tree. One disadvantage of KGERS is its instability. As we see 

in Figure 5.2.2.a, KGERS shows an increase in instability when noise is present. This all 

depends on the size of K; the bigger K is the more likely the algorithm can find its way to a 

global optimal. This of course, comes of the price of CPU power. 

 

5.4. Non-linear Regression – Experiment results 

This research has come a long way to arrive to this point. In this section the new 

devised Regression Tree will be compared against other off the shelf algorithms that 

perform regression. These algorithms are described in Table 4.3 of the previous chapter. 

This section includes a similar structure to that one of linear regression experimental 

results; and the objective is the same. We want these algorithms compared, and being 

able to show the main advantages and disadvantages that they offer. 

 

5.4.1. Computational Time 

Time complexity analysis shows a constant time for a regression tree using 

KGERS. As we can see, in Figure 5.4.a, time increases as the size of the input set increases. 

This is expected, since KGERS at the leaf nodes doesn’t utilize the entire example set to 

learn the proper hyperplane. Interestingly, gradient descent and the Forward Feed Neural 

network portray a similar rate of growth. It can be observed from this figure that the 

Neural Network is multiple magnitudes beyond CPU clock ticks than than the other 

algorithms. Figure 5.4.b shows a closer version for Regression Tree KGERS, Regression 

Tree Gradient Descent and Regression Tree Mean. Amongst these, Regression Tree Mean 

shows the least growth, however Regression Tree KGERS shows almost a constant time in 

CPU clock ticks. This is again due to the fact that KGERS doesn’t use the entire input space 

to resolve a solution and produce regression. The opposite can be said with Regression 

Tree Gradient Descent, which shows a more rapid growth. 
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Figure 5.4.a non linear regression algorithms speed analysis 

 

 
Figure 5.4.b non linear regression algorithms speed analysis zoom. 

 

As seen in this figure other algorithms increase linearly with respect to the size of 

the input. KGERS will not continue growing as the input size grows since its time 

complexity is independent of N. The real data in later experiments presents a larger set, 

meaning that the growth line of these algorithms will keep increasing linearly with respect 

to the input size. The spikes are caused due to irregularities in the CPU tasks. Memory 

allocation and compiler optimizations all take part into this noise. Finally we see that the 

Regression Tree with mean at leaf nodes performs very fast, and doesn’t seem to increase 

0

20000

40000

60000

80000

100000

120000

1000 6000 11000 16000 21000 26000 31000 36000 41000 46000

C
p

u
 C

lo
ck

 T
ic

ks

n

Empirical Time Complexity (Synthetic data set)

regression tree 
KGERS
regression tree GD

regression tree 
mean
neural network

0

500

1000

1500

2000

2500

3000

1000 6000 11000 16000 21000 26000 31000 36000 41000 46000

C
p

u
 C

lo
ck

 T
ic

ks

n

Empirical Time Complexity (Synthetic data set)

regression tree 
KGERS
regression tree GD

regression tree 
mean
neural network



102 
 

as much as the others, however it has to be remembered that KGERS split is simple and 

requires a lot of tree levels in order to fit a non linear function correctly. 

 

5.4.2. Performance on noisy data 

The following set of experiments will give us an idea of the performance that the 

proposed KGERS Regression Tree has over other algorithms. It should also be able to 

expose possible flaws that such algorithm possesses.  

 

5.4.2.1. No Noise 

Figures 5.5.1.a, 5.5.1.b, 5.5.1.c and 5.5.1.d show the performance of these 

algorithms on a data set with no noise. 

 

 
Figure 5.5.1.a RT Gradient Descent Analysis on Synthetic data with no noise 

 

Figure 5.5.1.a shows that the gradient descent algorithm in the regression tree 

converges close to zero. The convergence is reached fast and is limited by the size of the 

tree. Keep in mind that the function is a sine wave, thus piece wise linear regression will 

still have some traces of error. 
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Figure 5.5.1.b Neural Network Analysis on Synthetic data with no noise 

 

Figure5. 5.1.b shows the results of neural network acting on Synthetic data (a 

simple sine wave) with no error. As it can be appreciated, the neural network tends to 

converge, but gets stuck into a seamless cycle of noise. A reason for this is that the 

learning rate is constant. Certain problems require an adjustable learning rate which will 

achieve better convergence.  

