
Using a Randomized Regression Approach

 to Estimate Hospital Admissions

 to Reduce Emergency Department Holding

by

Kleber Andres Garcia

Bachelor of Science in Computer Science

Florida Institute of Technology, Melbourne Fl

2009

A thesis

 submitted to Florida Institute of Technology

 in partial fulfillment to the requirements

for the degree of

Master of Science

In

Computer Science

Melbourne, Florida

May, 2011

© Copyright 2011 Kleber Andres Garcia

All Rights Reserved

The author grants permission to make single copies _________________________

iii

Abstract

“Using a Randomized Regression Approach

to Estimate Hospital Admissions

to Reduce Emergency Department Holding”

By Kleber Andres Garcia

Thesis Advisor: Philip Chan, Ph.D.

Serious patients from the Emergency Department need to be admitted into the

hospital for more specialized care. However, beds might not be available, which results in

the patients being held in the Emergency Department. One reason is difficulty in

estimating the number of patients accurately, which leads to the challenge of scheduling

staff appropriately. This study proposes KGERS (K Gaussian Elimination on Randomized

Subsets), a randomized algorithm for linear regression. KGERS is a good fit for Regression

Trees that perform piecewise linear approximation (for nonlinear regression) because the

data at the leaf nodes presents a roughly linear pattern by design. Empirical evidence

shows that KGERS is able to perform regression on hospital data faster and more precise

(error of 16%) than other traditional algorithms such as Neural Networks. Additionally, an

analysis on synthetic data sets shows that KGERS is an efficient algorithm that degrades

less under regular quantities of noise found in real life data sets.

iv

Table of Contents

Abstract ... iii

Table of Contents ... iv

List of Figures .. vii

List of Tables ... xii

Chapter 1: Introduction... 1

1.1. Motivation ... 1

1.2. Problem Statement ... 2

1.3. Overall Approach ... 2

1.4. Overview of contributions ... 2

1.5. Chapters Overview .. 3

Chapter 2: Related Work ... 4

2.1. General Forecasting Approaches.. 4

2.1.1. Hospital admissions features .. 4

2.1.2. Machine learning algorithms .. 5

2.2. Forecasting as a time series problem ... 7

2.2.1. ARMA models .. 8

2.2.2. Machine learning on Time series .. 9

2.2.3. Linear Regression ... 12

2.3. Neural Networks Regression .. 15

2.3.1. Self organizing maps .. 16

2.3.2. General Regression Neural network ... 18

2.3.3. Back propagation ... 20

v

2.4. Regression trees .. 24

2.4.1. Regression tree algorithms... 24

2.4.2. Summary of other methodologies .. 28

2.4.3. Regression tree applications .. 29

2.4.4. Regression tree novel approaches .. 32

Chapter 3: A Randomized Approach to Regression .. 34

3.1. Motivation for KGERS .. 34

3.2. KGERS Algorithm ... 35

3.3. Time Complexity Analysis .. 39

3.3.2. Analysis Summary .. 42

3.4. Regression Tree Algorithms ... 43

3.4.1. New splitting criteria .. 43

3.4.2. New Stopping Criteria .. 45

3.4.3. Regression at Leaf Nodes ... 47

3.4.4. Summary of regression tree algorithms .. 47

3.5. Summary ... 47

Chapter 4: Estimating Hospital Admissions .. 48

4.1. Hospital admissions data ... 48

4.2. Experiment procedures ... 50

4.3. Evaluation Criteria ... 51

4.4. Preliminary analysis for feature selection... 52

4.5. Processing of data and Feature Vectors ... 57

4.6. Feature selection ... 58

4.7. Empirical Results ... 63

4.7.1. Performance on EDInpt data set .. 63

4.7.2. Performance on ICU data set.. 68

4.7.3. Performance on PCU data set. ... 72

4.7.4. Performance on Floor data set. .. 76

4.8. Contributions to hospital ... 80

vi

4.9. Summary ... 81

Chapter 5: Empirical Evaluation with Synthetic Datasets ... 82

5.1. Data Sets Overview .. 82

5.2. Experiment procedures ... 85

5.3. Linear Regression Experiment results... 86

5.3.1. Computation time .. 86

5.3.2. Performance on noisy data .. 88

5.3.3. Performance on Over fitting ... 95

5.4. Non-linear Regression – Experiment results ... 100

5.4.1. Computational Time .. 100

5.4.2. Performance on noisy data .. 102

5.4.3. Performance on Over fitting ... 111

5.5. Summary ... 118

Chapter 6: Conclusions.. 119

6.1. Contributions... 119

6.1.1. Medical Informatics Contributions ... 119

6.1.2. Algorithmic Contributions .. 120

6.2. Limitations and Potential improvement ... 120

Bibliography .. 122

vii

List of Figures

Figure 2.1 PQR2 algorithm .. 6

Figure 2.2 Recursive prediction (Figure 1 in Nikolov’s research 2010) 12

Figure 2.3. Gradient Descent Pseudocode ... 13

Figure 2.4 Linear Least Squares pseudocode ... 15

Figure 2.5 Self Organizing map architecture (Figure 4.3.a in Kohonen’s book 2008)......... 16

Figure 2.6 SOM learning algorithm .. 17

Figure 2.7 General Regression Neural Network (GRNN) architecture (Figure 1 in Specht’s

research 1991) .. 19

Figure 2.8 Unthresholded Perceptron ... 21

Figure 2.9 Neural network representation... 21

Figure 2.10 Back Propagation .. 23

Figure 2.11 Regression tree ... 24

Figure 2.12 Left hand side regression tree, right hand side non linear function. 25

Figure 2.13 Regression Tree .. 25

Figure 2.14 Pseudo code for PickBestSplit by variance... 26

Figure 2.15 Regression tree optimized for readability (Figure 1 of Buja and Lee 2001) 30

Figure 3.1 Illustration of randomization property from KGERS ... 35

Figure 3.2 KGERS line visualization .. 36

Figure 3.3 K-gers pseudo code .. 37

Figure 3.4 GenerteHyperplane pseudocode .. 37

Figure 3.5 CalculateHyperplaneWeight pseudocode.. 38

Figure 3.7 Linear Least Squares pseudo code .. 41

Figure 3.8 Regression Tree .. 43

Figure 3.9 Pseudo code for PickBestSplit by KGERS hyperplane fit 44

Figure 4.1 Outline of Hospital data .. 49

viii

Figure 4.2 FFT analysis cycle prominence of EDInpt data. .. 53

Figure 4.3 FFT analysis cycle prominences of PCU, ICU and Floor data. 54

Figure 4.4 Shape of daily cycles. .. 54

Figure 4.5 Shape of yearly cycles. .. 55

Figure 4.6 Shape of weekly cycles. .. 56

Figure 4.7 PCU, ICU and Floor weekly cycle shape ... 56

Figure 4.8 Feature Extraction from time series .. 57

Figure 4.9 First feature of EDInpt data ... 58

Figure 4.10 Second feature of EDInpt data .. 59

Figure 4.11 Third feature of EDInpt ... 59

Figure 4.12 Fourth feature of EDInpt data ... 60

Figure 4.13 fifth feature of EDInpt Weekly change feature .. 60

Figure 4.14 sixth feature of EDInpt Yearly change feature ... 61

Figure 4.15 First PCU ICU Floor feature, last week value. ... 61

Figure 4.16 Second PCU, ICU and Floor feature, last 3 weeks average. 61

Figure 4.17 Third PCU ICU Floor feature, weekly difference. .. 62

Figure 4.18 Fifth PCU ICU Floor feature, 52 weeks ago .. 62

Figure 4.19.a Regression Tree Gradient Descent on EDInpt data 63

Figure 4.19.b Neural network on EDInpt data .. 64

Figure 4.19.c Regression Tree KGERS on EDInpt data. .. 64

Figure 4.19.d Error vs CPU time analysis for algorithms under EDInpt data 65

Figure 4.19.e Error vs CPU time analysis for algorithms under EDInpt data, ZOOM 66

Figure 4.19.f Leaf Nodes vs CPU cycles .. 67

Figure 4.19.f Error distribution in KGERS for EDInpt... 68

Figure 4.20.a Regression Tree Gradient Descent on ICU data .. 69

Figure 4.20.b Neural Network on ICU data .. 69

Figure 4.20.c Regression Tree KGERS leaves on ICU data ... 70

Figure 4.20.d Error vs CPU time analysis for algorithms under ICU data 70

Figure 4.20.e Error vs CPU time analysis for algorithms under ICU data, ZOOM 71

ix

Figure 4.20.f Error Distribution for KGERS on ICU data .. 72

Figure 4.21.a Regression Tree Gradient Descent on PCU data ... 72

Figure 4.21.b Neural Network on PCU data ... 73

Figure 4.21.c Regression Tree KGERS on PCU data ... 74

Figure 4.21.d Error vs CPU time analysis for algorithms under PCU data 74

Figure 4.21.e Error vs CPU time analysis for algorithms under PCU data, ZOOM 75

Figure 4.21.f Error Distribution for KGERS on PCU data ... 76

Figure 4.22.a Regression Tree Gradient Descent on Floor data .. 76

Figure 4.22.b Neural Network on Floor data .. 77

Figure 4.22.c Regression Tree KGERS leaves on Floor data .. 77

Figure 4.22.d Error vs CPU time analysis for algorithms under Floor data 78

Figure 4.22.e Error vs CPU time analysis for algorithms under Floor data, ZOOM 79

Figure 4.22.f Error Distribution for KGERS on Floor data .. 80

Figure 5.1.a Linear regression algorithm speed analysis .. 87

Figure 5.1.b Linear regression algorithm speed analysis zoom ... 88

Figure 5.2.1.a Kgers on Synthetic data, no noise. ... 89

Figure 5.2.1.b Gradient Descent on Synthetic data, no noise. .. 89

Figure 5.2.1.c Algorithm comparison on synthetic data without noise. 90

Figure 5.2.2.a Kgers on Synthetic data, low noise. ... 90

Figure 5.2.2.b Gradient Descent on Synthetic data, low noise. .. 91

Figure 5.2.2.c Algorithm comparison on synthetic data, low noise 91

Figure 5.2.3.a KGERS on Synthetic data, medium noise. .. 92

Figure 5.2.3.b Gradient Descent on Synthetic data, medium noise. 92

Figure 5.2.3.c Algorithm comparison on synthetic data, medium noise 93

Figure 5.2.4.a KGERS on Synthetic data, high noise. .. 93

Figure 5.2.4.b Gradient Descent on Synthetic data, high noise. 94

Figure 5.2.4.c Algorithm comparison on synthetic data, high noise 94

Figure 5.3.1.a KGERS on synthetic data, Noise only on Test Set 95

Figure 5.3.1.b Gradient Descent on synthetic data, Noise only on Test Set 96

x

Figure 5.3.1.c Algorithm comparison on synthetic data, high noise only on training data 96

Figure 5.3.2.a KGERS on synthetic data, one irrelevant feature 97

Figure 5.3.2.b Gradient Descent on synthetic data, one irrelevant feature 97

Figure 5.3.2.c Algorithm comparison on synthetic data, one irrelevant feature. 98

Figure 5.3.3.a KGERS on synthetic data, 1/3 irrelevant features 98

Figure 5.3.3.b Gradient Descent on synthetic data, 1/3 irrelevant features 99

Figure 5.3.3.c Algorithm comparison on synthetic data, 1/3 irrelevant features. 99

Figure 5.4.a non linear regression algorithms speed analysis ... 101

Figure 5.4.b non linear regression algorithms speed analysis zoom. 101

Figure 5.5.1.a RT Gradient Descent Analysis on Synthetic data with no noise 102

Figure 5.5.1.b Neural Network Analysis on Synthetic data with no noise 103

Figure 5.5.1.c RT KGERS on Synthetic data with no noise ... 103

Figure 5.5.1.d CPU Analysis on Synthetic data with no noise ... 104

Figure 5.5.2.a RT Gradient Descent Analysis on Synthetic data with low noise............... 105

Figure 5.5.2.b Neural Network Analysis on Synthetic data with low noise 105

Figure 5.5.2.c RT KGERS on Synthetic data with low noise ... 106

Figure 5.5.2.d CPU Analysis on Synthetic data with low noise .. 106

Figure 5.5.3.a RT Gradient Descent Analysis on Synthetic data with medium noise 107

Figure 5.5.3.b Neural Network Analysis on Synthetic data with medium error............... 107

Figure 5.5.3.c RT KGERS on Synthetic data with medium error 108

Figure 5.5.3.d CPU Analysis on Synthetic data with medium error 108

Figure 5.5.4.a RT Gradient Descent Analysis on Synthetic data with high noise 109

Figure 5.5.4.b Neural Network Analysis on Synthetic data with high noise 109

Figure 5.5.4.c RT KGERS on Synthetic data with high noise .. 110

Figure 5.5.4.d CPU Analysis on Synthetic data with high noise 110

Figure 5.5.5.a RT Gradient Descent Analysis on Synthetic data with no noise on Test Set

 ... 111

Figure 5.5.5.b Neural Network Analysis on Synthetic data with no noise on Test Set 112

Figure 5.5.5.c RT KGERS on Synthetic data with no noise on Test Set............................. 112

xi

Figure 5.5.5.d CPU Analysis on Synthetic data with no noise on Test Set 113

Figure 5.5.6.a RT Gradient Descent Analysis on Synthetic data with one extra irrelevant

feature .. 113

Figure 5.5.6.b Neural Network Analysis on Synthetic data with one extra irrelevant feature

 ... 114

Figure 5.5.6.c RT KGERS on Synthetic data with one extra irrelevant feature 114

Figure 5.5.6.d CPU Analysis on Synthetic data with one extra irrelevant feature 115

Figure 5.5.7.a RT Gradient Descent Analysis on Synthetic data with two extra irrelevant

features .. 116

Figure 5.5.7.b Neural network on Synthetic data with two extra irrelevant features...... 116

Figure 5.5.7.c RT KGERS on Synthetic data with two extra irrelevant features 117

Figure 5.5.7.d CPU Analysis on Synthetic data with two extra irrelevant features 117

xii

List of Tables

Table 3.1. Summary of time complexity .. 42

Table 3.2. Summary and Sources of regression tree algorithms 47

Table 4.1 Training and Test sets for hospital data .. 49

Table 4.2 Hospital bed types. .. 50

Table 4.3 algorithms for non linear regression experiments .. 51

Table 4.4.a Summary of EDInpt feature vector .. 62

Table 4.4.b Summary of ICU, PCU and Floor features. ... 63

Table 4.5 Average Leaf sizes with respect to CPU time .. 67

Table 4.6 Error comparison of Algorithms under EDInpt data .. 67

Table 4.7 Error comparison of Algorithms under ICU data ... 71

Table 4.8 Error comparison of Algorithms under PCU data .. 75

Table 4.9 Error comparison of Algorithms under Floor data .. 79

Table 4.10 Hospital runs using models with EDInpt data ... 81

Table 5.1 Variations of SYNTHETIC data sets.. 83

Table 5.2 List of weights used by linear function. .. 84

Table 5.3 List of weights used by non linear function... 84

Table 5.4 algorithms for linear regression experiments ... 86

1

Chapter 1
Introduction

The applications of machine learning have provided valuable contributions to our

society. From video games to actual industrial applications, they all aim to push the power

of computing to another level; a level of cognition and true understanding of data. This

research aims to address an existing problem with hospitals over the nation and use

modern machine learning techniques to solve it. The problems that hospital faces are

based on estimation of future admissions that could cause bottlenecks in the workflow

process, adding holding time for patients. This study aims to show that our proposed

randomized regression algorithms are better suited for estimation of these admissions

than some of the existing algorithms. Additionally, we discuss the strengths and

weaknesses of our algorithms on synthetic data containing properties commonly found in

the real world.

1.1. Motivation

Hospitals can be very crowded places, especially in the emergency room. They

tend to overcrowd, especially when the hospital hasn’t allocated enough resources for a

particular “spike” day. The Emergency Department (ED) first accepts people coming from

unexpected accidents or simply very risky sign of sicknesses that need immediate

attention. If the patients need more care, they are admitted to the hospital. However,

beds might not be available in the main hospital. Consequently they are being held in the

ED. This could reduce the capacity of ED to treat new patients. Also the patients are not

getting specialized care in the main hospital. In this study we investigate admissions to

the hospital from the ED.

One reason for patient holding in the ED is staffing. In order to maintain a bed for

a patient inside the hospital, nurses and doctors must be assigned to it. This requires

calling ahead of time whichever staff member needs to be there. If the admission rate

(coming from the ED) is unknown, the hospital has to guess on how and where to allocate

the staff. A consequence of this problem is not having enough staff, and start adding

people back to the ED placement. The next consequence is that now the ED is crowded

with patients that are not supposed to be there, because of understaffing from the

admissions side. The vicious cycle continues and hence the bottleneck and long waiting

lines.

2

It is imperative for hospitals around the nation to have some sort of

computational models that will help dealing with this problem, by estimating future

admission rates. Estimating admission values will help with staffing, and hopefully reduce

holding time for patients waiting to be admitted.

1.2. Problem Statement

1. Estimation of future hospital Admissions from ED data:

Given data from the past, the first problem will be to build a model of this data and

try to estimate future admissions to the hospital. The data comes as patient

admissions from ED department, PCU, ICU and Floor unit admissions (more details in

Chapter 4).

2. Faster Non- Linear Regression:

Piecewise linear regression will be one of the methods used to do these admission

estimations. As a result, a fast and reliable algorithm for linear regression is required

in order to accomplish this goal.

3. Analysis of algorithms in different environments:

Amongst the algorithms used, applicability to other data sets will be measured. The

main question of this sub problem is: how likely are these algorithms to fail under

noisy environments?

1.3. Overall Approach

To solve the first problem in the last section a set of existent algorithms will be

used. On top of this, the data will be treated as a time series and several features will be

derived. The reason why it is treated as a time series is because this is perhaps the

simplest way to do an initial study on this data while not considering individual patient

details. Features in the form of multidimensional vectors will be derived out of these time

series admissions data sets.

The second problem will require a new algorithm that will satisfy the requirement

of fast computation. We proposed a randomized algorithm called KGERS (K Gaussian

Elimination from Randomized Subsets).

Lastly, for the third problem we will generate data with noise and irrelevant

features. We then analyze the behavior of the different algorithms.

1.4. Overview of contributions

1. We introduced randomized algorithm (KGERS) for efficient linear regression

and incorporate it into Regression Tree algorithms

2. For admissions from ED, our proposed algorithm (Regression Tree KGERS) is

faster and more accurate than Neural Networks.

3

3. On a trial basis, the hospital using models proposed on this study to estimate

future admissions.

4. Estimation of unit types (PCU, ICU and Floor) presents good accuracy in terms

of the hospital, which spans around 16% of error.

5. Data degradation does not cause a high increase in errors in the Regression

Tree KGERS (errors manage to stay around 26%).

6. KGERS time complexity is independent of N (size of input). KGERS time

complexity is O(M3) where M is the number of dimensions.

7. Because the leaves in Regression Trees (using a linear splitting strategy) are

mostly linear by design, KGERS is a proper efficient algorithm for linear

regression at the leaves.

1.5. Chapters Overview

This study is divided into five main chapters. Chapter 2 will be an overall literature

review and study on this topic. This chapter contains information on the previous

machine learning algorithms mentioned. The two most important discussed will be

Regression Trees and Feed Forward Neural Networks trained using back propagation.

There is also information regarding previous studies done on the subject. These studies

include semantic analysis on the data (which differs from treating the data as a time

series problem) and modeling time series using ARMA models.

Chapter 3 will explain the linear regression algorithm proposed which is based on

randomized search. This algorithm is KGERS. The purpose of this algorithm are explained

and later linked to the concept of generating regression trees that perform piecewise

linear regression. Other algorithms for regression trees are proposed specifically for

splitting and stopping criteria.

Chapter 4 will be the experimental results on the hospital data. Contributions,

weaknesses and results will be discussed here. An overview of the experimental process

will be also given.

Chapter 5 will test the performance of the algorithms (algorithms proposed and

cited in chapter 2) on synthetic data. This synthetic data meant to be an easy target for

regression, and is used to test the effects of degradation and noise over the respective

algorithms (noise will be added to this synthetic data).

Finally, Chapter 6 will give an overall overview of the findings, conclusions and

further proposal and improvements of this work.

4

Chapter 2

Related Work

In this chapter we will show the resources available on the subject of study. There

exist a vast number of papers that deal with hospital admission data prediction. This

chapter is divided into four separate sections, each one containing a brief literature

review on the subtopic studied. The first section talks about general existent approaches

to forecasting. Several approaches are discussed here, such as simulation and some of the

general features used. The second section discusses treating the forecasting problem

itself as a time series. Several methods are explored, such as ARMA models and Neural

Networks. The fourth section introduces Neural Networks and existent algorithms related

to this topic. Finally, the fourth section introduces Regression Trees, its algorithms and

applications to forecasting problems.

2.1. General Forecasting Approaches

Many existing forecasting approaches for hospital admission data involve the

usage of experimental models. These experimental models are then configured under

several variable constrains and executed. The result of such simulation is what is thought

to be the actual forecasting which is believed to contain a manageable error range. This

study’s approach takes a different line, and treats the problem as a machine learning

challenge.

2.1.1. Hospital admissions features

There has been several attempts in the past, such as that one by Leegon Jeffrey et

al. (2006) involving the usage of neural networks. In his paper he attempts to predict the

admissions of a hospital using a neural network.

The most interesting aspect of the paper is the features that they decide to

implement. Most of this involves semantics of the data itself, as in very specific patient

features. Data is feed from previous patients into the neural network. The neural network

builds a model of a patient likely to be admitted into the hospital from the symptoms he

presents to the ER. The new patients arrive, and the neural network tries to identify those

patients that are likely to be admitted. This information is used to allocate the respective

resources and staffing that the hospital requires. Additionally to this, the claim states that

the hospital is also able to predict workload by just using this patient information.

5

A problem with this technique is the lack of flexibility on dates we want to

predict. If the hospital wants to know the likely demand of patients in a week, they will

have to wait several days before the actual day of the prediction. The reason is that each

patient has to go through the learning process of the neural network in a real time

fashion. Jiexun Li et al. (2009) also proposes a similar technique. This time they use a pre

processed Chief Complain. Chief Complains (CC) are records that explain the reason for

the patient to be hospitalized. There isn’t a standard for CCs so several special strategies

have to be applied in order to extract features out of them. The inputs are patient

information and the output is hospital admission. The tweak here is that patient

information is preprocessed (using the Raw's CC) and new features are generated by

applying a CC standardization algorithm. Jiexun uses several off the shelf machine

learning algorithms, such as support vector machines and decision trees. The

standardization algorithm is explained in section 3.1. of Jiexun Li et al. (2009). In order to

extract features out of these chief complains, the following strategies are applied:

o Using semantic-enhanced features vectors: Here the CC is still a variable, but instead

of treating each CC as a dummy variable, a value is assigned to a CC feature by

considering not only its occurrence but its related CCs. This process is explained in

detail in section 3.2.1 of the Jiexun’s study.

o Performing data transformation: In a high level, this process performs a semantic

analysis on the chief complains. They also call this Semantic Kernel Learning (Jiexun Li

et al, 2009). What this does is that several kernel functions are defined (for example

comparing how similar are two patients or two CC's). At the end a linear combination

is applied for all patients and the value is normalized, ready to be used by the learning

algorithm as a feature vector.

Results show that by incorporating semantics an improvement in admission

prediction was achieved (section 4.1 Jiexun et al. 2009).

2.1.2. Machine learning algorithms

What these methods have in common is the usage of data for some sort of

operations prediction. Matsunaga and Fortes (2010) have devised a new approach, based

on an algorithm called PQR (Predicting Query Time). This is a classification tree algorithm

that at the end allows a regression problem to be fit at the leaf nodes. The new algorithm

that they have implemented (PQR2) has better results on their target data set. The data

set trying to model is execution time, memory and disk consumption of two applications.

6

These applications will also be running under different scenarios, and the goal is to model

all these as features and apply machine learning algorithms yielding to low error.

PQR algorithm, just like any regression tree algorithm, consists of three main

operations. These are: splitting criteria, stopping criteria and regression at leaf nodes. For

splitting criteria, Matsunaga et al have chosen very simple maximization of normalized

ranges. They will pick that feature with the biggest range in split. This will become a

potential split point for the new tree. For stopping criteria, they use maximum number of

examples filtered at leaf nodes. Whenever the regression tree reaches a maximum

number of leaf nodes it will stop growing and apply the third operation which is

regression. During regression the PQR tree does an average of the outputs of these

remaining training values. A variation of the PQR method will be explored later, for now

this is perhaps the simplest off the shelf regression tree. What PQR2 does is that it tries to

fit the best regression model at leafs using a validation set. This of course reduces the

number of training examples, but gives a hint of the best predictor found under the

particular leaf. Finally, the best predictor is chosen and incorporated into the tree. The

steps of PQR2 can be summarized in Figure 2.1.

PQR2
-inputs:
X(inputs), Y(outputs), S (max size of examples)
-outputs: PQR2 Tree
1: Begin
2: If (size(X) < S)
3: Split X into X’ and Xvalidation using Y’s
 distribution
4: For each regression candidate R choose the best
 one trained on X’ and evaluation on Xvalidation
5: return Leaf node R
6: Else
7: Choose best split for X
8: let pqr.left = PQR2(Xleft,Yleft,S)
9: let pqr.right= PQR2(Xright,Yright,S)
10: return pqr
11: END

Figure 2.1 PQR2 algorithm

While providing good results on the data sets, the algorithm is not tested for over

fitting. The original source of the PQR tree comes from Chetan et al. (2008). The

explanation of this original PQR tree is a bit more in-depth than that one shown by

Matsunaga and Fortes (2010). The real algorithm produces a tree with two patterns: leaf

node and internal node. The internal node is a range and a classifier function. The range

represents the possible values this tree can predict well, and the classifier function (k

means, or any other classification algorithm in general). The classifier will tell the current

set of attributes to predict on which 2 child nodes to go. This happens recursively until we

7

reach the leaf nodes, the leaf nodes are simply ranges of the possible values for the

current class. Very similar from regression tree, but differs in the sense that the samples

are split by distribution rather than a single class attribute. Another interesting thing is

the introduction of several optimization and post pruning processes involved. Clearly

these ones are not included in that paper by Matsunaga and Fortes (2010). At the end,

the big difference here is the flexibility of PQR2, which is able to integrate different

models into the leaf nodes of the tree.

So far a couple of machine learning algorithms and features have been exposed

that tackle problems very similar to that one of hospital admissions. All these algorithms

and features want to extend the idea of generating a model that reduces error. Perlich et

al. (2006) propose the idea of using a high quartile model instead of an error reduction

model. The problem statement they are trying to tackle here is to predict the amount of

money a customer is willing to pay for a product in the future. This will give good insight

of how much to produce and how the customer will be allocating resources for the

product.

The way this relates to our current problem is that we are also trying to predict

"how much" customers (patients) are willing to be admitted into the hospital, thus both

problems describe resource allocation. Perlich et al. (2006) approach this by realizing the

maximum q quantile as their probability that a price is within a range. Normally, this is

calculated using the formula P (Y|x) where X is the current information and Y the around

the customer is willing to spend.

By using quartiles the goal changes, the new goal now is to do regression on c(x),

where c(x) is the function that gives the 0.9 high quartile such that (1) satisfies.

 (1)

The most interesting technique for this prediction is using a regression tree,

which is similar to a decision tree but offers more specialization towards continuous

values. While this approach is unused on the current study, it is worth the time to explore

in the future. It provides a potentially useful new point of view that the hospital might be

interested in, just like predicting the size of “wallets”.