 

 
Figure 5.5.1.c RT KGERS on Synthetic data with no noise 

 

Regression tree with KGERS is shown in Figure 5.5.1.c. Because the splitting 

criteria discovered already the best places to do linear regression, KGERS doesn’t need a 

significant number of iterations (parameter K) to find a line. Remember that if an example 
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set of points fits perfectly in a line, KGERS would only need m+1 (where m is the 

dimensionality) in order to find a line that fits perfectly with respect to all the points. 

 

 
Figure 5.5.1.d CPU Analysis on Synthetic data with no noise 

 

Figure 5.5.1.d presents the basis for this error study. As we can see, KGERS and 

the Gradient Descent Regression tree achieve the lowest levels of errors with least CPU 

time consumption. On the other hand, the neural network requires some extra time to 

get closer to the convergent answer. As expected the Regression Tree using the mean 

didn’t do a good job, this is because of the inflexibility at its leaf nodes. The next set of 

experiments take place with low error data. These will be shown in Figures 5.5.2.a, 

5.5.2.b, 5.5.2.c and a complete comparison in Figure 5.5.2.d. 
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5.4.2.2. Low Noise 

 

 
Figure 5.5.2.a RT Gradient Descent Analysis on Synthetic data with low noise 

 

Figure 5.5.2.a shows the error convergence of a Regression Tree using Gradient 

Descent in the leaf nodes. The error achieved here is still not significantly high, and very 

similar to that of the data set without errors. 

 

 
Figure 5.5.2.b Neural Network Analysis on Synthetic data with low noise 

 

As seen in Figure 5.5.2.b and 5.5.1.b the neural network converges to a medium 

error. The problem cause for this is a bigger need of intermediate neurons to completely 

be able to plot the target function. In Any case, it seems that it is affected by low noise 

quantities. 
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Figure 5.5.2.c RT KGERS on Synthetic data with low noise 

 

The KGERS Regression Tree shown in Figure 5.5.2.c shows that KGERS seems 

unaffected to noise, and keeps a high accuracy on the data. As mentioned before, the 

splitting criteria does a good job in finding the correct splitting points to find a line, 

making KGERS use less iterations. 

 

 
Figure 5.5.2.d CPU Analysis on Synthetic data with low noise 

 

Finally, Figure 5.5.2.d shows that KGERS has the best performance amongst all 

algorithms with respect to synthetic data with low errors. 
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5.4.2.3. Medium Noise 

 

 
Figure 5.5.3.a RT Gradient Descent Analysis on Synthetic data with medium noise 

 

Figure 5.5.3.a shows now the experiment with medium error. Again, Gradient 

Descent is able to converge properly after several iterations. The gain again in inaccuracy 

is insignificant to that compared with synthetic data with low error. 

 

 
Figure 5.5.3.b Neural Network Analysis on Synthetic data with medium error 

 

Figure 5.5.3.b shows that the neural network does suffer from an increase in 

error, surprisingly more than a regression tree with medium error.  
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Figure 5.5.3.c RT KGERS on Synthetic data with medium error 

 

Regression Tree with KGERS in Figure 5.5.3.c shows a KGERS keeping accuracy 

having an average RMSE of 0.27. The splitting criteria does well enough that K doesn’t 

vary much even after several iterations. 

 

 
Figure 5.5.3.d CPU Analysis on Synthetic data with medium error 

 

The final summary for medium error is found in Figure 5.5.3.d. It shows that again 

KGERS emerges victorious amongst the other algorithms with respect to noise. A possible 

nature is the randomized nature of KGERS, and that the splitting criteria does a very good 

job identifying the most “linear” areas of the graph. 
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5.4.2.4. High Noise 

 

 
Figure 5.5.4.a RT Gradient Descent Analysis on Synthetic data with high noise 

 

Figure 5.5.4a shows a Regression Tree using Gradient Descent that doesn’t 

perform better than a Regression Tree with mean leafs. Surprisingly, a lot of noise will 

really alter the splitting criteria and not let the tree develop good lines. 

 
Figure 5.5.4.b Neural Network Analysis on Synthetic data with high noise 

 

The same can be said with the neural network in Figure 5.5.4.b. This analysis 

shows that the Neural Network doesn’t converge in a low error value, even worse than 
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the mean. Because the noise has a Normal distribution, it is intuitive that the mean 

performs very well. The mean is probably one of the lowest values of that can generate 

error for a particular sample that has a Normal distribution. 