2.2. Forecasting as a time series problem

So far literature on semantic analysis of the data has been explored. This means

that specific features such as patient type or type of consumer are explored. The problem

could be analyzed from a different perspective in the way which features are derived, and

instead treat the problem as a time series. A time series is a sequence of events that

follow a specific order. Each event can be though as the y axis in a sample. The x axis can

8

be though as the time. A simple example would be the number of admissions from the

hospital in a particular day.

2.2.1. ARMA models

It has been introduced in the literature many times as the basis for mathematical

analysis of time series. These are ARMA models (Auto Regressive Moving Average).

Montgomery and Johnson (1976) describe this model as the composition of two sub

models. Both sub-models can be observed in equation (2).

)()(XMAXARX t  (2)

The auto regressive model is expressed in equation (3). The element c is a

constant.

  






 
p

i

it

q

i

iitittt XcXMAXAR
1 1

)()( (3)

The ε found in the equation represents the random shocks that each time

element in the time series has. The moving average segment is represented by the linear

combination of the αi with respect to the X values. It is called moving average because it is

assumed that the time series is a stationary stochastic process, whose joint probability

distribution is not changing. This also means that the underlying model’s mean and

variance should stay constant.

The next element in an ARMA model is the Auto Regressive part. This segment

uses a new set of parameters for ε. These are also called random shocks or errors as

mentioned before. They should come from a normal distribution with zero mean. Details

on how to derive these random shocks from the data is out of the scope of this study, but

what is important is that the error is modeled in some sense from these ARMA models.

Several problems can be inferred of this. The first one being that the time series

studied must be stationary. Generally, stationary time series do not exist in practice, and

many of the real life problems vary vastly from them. However, there are techniques

proposed by Montgomery (1976) that will convert or estimate a stationary time series

from a non stationary. The conversion must be done at the end to get back to the original

time series. To test for stationary and non stationary time series, several measures have

been explored, such as autocorrelation and autocovariance. The result of the graph

generated by these measurements will surely tell the nature of the time series being

studied. Equation (4) shows a transformation proposed by many sources.

9

 1
ˆ

 ttt XXX (4)

This transformation involves converting the time series to a new one. The new

time series would be a time series of derivatives of the original. Every time a derivative is

taken, the time series becomes simpler, and closer to a stationary one.

Other transformation steps are available on the literature. Bagnall and Janacek

(2004) propose a technique based on fitting a model and then applying a clustering

method. The first step is that the time series is transformed into a binary series. This

decision is done based on an equation similar to (5).














)(,0

)(,1
)(

tY

tY
tC (5)

 This method is called 'clipping'. The next step tries to recognize hidden time

series within the data by using clustering techniques.

The way this is done is by fitting an ARMA model to each series then cluster based

on similarity of the fitted parameters α and θ shown in equation (3). The reason to use

clipped data is that it helps in calculation of several heuristics such as auto-correlation. It

also helps with a more compact representation as bit vectors, speeding up the model

fitting process. They use several methods to cluster, including Euclidean distance and

Cosine similarity of parameter vectors.

These adaptive techniques by Bagnall and Janacek (2004) show good results, and

are a great example of taking the mathematical background and applying it to computer

science algorithms such as clustering. For evaluation, Bagnall uses a similar technique

used in this paper: a sensitivity analysis of the number of clusters used for each ARMA

model. Within this analysis, it can be learned that clipped data’s response keeps a higher

accuracy than unclipped data. One of their main arguments is the loss of information, but

not structure of the time series. When clipping the data, a lot of the noise is blurred away

and integrated into the model. This decreases the possibility of over fitting and likelihood

of bad results.

2.2.2. Machine learning on Time series

As seen previously, there exist many off the shelf machine learning algorithms,

each one with particular weaknesses and strengths. Many of these algorithms can also be

mixed with the concept of time series modeling. One example of this is Pissarenko’s

(2002) research work on neural networks and time series analysis. The problem they

tackle is very similar in nature of errors. The techniques used have to be noise tolerant

10

and be able to extract unknown patterns present in such. Financial time series analysis is

a subject of study amongst data miners due to the quantity of data in its nature. In this

study, there is a discussion about the implication of ARMA models with machine learning,

and empirical evidence of its limitations. Some of the limitations mentioned by Pissarenko

(2002) are the following:

 Neural Networks trained in finance require vast number of training cases.

 There is not known best Neural Network topology.

 The more complex, the more unreliable a neural network turns out to be.

 Requirement for statistical relevance on results.

 A good architecture of features.

In these studies many possibilities for features are used. Some of them include

average of time windows mixed with speculated error. Others included partial derivatives

of certain time windows. It was shown that predictability on unstable and non stationary

time series is a big problem. Pissarenko’s (2002) study shows a lot of literature exposed

on the area of neural networks with time series, the impact and direction that some of

them carry on.

Neural networks are not the possible set of algorithms to pick from when

modeling a time series. Clustering is another possibility, as proposed by Goldin et al.

(2006). The main algorithm bases prediction on average of similarity amongs

subsequences within a time series. The steps of the original Goldin’s algorithm can be

summarized in the following listing:

 Using time series X, divide it into smaller chunks of length L

 Use kmeans to cluster these chunks

 Base predictions on clusters:

 Identify cluster which prediction best fits into

 Output prediction

The main sub problem here is figuring out some sort of distance measure that

could be used for the subsequence. Euclidean distance is used for this, by using each

element in the subsequence as a member of a vector. Euclidean distance is summarized in

equation (6).

 



n

i

ii ZXZXD
1

2)(),((6)

11

This distance is very linear and evidence in Goldin et al.’s (2006) shows that it is

not effective measuring similarity of subsequences. They introduce the notion of Cluster

Shapes. These shapes use Euclidean distances as kernel functions and try to draw (using

its centroid) a sorted sequence. The sequence composed is normalized against all the

possible deltas within the kernels. The distance itself is a set of features derived from the

Euclidean distance. To match the distances they have a special matching algorithm

composed of the following steps:

 Store the resulting N constellations of clustering into a master table.

 Compute the shape of each entry that will be matched.

 Use Euclidean distance on the features described by the kernel functions.

Perhaps one of the simplest methods involving a neural network for time series

forecasting is the one proposed by Nikolov (2010). In his research work, he proposes the

usage of a neural network as a pure regression method for time series prediction. He

describes a set of optimizations for clustering oriented towards time series learning.

Given a time series for training, a set of vectors is extracted by sliding the window up to

the end. Each element in the window will represent the “ith” dimension of these vectors.

Clustering is performed on these vectors. Once clustering is done, for each cluster a

Neural Network is trained (by splitting each cluster into training and validation sets

respectively). When a new vector arrives and is queried for a prediction, it is matched

with a cluster and then sent to its respective neural network. This research work also

proposes some optimizations on the clustering side.

A very interesting strategy also proposed by Nicolov is the notion of reusing the

neural network to generate predictions in which data is not available. This could fall under

the category of simulation, but it stills uses previously defined data to draw models. The

process is described in these steps:

 Use the time windows to train a neural network.

 Predict the unknown time Xt+1

 Incorporate Xt+1 into the training set, and shift the window further

 Predict Xt+2 with this new model, and repeat.

The previous steps can also be appreciated in Figure 2.2.

12

Figure 2.2 Recursive prediction (Figure 1 in Nikolov’s research 2010)

What is not good about this research work is the lack of evidence supporting that

this kind of unsupervised learning generates good results. While the claim that the

process mentioned before is a good approach might be valid, it is still to be considered as

an actual practical solution. It is very hard for a neural network to draw and predict a

function more than its actual boundaries. For this to happen, the neural network would

need an outstanding number of hidden layer neurons and a viable training set. Also the

assumption here is that the change in seasonality of the time series remains constant.

This means that the time series has to be close to stationary.

Many strategies for regression itself on the time series are also proposed by

Nikilov (2010). These include self organizing maps, which will be studied in later sections

of this chapter.

While contrasting these works on time series forecasting it can be noticed that all

of them show good grounds of empirical evidence supporting their claims.

2.2.3. Linear Regression

Linear regression is the process of estimating the weights that would describe a

hyperplane whose error with respect to a space of points is minimized. The reason why

we study linear regression is because is very tied to the definition of a time series. As we

saw in ARMA models, it is all about estimating the weights in a linear combination. Linear

regression is also useful to understand non linear regression algorithms, such as piece

wise linear approximation done by a regression tree. These will be explored in later

sections, but before it will be explained here two of the most common of “the shelve”

methods. These methods follow the definitions and algebra of Mitchell et al. (1997).

2.2.3.1. Gradient Descent

The main goal in gradient descent is to minimize the error squared, defined as:

13

 



n

i

ii xyywE
0

2)](ˆ[
2

1
)(


 (7)

We will try to minimize this by setting the derivative of the error with respect to

the weights (associated with ŷ). Starting we get:












 n

i

ii

jj

xyy
ww

E

0

2)](ˆ[
2

1
 (8)

Solving the derivative of (8), we get a final partial derivative in terms of the

weights:







 n

i

ijii

j

xxyy
w

E

0

])][(ˆ[(9)

Finally, this derivative can be written as a single weight update:





n

i

ijiij xxyyw
0

])][(ˆ[ (10)

The η term represents the learning rate. This term dictates how fast the updates

for gradient descent should be. Experimental data shows that a stochastic update is

better for the weights; this means that updating the weight using one data point at a time

is better than aggregating the entire sum.

Finally the algorithm proposed by Mitchel et al (1997) can be written as show in

Figure 2.3.
Gradient Descent

-inputs: X, Y,  , T
-outputs: W
1: Begin
2: Initialize wj to small values
3: For t := 0 to T
4: For i := 0 to n
5: For j := 0 to M
6: If (j equals 0)

7: Wj = Wj +  *(Yi - eval(W,Xi))
8: Else

9: Wj = Wj +  * (Yi -eval(W,Xi))*(Xij)
10:Return W
11:END

Figure 2.3. Gradient Descent Pseudocode

14

The eval function will do a linear combination of the Xj vector with the current

weight vectors. At the end, error will be likely minimized, after several iterations that is. A

problem with this algorithm is its greedy approach, and the fact that it might converge

into a local minima (not the optimal set of weights). To summarize the steps, step 2 in

Figure 2.3 will be the loop that performs updates to the weights until the algorithm

converges and step 4 will go through each data point in the training data. Finally step 5

will perform the update through each weight in a stochastic manner.

2.2.3.2. Linear Least Squares

This linear approach starts with the fact that we can arrange each feature Xij into

a matrix:

 X=

 (11)

Each row represents a data point, and each column a dimension element. With

this matrix in had we can finally model our predictions (into the ŷ vector) as follows:

 (12)

It can also be written in matrix form, the error squared quantity as show in

equation (13).

 (13)

And also the error vector:

 (14)

What we want at the end is to minimize this error E. In order to do this, we can

use the gradient derivative, and write it as follows:

 







 n

i

i

jj

R
WW

E

1

2
 (15)

The derivative of R is explained in equation (16).

15

ij

j

i X
W

R





 (16)

Replacement and rearrangement of the elements gives the normal equations.

 YXWXX TT )((17)

The final task is to solve this system for W. This is summarized in Figure 2.4.
Linear Least Squares
-inputs: X, Y
-outputs: W
1: Begin
2: Initialize matrix A := XTX
3: Initialize vector B := XTY
4: Initialize W to be length M
5: Solve system AW:=B for W
6: Return W
7: END

Figure 2.4 Linear Least Squares pseudocode

Unfortunately this algorithm will not always find the answer. If the matrix XTX is

not invertible, that means that the system cannot be solved; therefore there is no global

optimal. Because our chosen method to find the inverse is singular value decomposition,

whenever there is no global optimal, the algorithm gives a pseudo inverse, which can be

thought of a sub optimal solution.

2.3. Neural Networks Regression

So far there has been a lot of talk about neural networks. But what are these data

structures? Neural networks are data structures capable of approximate any function,

non-linear continuous. The principle lies in that the function must be continuous and

differentiable. Neural networks try to represent and break up the problem into smaller

activation segments, where each segment gets activated as a feature triggers the next

neuron. This is very similar on how a real neural network works in the animal kingdom.

The problem is disseminated within the network, and individual neurons process the

information accordingly.

It has been shown that neural networks are a widely used technique to model

both approaches, time series and semantics features. The following sections will show a

couple of techniques used specifically to train neural networks, and some of their

architecture.

16

2.3.1. Self organizing maps

Self organizing maps are a variation of neural networks. Teuvo Kohonen (2008) in

his research work shows the basic steps for the algorithm to work. The main goal and

purpose of this structures is to potentially reduce the dimensionality of a problem. In

addition, it also creates topological relationships in the form of networks helping to

categorize or even do regression. To explain how these networks work, the first step is to

look and understand their structure. Figure 2.5 shows the structure of a self organizing

map.

Figure 2.5 Self Organizing map architecture (Figure 4.3.a in Kohonen’s book 2008)

Each internal node in the self organizing map shown in Figure 2.5 is connected to

the input nodes. These input nodes are displayed in white in Figure 2.5. For simplicities’

sake, we will only work with a two dimensional self organizing map, with a neuron 4x4

mesh. Each SOM contains an N dimensionality input vector (2 dimensions in the case of

Figure 2.5). Each internal node is a set of weights of the same dimensionality. This means

that if the input layer consists of Xi, for i = 1, 2 … N then each internal node can be

described as shown in equation (18).

 }...,,{
,,

3

,

2

,

1,

yx

n

yxyxyx

yx wwwwW  (18)

Each node has an x and y coordinate associated with it. In the case of Figure 2.5,

the map is a 4x4 so it means that x = 1, 2... 4 and y = 1, 2… 4.

But at the end, what is the output of such data structures? The main purpose is to

have a final output displaying clustering information that has a continuous nature. One

famous example is clustering of colors in a two dimensional space. What we want

17

evaluated at the end is the result of linear combination between the weights and inputs

on each node in the two dimensional special grid.

Figure 2.6 shows the high level pseudo-code explaining the training process of a

SOM.

SOM learning
-inputs:
X(inputs)
-outputs: SOM of DxD
1: Begin
2: Initialize weights of DxD map to be small
3: For each x in X
4: Select Node whose weights matching x vector the
 best (known as the best matching unit BMU)
5: Calculate radius of BMU’s neighborhood
6: Alter weights of BMUs radius so they look more
 like
 BMU’s weights. The closer the bigger the update
7: Reduce the BMU’s radius rate
13:END

Figure 2.6 SOM learning algorithm

As displayed in Figure 2.6, step 4, a best matching unit must be picked. This BMU

must be the set of weights that appear to be closer to the original input weights. This

could be done by calculating a simple Euclidean distance measure, which is shown in

equation (6). As we can see, both the input and the weights are vectors of the same

dimensionality. Teuvo Kohonen (2008) also argues about other distances, that are

proportional to the shape of the entire input space, but these go out of scope of this

study. The main purpose is to keep it simple so it can be later extended and refined.

Step 5 of Figure 2.6 needs to calculate all the nodes that are within the radius of

the BMU. These can be done by using a simple Pythagoras theorem for each node, and

realizing if this is inside the radius of the BMU. These nodes should be selected and kept

somewhere for the next step which is their update. But before going to these, it is

important to know that we want to converge at some point. This can be done by

dampening the radius as each example is examined. Equation (19) shows an exponential

decay function, which can be used to damper the radius update as each training example

is presented to the lattice.

 ...3,2,1,)(0 










tet

t

 (19)

The σ0 element in the equation denotes the initial radius of the BMU at time t0. As

each “epoch” progresses this radius decays exponentially. The λ represents the time

constant, which is a parameter of the algorithm telling it how fast to decay.

18

Finally, each weight should be updated, using the rule in equation (20).

))((),(
,,, yx

ii

yx

i

yx

i wXtLyxww  (20)

As seen before, wi
x,y represents the ith weight of the x and y coordinate node. This

weight is updated by adding a delta. The delta itself contains the subtraction from the

corresponding vector i dimension component Xi of the input node. But this delta must be

multiplied times a learning rate composed of two functions. The first one is the L(t)

function. This function, similarly to equation (19), decays with time. It is meant to help on

convergence of the self organizing map after several iterations. The next section of the

learning rate is the Θ(x,y) function. As seen before, this function is dependent on the

coordinates of the original internal weight vector. The bigger the distance from the BMU,

the smaller this learning rate should be.

With self organizing maps, clustering can be achieved. Not only this, but pseudo

features can be derived out of a semantically input data. The truth is that these require a

special training set that perhaps a time series or hospital data wouldn’t match well. It is

also seen that there is a lack of good literature pointing towards a good feature derivation

tactic using self organizing maps. In any measure, Teuvo Kohonen has done an impressive

job in deriving this interesting data structures.

2.3.2. General Regression Neural network

Clustering is proven to be a useful technique, and its application can also be

integrated as part of a neural network’s algorithm. Specht (1991) propose a new type of

neural network, capable of maintaining the original input data. This neural network is

based on the principle of memorization. We as human beings, tend to mix generalization

and memorization. Both techniques try to be integrated here and prove some sort of

success. The main architecture of a General Regression Neural network can be seen in

Figure 2.7.

19

Figure 2.7 General Regression Neural Network (GRNN) architecture (Figure 1 in Specht’s research 1991)

To properly understand regression and construction of this neural network, the

first step is to know exactly the way regression occurs. Notice that there are 2 outer most

layers here, the summation and output layer. The output layer can be explained in

equation (21).






























m

i

C

i

m

i

C

i

i

i

eB

eA

XY

1

1)(ˆ





 (21)

The numerator represents the A neuron of the summation layer. The same

applies for the B neuron, which is the denominator. At the end the operation is simply a

division of these two layers. But what does each layer represent? As we can see, A has a

set of weights Ai where i = 1, 2… m and Bi where i = 1, 2… m. Each weight in I is related to

a pattern neuron. Pattern neurons can be thought as clusters of the original data.

Depending on an analysis, and how well the data is memorized, the pattern neurons are

realized by calculating the centroids of the original data. So for the algorithm, a

preprocessing step is needed. The definition of these pattern neurons (Ci) is defined in

equation (22).

 



P

j

i

jji XXC
1

|| (22)

The distance in (22) is also known as the city block distance. This distance

represents how far the training example from the cluster being observed is. In simple

words is the sum of deltas from every element of a cluster minus the observed example.

20

The final step in the learning process is to realize the weight values that each of

these clusters have with respect for the data. This can be represented using the A and B

neurons. So this is the generalization part, where as the memorization part involves

clustering. Equation (23) and (24) show the respective learning rules for A and B.

jii YkAkA )1()((23)

 1)1()( kBkB ii
 (24)

These steps are repeated until k iterations have been met. There is a better

derivation for these rules, which is more complex. More information can be found in

Section C of Spechts (1991) research.

What is interesting about the techniques used in this neural network is the fact

that the usage of memorization is applied. This helps the system to keep exact track of

the previous data set and bring a possibility of enhancing regression. As we can notice the

constants A and B are conceptual nodes. These define how well the pattern nodes

influence the outcome. This is very similar on how a human brain works, by memorizing

and then generalizing with certain thresholds and mixture of concepts.

Back propagation and feed forward neural networks

The last neural network we saw falls under the category of feed forward neural

networks. Feed forward networks are those that compromise multiple layers, each

obfuscating the next one. Communication between layers can be only done directly, and

not through random wiring. The feed forward neural networks and back propagation

methods are explained in Mitchell’s book (1997). These algorithms will be explained in

later chapters of this study, since they are an essential part of the experimental data.

2.3.3. Back propagation

The most common method to train a neural network is perhaps back propagation.

Mitchel (1997) shows us the derivation and ways back propagation works. In order to

understand it, it is also needed to understand the meaning of a Feed Forward Neural

Network. A Feed Forward Neural Network comes from a biological inspired approach.

This approach dictates that a problem can be explained by individual units called

“neurons” connected together. Each neuron will process a particular part of the problem,

and feed its results into the next layer of neurons. This is the basic principle of how the

human brain works. Many scientists say that this could be an explanation of why human

thought is heavily based on inspiration (1997). The neuron on this case is something we

will call a perceptron. A perceptron graphical picture is show in Figure 2.8.

21

Figure 2.8 Unthresholded Perceptron

The perceptron shown in Figure 2.8 represents the linear equation

 . Each element in X in this linear equation is the output from a

previous perceptron. Notice that the perceptron is just the name for a hyperplane. A

perceptron itself is linear, so a neural network of unthresholded perceptrons will still be

linear. The non-linearity occurs at the end, by making the perceptron the function

displayed at (25).

 (25)

As seen before, a set of thresholded perceptrons will be able to represent any

non linear function; given that the last perceptron is unthresholded (this is done so the

output has a free domain). A neural network can be graphically represented as in Figure

2.9.

Figure 2.9 Neural network representation

22

Notice in Figure 2.9 the neural network is divided into three separate layers. The

first layer is the input layer, this layer represents the original inputs (the vector features)

that will feed into the neural network. These values get propagated to the hidden layer. In

this layer, which is the first one with thresholded perceptrons, values get to the outer

most, which is the final output layer. At the end the output should go from here. There

are networks that have more than one hidden layer, thus requiring specific number of

hidden neurons. The more hidden neurons, the better coverage of a function a neural

network model can do. This also brings up the problem of learning the correct weights. If

there are more neurons, there has to be more data to learn the proper weights. There are

a lot of algorithms that help learning the weights in a neural network. Back propagation

was chosen for this study, since it’s the basic algorithm for feed forward networks (as the

one in Figure 2.9). The basic principle in back propagation is very similar to that of

gradient descent. Weights are updated gradually by a small derivative. This is done by first

figuring out the error of the neural network (therefore input propagates to the front first

and the total error is discovered). After this, error is sent back, and the weights are

updated layer by layer using this rule. In order to have a smooth derivative approach, it is

better if the threshold units use a smooth function instead of a non-continuous threshold.

This is called a sigmoid unit. The sigmoid function is expressed in (26).

 (26)

A very useful property of this sigmoid unit is that the derivative can be written in

terms of itself, as show in (27).

) (27)

In order to define a proper set of operations to update these weights, a first

glance to the target function is needed in (28) for the output units.

 (28)

Where t is the training value for the correspondent k output unit and o is the

output value of the corresponding output unit. At the end we want the gradient vector

which describes derivatives. We will want to minimize the outcome of the error function

by changing the derivatives. The gradient rule is shown in (29), using derivatives chain

rule.

23

 (29)

The chain rule in (29) tries to extract the weight derivative from the error. Since

the weights are under the net function (which is the linear combination of weight values

and input values), its derivative with respect to the weights is the ith input value X of the

jth unit. The next step involves solving the

 derivative. This can be thought of two

separate cases. The first case involves updating the weights of output layers and the

second involves the update of any internal node’s weights. This entire section is based on

Mitchell’s work (1997). Once the update rules have been derived, it’s all about iterating

through the example set and updating the weights of the neural network for several

iterations. Figure 2.10 displays the pseudo-code for back propagation. The main loop in

gradient descent has to update the neural network iteratively. The updates are done in a

stochastic fashion, as in one example at a time. For each one of these iterations and for

each example update, each neuron’s error is calculated. As shown in the derivation of

error updates, each neuron gets its own measurement depending on the layer they are.

A problem with this is the convergence to local minima.

BackPropagation
-inputs:
X(inputs), Y(outputs), η(learning rate), T(iterations)
-outputs: ANN
1: Begin
2: FOR t = 1 to T
3: FOR i=1 to N
4: For each output Unit k
5: k = (yik - Outputx)
6: For each hidden Unit h
7: h = Outputh(1 - Outputh)

8: Update every


5: RETURN ANN
7: END

Figure 2.10 Back Propagation

The main loop starting in Step 2 will update the weights in a stochastic manner.

Steps 5 and 7 of Figure 2.10 apply the weight update directly. Notice how the loop in Step

3 starts first from the outer most layers into the inner most hence called back

propagation. This means that the algorithm might find a set of weights that is not

necessarily the optimal. Several techniques are available to help the algorithm to fall into

a local minimum set of weights. The technique used in the Admission data set uses a

validation set and takes a snapshot of the Artificial Neural Network during each iteration.

24

The ANN that has the least error with respect to the validation set gets picked at the end

of the iterations. This tries to maximize the accuracy of the function the ANN is modeling.

2.4. Regression trees

Regression trees are a type of classification and clustering technique used. There

are many ways of generating and representing a regression tree. Many fields use

regression trees as a data structure capable of approximating non linear functions. Many

of this techniques involve some sort of meta algorithm and fitting a the leaf nodes. In this

section, a couple of the existent methodologies will be discussed.

2.4.1. Regression tree algorithms

Neural networks have a very powerful representation. Another approach is the

divide and conquer technique. It would require taking the entire problem and dividing it

in specific chunks that are solvable through a known technique. The regression tree does

this, by creating a binary decision tree data structure. Each node in the tree will represent

a feature of the input space in which a decision is made. The edges connecting the nodes

represent the respective thresholds that should undergo when facing this decision. The

leaf nodes are the ones that do the regression of the specific input space. Figure 2.11

shows an example of a Regression Tree.

Figure 2.11 Regression tree

Figure 2.11 shows that each node internally represents a feature, with its

respective thresholds. A path in the tree will be followed based on the features and a

specific example picked to do regression on. Figure 2.12 shows the example of a

continuous function with a regression tree on top. On this case, the regression tree leaf

nodes consist of trained hyper planes. As we can see each hyper plane fits a segment of

25

the function and tries to approximate it. The combination of these lines approximate to

the function.

Figure 2.12 Left hand side regression tree, right hand side non linear function.

The representational power of a regression tree is more discrete than that of the

neural network. This could mean that non continuous functions are potentially better

represented with a regression tree, whereas in a neural network a differentiable function

is needed. The problem with a regression tree lies in its building, which requires many sub

algorithms depending on the function that is being learned. There are three main sub

problems in a regression tree: splitting criteria, stopping criteria and regression leaf

nodes. For now, the pseudo code will be shown independently in Figure 2.13, and these

three sub problems will become three sub procedures.

RegressionTree
-inputs:
Features, X(inputs), Y(outputs)
-outputs: RegressionTree
1: Begin
2: if STOPPING CRITERIA is true
3: perform REGRESSION in current X|Y
4: else
5: perform SPLITTING CRITERIA and split X|Y into two
 subsets (left and right)
6: Recursively call RegressionTree in left and right
 Nodes
7: End

Figure 2.13 Regression Tree

The algorithm has a recursive nature. There is one main test case, which tests for

the stopping criteria. If the algorithm meets the stopping criteria, then immediately all the

examples used become the new leaf node. This will call the REGRESSION sub procedure in

Step 3. This sub-procedure will be in charge of using the current data to fit a model. If the

stopping criteria decides otherwise, a serious of splitting steps occur. The first and

0

1

2

3

4

5

6
1

1
9

3
7

5
5

7
3

9
1

1
0
9

1
2
7

1
4
5

1
6
3

1
8
1

1
9
9

2
1
7

2
3
5

2
5
3

2
7
1

2
8
9

3
0
7

3
2
5

3
4
3

3
6
1

3
7
9

3
9
7

4
1
5

4
3
3

4
5
1

4
6
9

4
8
7

5
0
5

5
2
3

5
4
1

5
5
9

5
7
7

5
9
5

6
1
3

y

x

Decision Tree

0

1

2

3

4

5

6

1 2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1
2

8
1

3
0

1

3
2

1

3
4

1

3
6

1

3
8

1

4
0

1

4
2

1

4
4

1

4
6

1

4
8

1

5
0

1

5
2

1

5
4

1

5
6

1

5
8

1

6
0

1

6
2

1

y

x

Non linear function

26

foremost is the sub procedure that tries to find the best splitting point. There are many

techniques which will be explained later under the splitting criteria sub procedure. This

procedure might fail, as in not being able to find a better splitting point. This would mean

that splitting more the regression tree will actually decrease its accuracy instead of

helping it. If a splitting point is found, then this point is used to split the input and output

sets respectively. Then the algorithm is called recursively on these children. The following

sections explain with detail the type of algorithms needed for this.