 
Figure 5.5.4.c RT KGERS on Synthetic data with high noise 

 

Figure 5.5.4.c shows that KGERS maintains the lowest error amongst the other 

algorithms with least computational time consumption. It performs almost 50% better 

than the Regression Tree with mean. It has to be noticed that there is an increase of 

instability that doesn’t seem to converge for KGERS compared to the previous data set. 

 

 
Figure 5.5.4.d CPU Analysis on Synthetic data with high noise 
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5.4.3. Performance on Over fitting 

The next set of experiments is meant to test over fitting for each algorithm. 

Starting with Figure set 5.5.5 these show the reaction of the algorithms in error with 

respect to synthetic data designed to over fit.  

 

5.4.3.1. No Noise on Test Set 

 

 
Figure 5.5.5.a RT Gradient Descent Analysis on Synthetic data with no noise on Test Set 

 

Figure 5.5.5.a shows the Regression Tree with Gradient Descent performing with 

greater error than that of a Regression Tree with mean error. A reason for this is the fact 

that the noise has a Gaussian distribution which might bias this kind of mean regression 

to perform better. 
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Figure 5.5.5.b Neural Network Analysis on Synthetic data with no noise on Test Set 

 

The neural network in Figure 5.5.5.b shows a relatively high error with respect to 

the Regression Tree with mean at leaf nodes. Using a test set with no error, and a training 

set with high error, does some damage to greedy algorithms like back propagation. 

 

 
Figure 5.5.5.c RT KGERS on Synthetic data with no noise on Test Set 

 

Figure 5.5.5.c shows that the Regression Tree with KGERS turns a little more 

unstable, with an increase in error. Still it is capable of reaching lower error rates than 

those by the neural network and the Regression Tree with Gradient Descent. 
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Figure 5.5.5.d CPU Analysis on Synthetic data with no noise on Test Set 

 

An overall view of these can be appreciated in Figure 5.5.5.d. In overall, the 

Regression Tree with Mean leafs presents a faster and better approach for highly noisy 

data. Of course, this should be verified with other type of error distribution, but again, 

this direction might diverge from the initial objective, which is to find a good algorithm for 

the hospital data. 

 

5.4.3.2. One Irrelevant Feature 

 

 
Figure 5.5.6.a RT Gradient Descent Analysis on Synthetic data with one extra irrelevant feature 

 

0

1

2

3

4

5

6

0 100 200 300 400 500 600 700 800 900 1000

Er
ro

r 
(r

m
se

)

CPU Clock Ticks

Error vs CPU Time

Regression Tree Mean

Neural Network

Regression Tree Gradient 
Descent

Regression Tree KGERS

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6

0 2000 4000 6000 8000 10000 12000

Er
ro

r 
(r

m
se

)

Iterations in GD at leafs

Regression Tree with Gradient Descent: Iterations vs Error

Regression Tree 
Mean

Regression Tree GD



114 
 

The next batch of experiments covers one extra irrelevant feature on the 

synthetic data. Figure 5.5.6.a shows that the Regression Tree with Gradient Descent leafs 

resists to this noise, and can converge to a lower error than that of a simple mean. 

 

 
Figure 5.5.6.b Neural Network Analysis on Synthetic data with one extra irrelevant feature 

 

Figure 5.5.6.b shows the Neural Network, still stuck in a high error range. As 

mentioned before, back propagation tends to get stuck in the local minimum solution, 

and sometimes is hard to find the global optimal. 

 

 
Figure 5.5.6.c RT KGERS on Synthetic data with one extra irrelevant feature 
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Randomized algorithms such as the Regression tree with KGERS seem to be able 

to have low error (2.1 at the best case) to this noise, compared to the Regression Tree 

mean which does around 3.5 of RMSE. Some evidence of KGERS CPU advantage can be 

appreciated in Figure 5.5.6.c. 