Splitting by variance (CART):

Step 5 of Figure 2.13 calls the subprocedure SPLITTING CRITERIA. There are many

algorithms and techniques present. We will first study the one implemented by CART,

which deals with variance.

Variance split will check for every possible splitting point in the data and perform

a splitting test. Out of these splitting point candidates it will try to discover that one that

minimizes the impurity gain. The impurity is calculated using the variance of each subset

and lastly getting an impurity measurement. When there is more variance there will be

higher impurity, the least output similarity from the examples. Figure 2.14 shows the sub

procedure variance version of PickBestSplit.

PickBestSplit (variance version)
-inputs:
Features(F), X(inputs), Y(outputs)
-outputs: (best_f,best_fv)
1: Begin
2: BestGain = 0, (f_best, f_bestv) = null;
3: AllImpurity = CalcVariance (Y)
4: For each f in F
5: For each split point fv in f
6: Split X using (f,fv) into Xleft and Xright
7: Split Y using Xleft and Xright into Yleft and Yright
8: Gain = Allimpurity – (CalcVariance (Yleft) + CalcVariance (Yright))
9: If (Gain > BestGain)
10: BestGain = Gain
11: (f_best, f_bestv) = (f,fv)
12: Return (best_f,best_fv)
13: END

Figure 2.14 Pseudo code for PickBestSplit by variance

The main goal is to pick a split in which we have a “gain”. Gain means a possible

improvement in data granularity. The gain is a measurement that compares the impurity

before versus the impurity after. For this particular case, as mentioned before, the

impurity is just the variance that the data has. It can be thought as how far the data is

from average and how variable it is. If there is such a case of improvement then the split

that maximizes this gain wins. Notice that Step 2 of Figure 2.14 initializes the best split

27

point as null. That means that if there is no such split that maximizes gain, the regression

tree algorithm should decide to stop and fit a regressive model by creating a leaf node.

There are some variations of these splitting criteria. Popular ones, as used by

CART, involved a weighted variance. That means that step 8 of Figure 2.14 will use relative

weights of each split point. It does this to be fair and influence splitting points to be

proportional.

Stopping Criteria:

Step 2 of Figure 2.13 queries the STOPPING CRITERIA sub procedure. This sub

procedure will decide if dividing the regression tree is worth it. If the sub procedure

dictates to stop, then the regression algorithm must be called and generate a model on

the data left. There are two kinds of stopping criteria, pre splitting and post splitting. The

pre splitting stopping criteria analyses the pieces being split. The post splitting analyses

just after the split point has been picked. The following sections will explain the 4 major

stopping rules used during earlier experimentation with the admissions data set.

Number of Levels

This pre splitting stopping criteria will first look at the number of levels being

traversed in the tree. If the current depth of the tree exceeds a threshold, then STOPPING

CRITERIA in step 2 of Figure 2.13 should return true and force the algorithm to generate a

leaf node. The problem with this method is that stopping the tree growth in a level might

not generate a good fitting. The level forces the tree to be of a single height with no

chance to have denser nodes than others. This can potentially limit the power of a

regression tree. Also, intuitively, is very hard to find a correlation with data and the

number of levels that a tree possesses.

Leaf Size

Stopping the tree growth whenever the number of examples falls under a

threshold seems better than stopping by level. While still hard to correlate against the

data’s semantics it will intuitively generate better trees than those generated by the

minimum levels stopping criteria. Trees that stop their growth with a leaf size threshold

do not have to be of a single level, they can be of several levels and depths. This increases

the power of the regression tree and its shape.

Regression at Leaf Nodes:

The final sub problem in regression tree formation is the actual step of regression.

For this there are several techniques proposed, each one with certain advantages and

disadvantages over data.

28

Simple Average

The simplest method of regression is an average of the output Y values clustered

at the leaf nodes. A disadvantage with this is that the size of the tree will be the one in

charge of deciding its power. The models at the leaf nodes are very naïve and inflexible

and high amount of errors might be present especially if there are outliers in the training

data. Splitting methods such as variance splitting and error splitting are appropriate for

this situation.

Linear Regression

For linear regression there are many options. Gradient descent could be applied.

The biggest problems with gradient descent are its greedy nature and time complexity.

This time complexity might not be feasible and become impractical when the tree has

several hundred leaf nodes. Another disadvantage of gradient descent is the number of

parameters, such as the learning rate and iterations numbers. It was argued before that

such parameters are very linked to the numerical distribution of the Y data. Higher

averages require high learning rates, and conversely.

2.4.2. Summary of other methodologies

Wei-Yin Loh (2008) offer a variety of algorithms that could be used for regression

tree generation.

The main purpose of a regression tree is to output a data structure as described in

Figure 2.11. The regression serves as an extra clustering technique that categorizes and

fits every vector of the input space into a particular leaf node. The simplest method

described by Wei-Yin (2008) is CART. CART tries to divide the space by minimizing

variance. Another technique used is QUEST. While CART does a brute force selection on

the best possible split value, QUEST instead does a selective search. It uses several

heuristics to categorize the best feature to perform a split.

After the feature is picked, it will use it to pick the best split point that would fit

the model. QUEST is said to be an unbiased classification method for this reason, since it

first selects the feature and then the split point.

Another interesting algorithm developed by Wei-Yin (2008) is GUIDE. The

algorithm tries to stay away from a typical greedy tree methodology. It constructs a

multiple linear and simple polynomial model on a target error function (Wei Yin, 2008).

This error function could be least squares, quantile or Poisson error distribution. Just like

QUEST, variable selection is unbiased. It also performs a post pruning step once the tree

has been formed.

29

Wei-Yin in his study concludes that all these algorithms have their advantages and

disadvantages. While CART is very simple, and QUEST very complex, CART can actually

perform very good with noisy data under with Normal error distribution. QUEST on the

other hand can over fit easily to data, but its representational power is greater, meaning

that it is better fitting very complex functions. Another problem with QUEST is that is

restricted by Univariate splits. Amongst these methods, the principal method studied and

extended is a variation of CART. This variation uses piecewise linear approximation and in

later chapters it will be explained and supported throughout.

D. Vogel et al (2007) suggests a technique of building a piece wise approximation

regression tree, but using not so greedy techniques. The technique consists on

construction linear models for splitting attempt. This will generate a tree that potentially

can’t overfit since is spending more computational time in the search of the best tree

possibility. At a first glance, one would think that doing such thing is very computational

expensive. For example, fitting linear models per each split possibility sounds very

expensive. In fact, through several linear algebra simplifications (therefore using Gaussian

elimination as its leaf node regressive algorithm), Vogel is able to recycle operations and

minimize the computational expense. The problem with this technique was that he didn’t

try any other toy data sets. Only practical sets are used, and there is a lack of explanation

about this data in his research. Maybe it could be biased, but it is always necessary to

have an artificial data set that tries to contrast the best and worst qualities that a

regressive algorithm could potentially engage into.

2.4.3. Regression tree applications

Regression trees have found many applications on the literature. One of the

biggest reasons why regression trees are preferred is their easy of readability. In principle,

the regression tree can be easily understood by humans. It can reveal patterns and

expose them clearly to the audience. Sometimes regression trees don’t have always show

this behavior. When a tree grows too long in an unbalanced manner, it is very hard to

distinguish the real patterns hidden behind the node thresholds. Buja and Lee (2001)

proposes a methodology that is not meant to increase the tree’s accuracy but its

readability. In CART, the splitting criteria points always towards the split value that

minimizes the variance impurity measure on a weighted average fashion. This impurity

measure is simply the weighted variance of the two sets of the split data. Buja on the

other hand forces the tree to grow into one side. This is done by minimizing the impurity

measure described in equation (30).

),max(RLimpurity  (30)

30

As shown in equation (36), the impurity is biased towards one side of the tree.

This will generate one sided imbalanced trees which could be less complex. This can

relatively help with readability and is a good approach for early data analysis. An example

of a tree generated using this strategy can be summarized in Figure 2.15.

Figure 2.15 Regression tree optimized for readability (Figure 1 of Buja and Lee 2001)

As Buja and Lee (2001) explain, this tree optimized for readability is not meant to

do complete regression on a data set, but rather expose patterns that can be discovered

and exploited for feature generation. While this research work introduces this technique

as a novel approach to improve readability, is very hard to compare against other

approaches meant for readability. This is a study that does pure analysis of these

techniques based on visual approaches rather than quantifiable. In any case, it is a good

idea to see what kind of patterns is discovered if a split is drawn to minimize variance in

the greediest way.

While regression trees improve readability over neural networks, they are

obviously good for what they were meant for which is regression. A study drawn by

Yohannes and Webb (1999) show that regression trees can also be used for outlier

detection. Their splitting nature helps separating concepts that present different patterns

within the features chosen. In their study, they use data from a famine vulnerability data

set. This is meant to identify “outliers” that are targeted as areas of low protection. Some

of the features are discrete. The way a regression tree handles discrete features is by

creating Boolean attributes for each value of the discrete ones. For example, the attribute

DAY_OF_THE_WEEK in their classification data has seven values. Each value represents a

day of the week. When preparing these attributes values to be inserted in the regression

tree, a pre step approach is used. This involves taking each value (such as Monday,

Tuesday, Wednesday etc) and converting it into its own independent attribute. The single

discrete DAY_OF_THE_WEEK attribute will now become seven distinct synthetic

31

attributes, each one with its own Boolean value. These will be IsMonday, IsTuesday and

etc, each with its possibility of being true or false.

While exploring attributes information and preprocessing, Yohannes and Webb

(1999) also show possible ways of avoiding over-fitting. Like a neural network, it is

possible for regression trees to over fit. This happens when the tree either grows too

large, or the model themselves at the leaf nodes “memorize” the training data. In CART

this occurs when the splitting point is wrongly chosen, without checking its validity

instead a validation set. This is one of the solutions that Yohannes suggests. Another

interesting solution is the concept of a K-fold cross validation. Cross validation is a

method used when there is a lack of training data. While using the entire training data, it

makes sure not to oversee the entire data at once. Each piece will take turns into being a

validation and a training set. At the end this will dictate the predictability and at the same

time take the most advantage of the training data.

Huang and Townshend (2003) propose models that have their applications on

subpixel land cover. The problem here is to try to associate land pieces with similar

topological properties by just using images. The images contain aerial photos of a rural

area around Annapolis Maryland. The purpose here is to allow the machine learning

algorithm correctly identify areas of similar topological area properties. These properties

include plantation types, type of soil temperature amongst others. Surprisingly the trees

formed are not as big, containing only around 6 nodes. The small tree contains several

hundred paths, and is able to produce a highly non-linear relationship of the pixels in the

image. While the model is not perfect, it demonstrates a low error and good fitting with

respect to the test data. The test data involves maps pre-categorized by human beings,

based on the same features. For regression, they use a method called Stepwise Linear

Regression. This method searches all possible combination of lines performed, and picks

the one that minimizes the error with respect to other points in the line. Splitting criteria

involves solving SLR (stepwise linear regression) for each possibility of a split. The problem

with this technique is time complexity, and this constrains are not analyzed in Huang and

Townshend (2003) research work. This type of computation could take hours and is very

unpractical. If the dimensionality of the problem is big enough, it can be unfeasible to

apply such algorithm.

While the power of piece wise linear regression is in fact very useful for non linear

problems, computing a linear regression tree is no easy task. In later chapters further

concepts will be explored, motivated by many of the weaknesses shown in these

methods. Is it necessary to explore every combination of splitting points? Is it necessary

to explore every single point when doing linear regression on a set of points? All these

questions lead to the motivation of new methods that use modern randomization

techniques to solve these difficult problems.

32

2.4.4. Regression tree novel approaches

This section focuses on the new approaches that many researchers have taken

into optimizing and improving known regression tree algorithms. It was already seen that

many fields of study prefer regression trees as their off the shelf algorithms. The biggest

reasons being their simplicity and readability and sometimes the speed in which this data

structures could be converged.

Izrailev and Agrafiotis (2000) suggest a novel approach involving a controlled

randomized algorithm. They use Artificial Ant Colony Systems to find tree structures. This

technique is based on the biological and organizational aspects in which an ant colony

works. As we know, ant colonies consist of several tunnels and paths leading to the food

chambers, yet ants can easily find their way through the most optimal path. Now the

problem here is how the ants collaborate to find the shortest path between the food

source and the nest. Ants leave a pheromone scent on the ground and the accumulation

of this pheromone defines the shortest path.

The algorithm suggested by Izrailev and Agrafiotis (2000) is of a randomized

nature. The representation of ants is given by each tree. Each proposed tree represents

an ant, and the composition of their leaves represents the path they have taken. On the

outside there is a binary topological union of these ants that stores the probability of

paths by accumulating the ants finding the correct paths. Paths that lower the error

(regression here is done by using average just like CART) will be rewarded with more

probability. Those with less will be rewarded with least probability. At the end a sum is

made and the topological probabilistic tree will contain an agglomeration of the best

paths. It is up to here that either the path with max probability is chosen, or simply picked

at random with the respective probabilities.

Results are impressive in a couple of data sets. These data sets happen to be of

high dimensionality, so it seems to be a correlation between high dimensionality and

guided randomized search. In fact, the reason why the algorithm performed better might

be because its comparison was done against a random algorithm (which chooses paths at

random). The higher dimensionality, the less correct paths there will be then the random

algorithm has a broader set of paths to choose from, reducing the probability equally for

everyone. The other baseline algorithm was the RP (recursive portioning), which is a

greedy algorithm very similar to CART. At the end results show that in general ant search

is better, but not in a degree of significance that can totally discard RP algorithms. Izrailev

and Agrafiotis (2000) also failed to present customized toy data sets testing for over

fitting. While not really practical, these kinds of toy data sets show a specific feature of

the algorithm that might be desired or undesired. It forces the algorithm to explore its

weakest and strongest points, which might be hidden in a regular data set.

33

Randomization techniques are a good choice when exploring a big problem space.

Interestingly, Wei Fan et al. (2006) propose a very simple technique. It involves generating

a set of random trees and combining them in an average to perform regression on data.

There is a mathematical proof showing how entropy influences and at some point

combines to produce a factual answer to a problem. The algorithm is very simple. It starts

by producing random trees (and by random it is meant that splitting criterion picks

random attributes and split points). At the end these random trees combine to produce

final regression. Since there is less hypothesis bias, due to the nature of the algorithm,

statistically the combination of each random tree reduces the variance in the final

outcome. This means that each tree acts as a little helper to find the final regression

model to the problem. At the end the trees outputs are combined by doing an average,

and this average is the final answer for the regression. Interestingly they showed the

random regression tree under several data sets, proven to work for a variety of

dimensionalities. The results show that the tree doesn’t always performs better than

other algorithms, but it does in a great amount of times. The contribution here is that a

random regression tree doesn’t cost as much when learning it, compared to other

algorithms such as CART.

34

Chapter 3
A Randomized Approach to Regression

This chapter will propose algorithms based in the guided randomized search

principle in hopes to overcome these problems. The chapter is divided in two main

sections of the study. The first one talks about our proposed randomized linear regression

algorithms KGERS. Linear regression takes an important role in the formation of

regression trees that perform piece wise linear approximation. The second part will talk

about the new algorithms devised for a regression tree, and how KGERS be integrated to

be able to perform modeling on non-linear problems.

3.1. Motivation for KGERS

KGERS has two important properties. The first property is the subset nature of the

algorithm, by only analyzing part of the data and not the entire set. The second property

the randomized nature of KGERS, by only picking random sets of the data through each

trial. The motivations for these properties of KGERS are under the main assumption that

the input points do follow roughly a linear pattern. By this, it means that there exists a

line that minimizes the error against other points, and that this error is relatively small.

The motivation for the subset nature of the algorithm comes from the

assumption that we are dealing with a set of points that follow a roughly linear pattern.

By roughly linear we mean error relatively low that would make algorithms such as

Gradient Descent converge. Assuming we have a perfect data set where all the points are

on a hyperplane it doesn’t matter which subset is picked. Any subset of size M+1 (where

M is the dimensionality) will always produce the same hyperplane. Under this property

the motivation for randomized subsets is used.

The next property involves the randomized nature of KGERS. Figure 3.1.A

illustrates the subset property. This shows the sample data set, which involves 4 points

that roughly follow the shape of a line. To illustrate this example we will use a few data

points in a 1 dimensional problem. For this set of 4 points there is a total possibility of six

subsets generating lines (subsets must be size 2 since is a 1 dimensional problem). Out of

these six lines, only 1 is not similar to the optimal solution.

35

Figure 3.1 Illustration of randomization property from KGERS

Figure 3.1.C of the diagram shows what happens when a new point is added. It

only generated two lines (the new dashed lines) that are far from the optimal solution.

The probability that a line is picked and is close to the optimal solution is 7/10. Notice that

this decremented from an original probability of 4/5 displayed in Figure 3.1.B. Based on

these properties the motivation for a randomized subset arrives, due to the likelihood of

generating good hyperplanes does not decrease dramatically as more points (that are

roughly follow a linear pattern) are added.

3.2. KGERS Algorithm

Solving linear systems is a problem that has many applications. As seen before, it

helps modeling hyper-planes of m dimensionality when several feature vectors are

shown. It is proven that any function can be approximated by splitting it into several

linear equations. This process of function discretization into hyper-planes shows good

results with toy data sets, and so with the EDInpt data presented in future chapters.

In simple terms, the problem we are trying to solve is that we are given X, which

is a set of vectors defined as:

 mjnixX ij ..1;..1;  (1)

where m is the dimensionality, and n the number of points we are given. At the

same time, we are also given Y, which is defined as:

 niyY i ..1;  (2)

This Y is the set of values that we want to do linear regression based on X. At the

end we want to figure out the weights of this function:

36

 



n

j

jiji wxwXy
1

0)(ˆ (3)

such that the value of ŷ(Xi) approximates y. This chapter will focus on the

proposal of KGERS, a newly devised randomized search algorithm that is motivated on the

necessities of piece wise linear regression.

Regression and splitting at the leaf nodes of a regression tree requires an

algorithm that is less complex, decidable and fast. This means that there is the need for a

technically fast algorithm that can still be likely to find a good linear equation to fit. KGERS

stands for K-Gaussian Elimination on Randomized Sub Sets.

Figure 3.2 KGERS line visualization

Figure 3.2 shows the motivation behind KGERS. This figure is showing a 2

dimensional problem, which requires 2 points for each K random set. This will generate

lines and each line will have an error with respect to the rest of the points (Step C). The

dashed lines represent the error that the selected subset has against the rest of the

points in the figure. Lines with higher error (larger set of dashed lines) will have less

impact on the final hyperplane generated. Figure 3.3 shows the pseudo code for KGERS.

In step 3, the algorithm uses randomized sets of data (of size M) and arranges them into

separate sub sets. Each of these data sub sets will generate a line that has exactly 0 errors

with respect to the original points, which is done in step 5 of the algorithm. Finally each of

these generated lines will be weighed against its error with respect of a random set of

data (of size M again) from the validation set, described in Step 6 and 7 respectively.

37

K-GERS
-inputs: X, Y, K (M is dimensionality)
-outputs: W
1: Begin
2: For k=1 to K
3: Let S be randomly selected M+1 rows in [XY]
4: Let S’ be [XY] - S
5: H[k] = GenerateHyperplane(S)
6: R[k] = CalculateHyperplaneWeight(H[k], S’)
7: W = GenerateFinalHyperplane(H, R)
8: Return W
9: END

Figure 3.3 K-gers pseudo code

Step 3 of Figure 3.3 makes a random selection of a subset. This random selection

will use a uniform distribution for now. The motivation behind this is to have chance for

every single point in the training set. The distribution in which the pseudo number

generator works could change, but this would be entirely dependent on the input data

statistical properties. As a general case a uniform distribution will be used. Sampling is the

field in statistics that seeks to extract subsets from individual observations. The way these

subsets are picked can follow a specific distribution, such as Gaussian. For the case of this

algorithm, a uniform distribution will be used. Step 5 generates a hyper plane using the

randomized subsets that were picked. This hyper plane of course will have zero error with

respect to the original points that created it, but this is when the validation set enters.

Figure 3.4 shows how a hyperplane is generated. Steps 2 through 4 define the elements

required in the linear system. In Step 5, Gaussian elimination to solve the linear system,

resulting into a hyperplane that has 0 error with respect to these data points used.

GenerateHyperplane
-inputs: set S of M + 1 points
-outputs: H (hyperplane H)
1: Begin
2: let H be a hyperplane weight vector of size M
3: let A be the feature matrix from S of size M+1 x M+1
4: let B be the target vector from S of size M+1 x 1.
5: Solve the system AH=B for H
6: Return H
7: END

Figure 3.4 GenerteHyperplane pseudocode

To calculate the weight errors, we need a target error function, which is described

in step 6 of Figure 3.3. For now is the squared error function. Figure 3.5 explains how to

get the error weights.

38

CalculateHyperplaneWeight
-inputs: S (a set of points), H (hyperplane weight vector)
-outputs: r (weight)
1: Begin
2: Let A be the feature values from set S
3: Let B be the target values from set S
4: Let r = 0
5: For i=0 to M
6: Y_hat = eval(A[rand() % Length(A)],H)
7: r += 1/(y_hat – B[i])2
8: Return r
9: END

Figure 3.5 CalculateHyperplaneWeight pseudocode

Equation (4) shows the equation representing the calculation of the weights that

will be incorporated in step 7 of Figure 3.5.




 


1

1
2))(ˆ(

1M

i ii yxy
W (4)

Notice the denominator is the error squared. Bigger errors will generate smaller

weights, though less influence of that particular line. Once the weights are ready (and

normalized), the final step is to aggregate everything by doing a summed weight of the

errors, as described by step 7 of Figure 3.3. Figure 3.6 describes this aggregation step

formally. Notice how each weight is iterated through in the outer loop in step 2 of Figure

3.6. After this, the most internal loop does an update of each weight respectively by

aggregating all weights, in step 4 through 5 of Figure 3.6.

GenerateFinalHyperplane
-inputs: H (set of hyperplanes), R (set of hyperplane weights)
-outputs: W
1: Begin
2: Initialize vector W to 0 of size M+1
3: For j=0 to M
4: For k=1 to K
5: W[j] += R[k] * H[k][j]
6: Return W
7: END

Figure 3.6 GenerateFinalHyperplane pseudocode

By the end of step 7 in Figure 3.3, the final result should penalize those hyper

planes that have a big error with respect to their validation sets. KGERS is an algorithm

that doesn’t require to access all the data points, and later on this will be shown in its

39

time complexity. Notice how in step 5 of Figure 3.5 the loop goes up to the size of M,

which is the dimensionality of the problem. We could ask ourselves why not just get the

best hyper plane: that one with the maximum weight? The answer to this question has to

do with over fitting. We don’t want to discard information given from other corners in the

data. Because this randomized algorithm only looks at certain points, it must make the

most of it, and assume that actually noisy data points also influence the final hyperplane,

but still penalizing them. Notice that if we have data that follows a linear pattern, except

for one point, the hyperplanes generated using this point will be heavily penalized and

have weights that go to 0.

One advantage of this algorithm is that it uses only one parameter. The only

parameter here is K, which can be somehow though as the probabilistic value that a line

can be fit. If in the extreme case, the data completely has linear tendencies, this algorithm

should be able to find the weights with K = 1 (any set of different points should be able to

draw the line). Algorithms such as gradient descent require at least the number of

iterations and learning rate. This could be a problem, since in a regression tree each leaf

node model might require different parameters to find a proper line. For example, one

leaf node clusters data points with a distribution using high numbers, then to find a

proper hyper plane the learning rate requires a low value. Conversely, a set of points with

low numbers requires a high learning rate. A single learning rate and iterations number

will not be able to cover every single sub model in the regression tree. KGERS will be

competing against two traditional algorithms, therefore a time complexity analysis is

required. This will be shown in the next section.

3.3. Time Complexity Analysis

This section will break up the algorithms into their basic operations, and give a

raw time complexity table. This time raw complexity table will include the external

algorithm parameters. The next table is the true time complexity, which will reduce the

parameters into functions of the input size. KGERS will be a competitor of Gradient

Descent, in order to improve the performance in a regression tree. The linear least square

algorithm is used to measure how far are the algorithms from reaching a global optimal.

Since linear least squares do not guarantee an answer, it is not a good idea to use in the

hospital data. It is important however to do some sort of comparison of its time

complexity, so this algorithm is used as a baseline.

3.3.1.1. K-GERS Analysis

K-GERS outer most loop goes through the constant K, shown in step 2 of Figure

3.3. Inside is the procedure of solving a linear equation (step 5). This small procedure has

a time complexity shown in (5).

40

)(3kMO (5)

The evaluation of errors (step 6 Figure 3.3) has to iterate through M + 1 random

example. This involves a time complexity reciprocal to M.

)(2kMO (6)

 Finally is the step of aggregation (step 10 Figure 3.3).

)(kMO (7)

 All these steps are summarized here in respective order of summation:

)(23 kMkMkMO  (8)

The constant K can be usually disregarded, since it’s usually much less than N.

Also, empirical evidence shows that it doesn’t have to grow linearly with respect to N. As

a result, the final time complexity in terms of M and N gives:

)(3MO

If the size of K is big enough (for certain data set whose linearity is very low), then

it can be said that K grows linearly with N.

3.3.1.2. Gradient Descent Analysis

Gradient descent outer most operation depends on T which is the number of

iterations. For each of these iterations, all the examples are traversed. For each time the

examples are traversed, each vector component is updated. This gives a raw time

complexity of:

)**(MNTO (9)

As discussed before, T represents the iteration parameter, N represents the

number of data points, and M represents the dimensionality of each data point. A proper

implementation of Gradient descent will require a validation set. Still, we always traverse

41

all the data at least once. Empirical evidence shows that the parameter T has to be at

least the size of N. Smaller values usually don’t converge into a solution. A rough

estimation suggests that T grows linearly with respect to N. This means that in terms of

dimensionality and N, the time complexity of gradient descent is:

)(2MNO (10)

3.3.1.3. Linear Least Squares Analysis

A recapitulation of linear least squares can be found in Figure 3.7.

Linear Least Squares
-inputs: X, Y
-outputs: W
1: Begin
2: Initialize matrix A := XTX
3: Initialize vector B := XTY
4: Initialize W to be length M
5: Solve system AW:=B for W
6: Return W
7: END

Figure 3.7 Linear Least Squares pseudo code

For step 2 and 3 of Figure 3.7 we need XT. This means that during this first pre-

operation, the time complexity is:

)(NMO (11)

Matrix multiplication is an expensive operation. On this case, the XT matrix is of

dimensions DxN. This means that the time complexity for the matrix multiplication (XTX)

in step 2 of Figure 3.7 is:

)(2NMO (12)

Similarly, step 3 involves the matrix multiplication of XTY which will give as a time

complexity of:

)(NMO (13)

Added all these previous steps to the solving of the linear equation, adds up to a

final time complexity:

42

)2(32 NMMNMO  (14)

This is because Gaussian elimination has a cube time complexity. Finally the

reduced form will give us a final time complexity shown in (15).

)(32 MNMO  (15)

3.3.2. Analysis Summary

Table 3.1 shows the summary of time complexities. The last Column displays the

final time complexity by approximating the algorithm’s parameters to the size of the input

vector set.