 

 
Figure 5.5.6.d CPU Analysis on Synthetic data with one extra irrelevant feature 

 

The summary of the extra irrelevant feature is shown in Figure 5.5.6.d. The CPU 

cycles required to achieve a low error are higher than usual spanning up to 400 CPU clock 

ticks, and KGERS shows signs of high instability.  
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5.4.3.3. Two extra Irrelevant Features  

 

 
Figure 5.5.7.a RT Gradient Descent Analysis on Synthetic data with two extra irrelevant features 

 

The final batch of experiments involves using two irrelevant features. The first 

algorithm, which is the Regression tree with Gradient Descent at the leafs shows a very 

similar error curve. 

 

 
Figure 5.5.7.b Neural network on Synthetic data with two extra irrelevant features 
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Figure 5.5.7.b Neural Network has a very similar curve to that one of Figure 

5.5.7.a. The neural network seems to converge into a high quantity of error. 

 

 
Figure 5.5.7.c RT KGERS on Synthetic data with two extra irrelevant features 

 

The Regression Tree with KGERS in Figure 5.5.7.c shows that this algorithm starts 

to get very unstable. The more irrelevant attributes, the harder it is for these regression 

tree algorithms to find a good tree. The result is a very large tree with too many 

parameters. This can be thought as over fitting. Still regression is well done at the leaves, 

and a lot of times this error is better than that one of the neural network. 

 

 
Figure 5.5.7.d CPU Analysis on Synthetic data with two extra irrelevant features 
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Finally, Figure 5.5.7.d shows the summary of CPU power versus error for each 

algorithm in this last batch of experiments. The pattern found here is that the more noise 

is injected to the data set, the more likely to over fit. The Regression tree using KGERS 

trades this over fitting with instability. This is a great advantage, since instability would 

mean that there is something wrong with the training set. This could come from either 

the features or noise itself. Algorithms like the Neural Network don’t present any signs of 

trouble when doing this, and silently fit the noisy data.  

As shown before, KGERS seems to be a better fit for a Regression Tree seeking for 

linear approximation. We can see that during the presence of noise it can preserve 

accuracy (degrading at most by 30% of MAE error) and can ultimately show signs of 

instability instead of fitting on the error.  

 

5.5. Summary 

This chapter shows the behavior of the new linear regression algorithm KGERS 

when facing regression with a data set with degrading noise. The algorithm becomes 

more unstable, however it still has the possibility of converging to a correct global 

optimal. Other algorithms such as Gradient Descent and Linear Least Squares tend to over 

fit. Surprisingly Linear Least Squares does hold its position and shows resistivity into noise 

although not always. The next section shows the behavior of the new devised regression 

tree which uses KGERS splitting, T-Test Shape stopping criterion and KGERS regression. 

This new algorithm is compared to standard off the shelf algorithms, such as gradient 

descent Regression Tree and the Feed Forward Neural Network. Experiments show that 

the KGERS Regression Tree does show some sign of robustness. Inconsistency is a 

problem; the randomized algorithm becomes more unstable as there is more noise 

instead of over fitting. It was shown that KGERS Regression Tree is significantly faster than 

the Feed Forward Neural Network and the Gradient Descent Regression Tree. Most of 

these advantages are due to its independence of the input size N. 
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Chapter 6 
Conclusions 

 

 
The empirical evidence in this study shows two kinds of contributions. The first 

contribution is the nature of KGERS as linear regression and as a composition of 

Regression Tree algorithms. KGERS shows lower error from other algorithms (around 3% 

less), and faster regression (75% faster than Neural Networks on average) on the hospital 

data. This lead to the trial usage of the models to estimate the admissions from the ED 

data for 3 weeks. The second set of contributions deal with general algorithmic properties 

of KGERS, which show more efficient regression when exposed to noisy data. One of the 

main limitations is the estimation of the K parameter in KGERS, which was done manually 

for this study. New improvements would include exploring systematic ways of estimating 

K. 

 

6.1. Contributions 

The first of contributions talks about the medical informatics problem that 

Melbourne Holmes Regional Medical Center is facing. The second set of contributions 

deal with the algorithmic evaluation results, and the new devised techniques used for 

piecewise linear regression. 

 

6.1.1. Medical Informatics Contributions 

The first contribution is the accuracy on the estimations of future admissions 

from the EDInpt data. Currently, Holmes Regional Medical Center is using the models 

proposed on this study to estimate admissions. While the error still goes around 16% (in 

terms of MAE), the absolute error is lower and allowable within the hospital interests. 