Algorithm Time Complexity Parameter

Estimation
Time complexity with
parameter estimation

Always
Produces a
valid
solution

Optimal
solution

Linear
Least
Squares

)2(32 NMMNMO 
-no
parameters-)(32 MNMO 

No Yes (if a
valid
solution
exists)

Gradient
Descent

)**(MNTO NT ~)(2MNO
Yes Yes (only if

learning
rate is
sufficiently
small,
which could
take a long
time)

KGERS
)(23 kMkMkMO 

The value of
K is
uncorrelated
to the size of
the set, but
the linearity
of it.

if K is Small

)(3MO

If K is large (K ~ N)

)(3NMO

Yes No

Table 3.1. Summary of time complexity

The last two columns in Table 3.1 show the nature of the computational answer

of each algorithm. Liner Least Squares might have a matrix that is not invertible, therefore

step 5 of Figure 3.7 will fail to give an answer. This means that a valid solution is not

guaranteed, given that this matrix is not invertible. The advantage of Linear Least Squares

is that if it finds a solution, this solution is guaranteed to be the global optimal. That is the

hyperplane with least error for the data set. Gradient Descent and KGERS in the other

43

hand do not follow this rule. These algorithms are capable of achieving the global optimal,

but it is not guaranteed. For Gradient Descent it is possible only when the learning rate is

sufficiently small, but this might use extended computational time. When dealing with a

training set and a test set, KGERS has the probability of doing better than the global

optimal due to its randomized nature.

3.4. Regression Tree Algorithms

It was seen before that linear regression is possible through a variety of methods.

Techniques go from randomized approaches to decidable linear algebra operations. The

problem addressed in this section is regression on non linear functions. The purpose of

this study is based on the hospital admission data. We picked a regression tree as the

target algorithm for improvements. The reason being is that the nature of a regression

tree, as mentioned before, allows seeing actual readable data. This helps to understand

the data being analyzed and hopefully catch patterns with the naked eye. It also helps

seeing which features of the data are not helping with the model, and which ones are. In

this section a new set of splitting criteria, stopping criteria and leaf regressive method is

proposed. Recall in chapter 2, the regression tree pseudo code shown in Figure 3.8.

RegressionTree
-inputs:
Features, X(inputs), Y(outputs)
-outputs: RegressionTree
1: Begin
2: if STOPPING CRITERIA is true
3: perform REGRESSION in current X|Y
4: else
5: perform SPLITTING CRITERIA and split X|Y into two
 subsets (left and right)
6: Recursively call RegressionTree in Left and right
 Nodes
7: End

Figure 3.8 Regression Tree

Typically, the three main steps of a regression tree involve stopping criteria,

splitting criteria and regression.

3.4.1. New splitting criteria

To fit the needs of the hospital data, and the later approaches taken, we have

devised a set of modifications to a regression tree algorithm. These modifications are

meant to improve time and accuracy specifically for piece wise linear regression.

44

3.4.1.1. KGERS Splitting

As seen before, variance splitting might help, but the problem with it is the fact

that splitting is done by Euclidean distance of clustered points. If at the leaf nodes we

want to fit a line, then variance will not do a good job. Variance will work for average

regression at leafs, but not so much for a hyperplane. There must be splitting criteria that

split the data by its linearity rather than its distance to average. We can run KGERS on

each candidate example cluster and then use the error squared as impurity. This is shown

in Figure 3.9.

PickBestSplit (KGERS version)
-inputs:
Features(F), X(inputs), Y(outputs)
-outputs: (best_f,best_fv)
1: Begin
2: BestGain = 0, (f_best, f_bestv) = null;
3: let P be hyperplane fit on X using KGERS
4: AllImpurity = CalcError (X,P,Y)
5: For each f in F
6: For each split point fv in f
7: Split X using (f,fv) into Xleft and Xright
8: Split Y using Xleft and Xright into Yleft and Yright
9: Let Pleft be hyperplane fit on Xleft using GD
10: Let Pright be hyperplane fit on Xright using GD
11: Gain = Allimpurity – (CalcError (Xleft,Pleft,Yleft) + CalcError (Xright,Pright,Yright))
12: If (Gain > BestGain)
13: BestGain = Gain
14: (f_best, f_bestv) = (f,fv)
15: Return (best_f,best_fv)
16: END

Figure 3.9 Pseudo code for PickBestSplit by KGERS hyperplane fit

Steps 4 and 8 calculate the errors generated by the new hyperplane with respect

to the training data. This function will try to maximize the split that generates the smallest

gain, where gain is defined as the squared error of the hyperplane before and after

splitting. Impurity can be defined in equation (16).

2))(ˆ(YXfI  (16)

Impurity could be defined as the squared error of the current hyperplane. What

matters is that impurity increases if the model has a lot of error, and vice-versa. Step 11

of Figure 3.9 shows the definition of gain. This idea is very parallel to that of splitting by

variance, but instead optimizes the data for linear regression at the leaf nodes. KGERS is

very fast too, so this splitting criterion method will be efficient and practical.

45

3.4.1.2. Gradient Descent Splitting

This technique is the same as shown in Figure 3.9 but using Gradient Descent to

fit a line instead of KGERS. While this technique will certainly help achieving a good

splitting pattern for linear regression at leafs, it is slow (high time complexity) and each

run of Gradient Descent requires several parameters. Because during a split of data the

distribution of Y values might change this could mean that the same learning rate will not

be sufficient to achieve convergence. Instead of using Gradient Descent, KGERS can be

used. It has to be kept in mind that when choosing a splitting method, every single

feature and every single threshold value of this feature has to be explored for possible

splitting points. If the algorithm that calculates the impurity of splitting points is

computational expensive then the splitting criteria decision itself might be non-solvable.

The final and biggest advantage on KGERS over gradient descent is the usage of a single

parameter. With this, KGERS split should be the splitting criteria of choice when using

linear regression at leaf nodes.

3.4.2. New Stopping Criteria

The new stopping criteria devised is to make it more automatic, without the need

to know the data distribution or any other measurement directly related to the data. The

only parameter required for the following is a single confidence interval (a threshold) that

if bigger, means a deeper tree with more leafs and if smaller a more compact tree.

3.4.2.1. T-Test on Error

The motivation for the T-Test Error stopping criteria is the splitting scenario. At

the end, we want to split only if this is going to improve the performance on error and we

want to stop otherwise. For this, we can see if the changes in error from splitting and

stopping are significant. The T Statistic test is a measurement that tells how different two

averages are. Depending on the confidence interval, measurements above the T threshold

will indicate a high difference in the distributions. Low values indicate no such difference.

This measurement can be used to measure error differences, as shown in (17).

 (17)

If the D measurement is bigger than T it means that the two distributions are

different. The symbol δ represents the average error of the current node (on its own

subset of data). This means that δbefore is the average error of the current node before

splitting and δafter is the average error after splitting. The symbol σ represents the

46

standard deviation. Depending on the state, standard deviation of this distribution is from

before and after splitting. If these two distributions have a value of D that passes the

threshold T (derived from a confidence interval table), it means that it should continue

splitting, since there is a significance change in error. If the D value is lesser than T, then

the algorithm should stop splitting since further splitting doesn’t decrease the error

significantly (from a statistical point of view).

It has to be clear, this stopping criteria is generic and can be applied to any

Regression Tree with any particular regression model at the leaves. As long as there is the

calculation of error before and after splitting, this stopping criterion will work.

3.4.2.2. T-Test on shape

The motivation for this is that if the shape of two hyperplanes fitted is different

and doesn’t change, then there is no reason to keep dividing. If the hyperplane

candidates generated before are no different from the candidate hyperplanes generated

after splitting, then splitting would be silly and wouldn’t really change the nature of the

regression, therefore a stopping condition is met. If the opposite happens, the shape of

the hyperplanes is very different before and after splitting, it means that the algorithm is

potentially discovering new ways of fitting a model, and that the model below certainly

lacks of a linear behavior, therefore the splitting continues. This stopping criterion can

only be applied to those trees with linear regressive model at the leaves (KGERS or

Gradient Descent).

The statistical test on shape of the split data looks at the linearity shape instead of

taking an error perspective. It is also a post splitting stopping criteria so requires an

analysis of before and after splitting (just like T-Test on Error). The same equation in (17)

applies, but there is a difference in the meaning of the average and variance. The average

in this case is the average cosine similarity measure. This measure is defined in (18).

 (18)

The cosine similarity is a measurement that dictates how similar two vectors are.

If the value of CosSim is 1, it means that both vectors are equal; otherwise -1 means that

they are the complete opposite of each other.

The T-Test is done on the average cosine similarity of all the KGERS hyperplane

candidates fitted before and after splitting. The vectors used in the cosine similarity

function are the weight vectors of the candidate hyperplane. For all the possible pair of

vectors in each group, an average cosine similarity mean and variance is extracted, being

these the two averages.

47

3.4.3. Regression at Leaf Nodes

KGERS represents a viable new regression algorithm. It’s an algorithm that

requires much smaller time complexity and only one parameter independent of the Y’s

distribution.

The regression methods are not limited to linear regression; neural networks can

be also applied, but then lays the question of splitting criteria, which seems a little bit out

of scope of this study. For the purpose of this study the focus will be on piece wise linear

approximation. KGERS at the leaf nodes will be ultimately compared against gradient

descent and a mean.

3.4.4. Summary of regression tree algorithms

Table 3.2 summarizes the sources of each algorithm. It also clarifies the current

proposed ones as a contribution to the computer science field.

Source Splitting criteria Stopping Criteria Regression

Yohannes
and Webb
(1999)

Variance Number of Nodes Average

D. Vogel et
al (2007)

Clustering Levels Gradient
Descent

Huang and
Townshend
(2003)

Variance Number of Nodes Gradient
Descent

Proposed
approach

KGERS Split T-Test on Error KGERS
Regression

Proposed
approach

KGERS Split T-Test on Shape KGERS
Regression

Table 3.2. Summary and Sources of regression tree algorithms

3.5. Summary

This chapter proposed a new algorithm for linear regression, KGERS. The objective

of this algorithm is to be faster than regular approaches, like Linear Least Squares and

Gradient Descent. It was shown through time complexity analysis that KGERS is not

dependant on N, a crucial variable when estimating time complexity. Although KGERS still

depends on K, which is the main iterations parameter, and this parameter is straightly

linked to the linearity of the data. If the data tends to be linear, K should be lower. The

main purpose of KGERS is to be used in a regression tree as both, splitting criteria and

48

regressive model. Two methods for stopping criteria are proposed. These are performing

T statistic tests on Error and shape of potential curves.

Chapter 4
Estimating Hospital Admissions

As seen in the introduction of this study, one of the main goals is to successfully

model hospital data to solve the staffing problem. This chapter will describe the data

being used, along with some of its features. The contributions in this section will help with

the modeling of demand in emergency department admissions and specific care unit

admissions. As recalled in previous chapters, there exist two sub problems. The first one

involves the estimation of admissions from the emergency department (ED) into the main

hospital. This can be thought as the patients going out of the emergency department into

a hospital room for a span of time. The second sub problem involves the estimation of

demand into one of the three types of care units, which will be described later.

4.1. Hospital admissions data

The hospital admission data consists of four specific sets. These were kindly

provided by Holmes Regional Medical Center, located in Melbourne Florida. This is

important since the results discussed in this chapter do not necessarily reflect the

behavior of patients around the nation, but from a specific town. These four sets can be

divided into two groups. The first group is concerned with sub problem A and the second

to sub problem B. These sub problems are explained in detail in the introduction of this

study. The sets are summarized in Table 4.1. The first problem is the admission of patients

from the emergency department to the hospital internal beds (EDInpt which stands for

Emergency Department Inpatients). As explained before, this is a big problem in hospitals

nationwide. If a hospital knew in advance the number of people who will be admitted, or

at least an estimate, staffing nurses and doctors would be a fairly simple task. The second

sub problem deals with the actual supply of care units that need to be given. A care unit is

the composed by a bed and the additional devices and items that a patients need. Since

this data is unavailable, we will use the demand for the specific care units (which is

available) assuming that the hospital can match the supply if it knows the demand.

49

Figure 4.1 Outline of Hospital data

Figure 4.1 shows the main outline of the hospital data studied in this chapter.

People admitted from the ER to the main hospital are represented by the arrow going

from the ED box to the main hospital. The other arrow (coming from outside) represents

the demand coming from other sources that are not the emergency room. These will not

be studied on this research work. Once inside the main hospital, both demands “merge”.

The total demand is then split into three types of bed units, PCU ICU and Floor. Notice

that these units include both, demand coming from the inside and the ER.

Data set Training Set Test Set

Hospital Admissions from

Emergency Room

(EDInpt)

April 2008 – May, 2009 April 2010 – May 2010

Demand of ICU beds

April 2008 – May, 2009 April 2010 – May 2010

Demand of PCU beds

April 2008 – May, 2009 April 2010 – May 2010

Demand of Floor beds

April 2008 – May 2009 April 2010 – May 2010

Table 4.1 Training and Test sets for hospital data

50

Table 4.1 shows the distribution of each bed in the hospital. Here a training set

will be used solely for model building. The test set is meant as an evaluation reference

point that will help measuring the accuracy of the algorithm. Staffing requires calling

personal ahead of time, and assigning them specific beds depending on the workflow of

the hospital. Treating the problem as a time series is a very promising strategy due to the

prior studies done in the entire data sets. The next three data sets deal with the actual

type of bed used from this EDInpt demand plus external demand. These are numbers that

tell how many types of beds are taken. As seen before there are three types of bed and

each type of bed is described in Table 4.2. Each bed’s description and type is an important

part of staffing. Each type requires different kind of personal and equipment. Knowing

them in advance will certainly proof useful for the hospital personal.

Type

of bed

Meaning Description

ICU Intensive Care Units. Beds with patients who are in critical condition. These beds are most

costly and require special equipment. Nursing ratio is 1 nurse for 2 beds.

PCU Progressive Care Units. This care units present less critical patients, with a nursing ratio of 1

nurse for 4 beds.

Floor Floor units (other). General patients, nursing ratio being 1 nurse for 6 beds.

Table 4.2 Hospital bed types.