There is satisfaction on the staff side. As a result there has been 3 weeks of trial usage of 

the models presented in this research to estimate admissions. Currently the research’s 

direction might go into official operation on the hospital side. 

The second contribution deals with the rest of admissions data. Estimation of the 

other 3 hospital data sets (PCU, ICU, and Floor) does present low error (around 16% in 

terms of MAE). Because of time constrains these results have not been presented to the 

hospital, however they show similar levels of errors to those of the EDInpt data set. This 

means that the forecasting with these data sets also present desirable results that might 

help with the holding problem. 
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The final contribution is the fact that the Regression Tree using KGERS at the leaf 

nodes presents higher accuracy than the other traditional algorithms. This confirms the 

initial suspicion that the other algorithms are more likely to over fit and not perform as 

well under noisy circumstances. 

 

6.1.2. Algorithmic Contributions 

The Regression Tree using KGERS for splitting and leaf nodes is the first 

algorithmic contribution from this research. Experiments confirm that the time 

complexity is independent from the input size, making it faster than the other traditional 

algorithms. 

The second algorithmic contribution is the fact that KGERS linear regression does 

guarantee a solution, unlike Linear Least Squares. Linear Least Squares only gives a 

solution when its input matrix is invertible, otherwise it will fail. KGERS can perform as 

fast as this algorithm and guarantee a solution at the same time. 

KGERS in the leaf nodes shows that is maintains low error (around 20%) when 

exposed to high noise (33% of noise) for non linear regression. While the traditional 

algorithms over fit, or sometimes don’t even converge, KGERS seems to keep the same 

error and not completely diverge from low error quantities. 

Linear regression using KGERS presents a time complexity of O(M2), where M is 

the dimensionality of the problem. This shows that KGERS is independent from N, 

providing a faster way of doing splitting and regression for Regression Tree models. Other 

algorithms such as Neural Networks, need to analyze the entire input space. 

KGERS is a good choice for piece wise linear regression since at the leaf nodes it is 

almost guaranteed by design that the data presents a linear pattern. This means that if 

the input space is split into very linear chunks, KGERS is a great choice since it doesn’t 

need to look at the entire input space to generate a low error hyperplane. This can even 

potentially be done with low values of K. 

 

6.2. Limitations and Potential improvement 

The disadvantages of KGERS can be observed from the experimental data in 

chapter 5. The regression tree using KGERS presents problems when there is low error on 

the data. The jump from no error to a small quantity of error is big (around a 14% of MAE 

increase in noise). Although this is countered by the fact that this algorithms keeps the 

rate of error from noise small compared to other algorithms like back propagation in the 

neural network. 

Since KGERS is a randomized search algorithm, it can present instability problems 

when data is very noisy. This means that the likelihood of getting a low error decreases. 

Future work in this area involves exploring techniques and heuristics that might decrease 
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this erratic probability when the noise is high. Estimating the correct value for K (number 

of sub sets that KGERS does) is done manually. New statistical ways can be explored to 

automate this, and let the algorithm pick the correct value for K. 

KGERS algorithm uses an EPS design (equal probability of selection). This EPS 

design could be a potential limit in the process of learning. Using sampling methods could 

improve the performance if applied carefully. The problem with an EPS design with 

respect to the hospital data is that several points occur more often than others. For 

example, the likelihood of having 25 patients is lower than that of having only 13 patients 

a time slice in the EDInpt. Sampling theory states that a biased population requires a 

biased sampling. Amongst the existent techniques are stratified sampling and clustering 

sampling. Stratified sampling will extract candidate subsets from those feature vectors 

that share similar semantics, in terms of their Y value. Clustering sampling can use the 

feature vectors, cluster them in groups and extract samples of these subgroups with 

similar probability of proportion. Biasing the training data in terms of sampling, so it 

reflects the true population, can potentially give more honest results.  

Another possibility for future work involves looking at Box Jenkins models (Wei 

Yin Loh 2008), such as ARIMA. These models also use information about the distribution 

of noise in the data, calling it random shock modeling. Finally, on the hospital side, there 

is still work to be done regarding modeling of the holding problem. The EDInpt, PCU, ICU 

and Floor models output could be combined to perform regression on the average 

holding time of patients. There is still plenty of work on this area and we believe that the 

contributions presented in this study will help improving the efficiency of hospitals. 
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