The EDInpt data consist of a set of rows. Each row represents a patient, with its

respective admission time to the hospital. Admission times are already in six daily hour

intervals; each interval being of four hours each. PCU, ICU and Floor come also as row

data, but this time, without the hour. This means that they come packed in terms of

hours. The goal is to treat the problem as a time series, so at the end the raw data needs

to be processed and put into buckets. For EDInpt each number in the time series will

represent the number of admissions that happened in a particular hour. This means that

each bucket in EDInpt represents a 4 hour interval. On the other hand, PCU, ICU and Floor

data are sampled in a daily bases. This means that each bucket from these data will

represent the number of PCU/ICU/Floor beds used in the particular day. Just like the

previous chapter, each data set consists of a training set and a validation set.

4.2. Experiment procedures

In this chapter one set of experiments will be driven on the EDInpt data, ICU, PCU

and floor untis. These will provide evidence on accuracy and time complexity of the newly

51

devised regression tree on the hospital data. A summary of the algorithms used is

available in Table 4.3, each with a particular description.

Name Algorithm Description
Neural network Feed Forward Neural network

trained with Back Propagation
Most common “off the shelf” neural
network algorithm. Will be used to
be contrasted in computational
power and accuracy against
regression trees.

Regression Tree KGERS Regression Tree with KGERS for
splitting, t-Test on shape
stopping criteria and KGERS for
regression.

Algorithm proposed. Aims to provide
faster and similar results to those of
Regression tree with Gradient
Descent.

Regression Tree Mean Regression Tree with Variance
splitting, t-Test on Error for
stopping criteria and average for
regression.

Control algorithm, since it takes no
parameters it will be used as
reference due to its minimalistic
nature.

Regression Tree Gradient
Descent

Regression Tree with Gradient
Descent splitting, t-Test on shape
stopping criteria and Gradient
Descent for regression.

Typical algorithm that performs
piecewise linear regression, with
usually good results. Aims to be
compared and contrasted with
Regression Tree using KGERS.

Table 4.3 algorithms for non linear regression experiments

Each data set will contain three types of analysis. The first one is an evaluation of

computation time; this is done by plotting a chart of CPU time versus size of input (the N

variable in time complexity). The second sub experiment is an evaluation of error versus

value of the algorithm’s main parameter. This will be done for each algorithm

respectively. Finally the last sub experiment is an analysis of CPU time versus error for

each algorithm. This third part should be able of identifying the strongest algorithms that

take the most advantage of computational power. Later in Chapter 5 we will look into the

algorithms from a computer science point of view and evaluate those using synthetic

data. In this chapter the algorithms will be evaluated for performance on regression of

hospital data, and not in other criteria such as resistance to noise.

4.3. Evaluation Criteria

The main evaluation criteria used for the experiments is the root mean squared

error (RMSE) of the regression. The RMSE summarizes the error at about 90% confidence

interval, and displays the units by which the regression is off. Other measurements

include using the RMSE as a percent error, by diving it to the total mean of the Y values in

the experiment. Equation (1) summarizes the RMSE of a model.

52
























N

yxf

yxfRMSE

N

i

ii

1

2))((

),,((1)

The RMSE takes three inputs. The first one is f, this represents the model (the

output of our regression algorithms in this case). The model can be thought as a function

itself. The next input is x. This is the respective test set for the model. Adjunct to this is y,

which represents the actual outputs of the test set. The RMSE is simply the average error

amplified using the quadratic property. This RMSE can curiously be greater than the

average values of the Ys.

For the hospital’s interest, the Mean Absolute Error is also calculated. This can be

described in equation (2).





n

i

ii yxf
n

MAE
1

)(
1

 (2)

The MAE describes exactly in average by how much is the model diverging from

the test set. Notice that the difference operation is not exponential; this naturally causes

the MAE to be lesser than the RMSE since it doesn’t “exaggerate” errors.

Another evaluation criterion is represented by the CPU clock cycles. The

experiments were performed on an Intel Core Duo© machine, running Microsoft

Windows 7 32 bit operating system. The CPU clock cycle function was extracted using the

c runtime library clock() function, declared in the <time.h> header file. We use CPU as a

measurement of how well the algorithms take advantage of the computing power, and

therefore measure the most efficient one using this empirical evidence.

Finally, for the hospital data set, each algorithm will be evaluated using the RMSE

measurement. In the case of randomized algorithms (such as Regression Tree KGERS) the

RMSE used will be the minimum amongst all its trials.

4.4. Preliminary analysis for feature selection

Before drawing any features and start doing regression, we need a prior study; a

guide that will tell us the data’s trends and possible features that could be derived. We

have chosen to first sample the data as a time series. This is done by counting the patients

being admitted into buckets. Once the counting is done, the result is a list of numbers,

which represents a time series. Each number in the list will represent the number of

53

admissions or beds in the time span that a bucket takes. As mentioned before, EDInpt

uses 4 hour buckets, while PCU/ICU and Floor use daily buckets.

Once the time series is at hand, the next step is to perform an FFT analysis of

such. Fast Fourier Transform is a method of decomposing a signal into its primitive cycles,

helping to identify any cyclical patterns into the data. A summary of the FFT analysis

values is summarized on Figure 4.2. While running the FFT analysis on the EDInpt data,

three patterns were discovered. The three cycles are listed below:

 Daily cycle: hour of the day (out of the 6 possible hours) shows similarities.

 Yearly cycle: same days of years show similarities.

 Weekly cycle: Same days of the week share similar patterns.

Figure 4.2 FFT analysis cycle prominence of EDInpt data.

Figure 4.2 shows six different bars. Each bar represents the prominence of a cycle

in the EDInpt data. As seen here, the first two bars show a high prominence of daily

cycles. The next biggest cycles happen to be the yearly repetitions. Finally the weakest

one, but still present is the weekly cycle. All these cycles are normalized against an epsilon

measurement which represents no cycle at all. So while the weekly cycle happens to

appear very low, it is in fact still prominent, in the exact proportion shown with respect to

the daily cycle.

Figure 4.3 shows the FFT analysis performed on the other three data sets. We

decided to plot them on the same chart since their sampling is different from that one on

the EDInpt data.

0

2

4

6

8

10

12

14

16

18

1 day .5 day 1 year 1.4 days .5 week 1.2 days

C
yc

le
 P

ro
m

in
e

n
ce

Period

EDInpt FFT analysis

54

Figure 4.3 FFT analysis cycle prominences of PCU, ICU and Floor data.

The PCU, ICU and Floor data related to subproblem B clearly show a prominence

of weekly cycles. The only cycles identified were those in the span of a week. This means

that days will be showing a specific pattern that is repeated throughout the data.

As seen before, there are three major cycles being prominent in the EDInpt data.

The next step is to plot these cycles and analyze the respective shapes that each one

present. Figure 4.4 shows the respective shape of daily cycles in data.

Figure 4.4 Shape of daily cycles.

Each entry in the X axis represents the given time interval. This data is plotted as

the average a number of admissions that each time interval (or bucket as we mentioned

before in the time series manner) possesses. As it can be appreciated, the busiest times

for the target hospital are always close to noon and afternoon. Early hours in the morning

0

0.5

1

1.5

2

2.5

3.5 6.98 7.03

C
yc

le
 p

ro
m

in
e

n
ce

Day

PCU, ICU and Floor fft analysis

Floor beds

PCU beds

ICU beds

0

2

4

6

8

10

12

14

16

12am-4am 4am-8am 8am-12pm 12pm-4pm 4pm-8pm 8pm-12am

A
ve

ra
ge

 A
d

m
is

si
o

n
s

Time interval

4 Hour Time Interval Average Admissions

55

seem not to be as demanded. A logical explanation is that usually people sleep during the

night. The likelihood of getting injured while sleeping is less than actually during active

hours. But this is just speculation and the causes could be different; however it seems

very logical that the highest hours of hospital admissions happen to be in the rates of the

mid day.

Figure 4.5 shows the admission pattern for monthly cycles. That is, using the

original sampled data, now displays the monthly average for the entire data set. Figure

4.5 summarizes the years into their twelve respective months, each with its average

number of admissions. It shows that months around early in the year (spring in the case

of the United States) is a choke point of high admissions while months closer to the

summer have less admission.

There exists a considerable difference in month averages, strictly saying that the

least demanding month differs for at least 12 patients from higher ranked months. Finally

Figure 4.6 shows the behavior of the weekly cycle, which is the least powerful amongst

the data. It can be appreciated that Figure 4.6 displays two waves in one. The first one

starts around the early days of the week, achieving its peek on Monday and a recessive

period on Wednesday.

Figure 4.5 Shape of yearly cycles.

It can be noted that after this recessive period, the admission rates picks up and

then drops suddenly during the weekend. It’s very surprising that not many admissions

occur during the weekend. A possible logical explanation is the way people act during the

weekends, and sometimes the lack of activities they are involved in. During the week, it is

50

52

54

56

58

60

62

64

66

D
ai

ly
 A

ve
ra

ge
 a

d
m

is
si

o
n

s

Month

Daily Average per Month

56

for sure that transportation moves predominately in the local area, and this is the case in

the city of Melbourne.

Figure 4.6 Shape of weekly cycles.

As it was seen before, the three remaining hospital data sets also show a weekly

pattern, which seems to be the most prominent amongst the cycles. This pattern is

graphically shown in Figure 4.7.

Figure 4.7 PCU, ICU and Floor weekly cycle shape

50

52

54

56

58

60

62

64

66

Suday Monday Tuesday Wednesday Thursday Friday Saturday

A
ve

ra
ge

 A
d

m
is

si
o

n
s

Day

Daily Average Admissions

0

5

10

15

20

25

30

35

40

45

50

D
e

m
an

d
 in

 b
e

d
s

Day of the week

PCU, ICU and Floor beds weekly cycles

Floor beds

PCU beds

ICU beds

57

The weekly pattern of the bed data seems to have its peek around the middle of

the week, especially Monday. It can be appreciated that each data set (Floor, PCU and

ICU) has different rate of admissions, floor beds being the most abundant. ICU beds are

the most costly and hard to maintain. Usually patients residing in these beds require more

nurses and more life support equipment, which is expensive and scarce. Floor beds seem

to be the most abundant since usually the hospital gets overcrowded easily, and patients

overflowing form the emergency department have to be sent through here.

Finally this complete cyclical analysis can lead to feature investigation and

extraction. The algorithms discussed in the previous chapters will need at the end a set of

vectors for each point in the data (where each point is a bucket sitting in a time series).

Each one of these points will have a vector associated with it that will summarize

information of the past. The goal is to be able to forecast the future using the past, and

surely the FFT analysis with combination of the time series bucket plots will give us hints

to do so.

4.5. Processing of data and Feature Vectors

In order to be able to use the data into the machine learning algorithms

mentioned before, the data must take the form of feature vectors. Each point should

consist of a vector with its respective regression value. The case of the EDInpt data, the

data comes as 6 time intervals per day. This means that each day consists of 6 numbers

that represent 4 hour time intervals during the day. PCU, ICU and Floor data sets have

one number per day instead; data is not sampled by hour but by day for these last 3 data

sets.

Figure 4.8 Feature Extraction from time series

Figure 4.8 shows the process of extracting features from an admission time series.

The vertical timeline represents the admission numbers on each bucket for the respective

58

time series. This is the raw version of the data given by Holmes Regional Medical Center.

The feature extraction process consists of extracting a window time frame as shown in

Figure 4.8. For this example two feature vectors are used, point A and B. Each point has

an association with the respective time line, acting like a window that traverses time. This

“time window” uses data from the past to derive features specifically. The next section

will describe exactly what each element in the feature vectors represents.

4.6. Feature selection

The feature vector designed for the EDInpt data is entirely based on the prior

studies and FFT analysis explained before. These features will be extracted from the

timeline data. To recap the entire process, we first start with rows of patients. After the

data is sampled into buckets each bucket being on a specific time. For the EDInpt data,

each bucket represents a 4 hour span during the day. The next step is extracting features

for each possible prediction date. For example, if we want to know the number of

admissions to the hospital next Monday in the second bucket (that is, from 4 am to 8 am),

we will use data from the past and feed it into our regression algorithm, that supposedly

already has created a model. Figure 4.9 shows the derivation of the first feature.

Figure 4.9 First feature of EDInpt data

The first feature involves the same hour, 52 weeks ago (which is a year ago, but

the same day of the week) using the same hour. Figure 4.9 shows a Monday 3rd of

October from 4 am to 8 am (second bucket of the day) as the green arrow. From now on,

every feature will always involve the same day of the week and the same hour bucket of

the day. The green arrow is the target prediction date. The end of the arrow shows the

same Monday, but 52 weeks ago in October, same hour. This will be the first element of

the feature vector. Figure 4.10 shows the second element of features. The second feature

uses the average of the four days surrounding the past day. This is based on the

assumption that days surrounding the past might also influence the future prediction

59

which occurs a year after. It also helps smoothing out the influences of days. We use two

weeks span since a month shows consistency in earlier FFT analysis. It is out of the

interests to see this span.

Figure 4.10 Second feature of EDInpt data

Figure 4.11 shows the third feature of the EDInpt data. This feature consists of

365 days ago. The reason being is that a year ago means the same date. Consequently

holidays like the 4rth of July are likely to present the same amount of inflow in patient

data. We believe that such patterns do influence potential prediction and modeling.

Figure 4.11 Third feature of EDInpt

Figure 4.12 shows the fourth feature. The fourth feature uses the average of the last

three exact days in a span of 3 weeks. This means that it will use 1 week exactly before

the prediction, in addition to the previous week, and the week before the previous week

to do an average.

60

Figure 4.12 Fourth feature of EDInpt data

Again, the reason to pick the average is the assumption that we are smoothing

the influence patterns (potentially smoothing noise) and using adjacent days that could

influence the prediction. The fifth feature is shown in Figure 4.13.

Figure 4.13 fifth feature of EDInpt Weekly change feature

The weekly change represents the step that a week took. It works as a delta, a

result from the subtraction of the previous week minus the week before the previous,

same hour and same day respectively. Finally, Figure 4.14 shows the last feature of the

EDInpt data. This feature represents the yearly change, and it is a delta between the last

week (because this is the most recent day we have) minus exactly 52 weeks ago, same

hour and same day of the week.

61

Figure 4.14 sixth feature of EDInpt Yearly change feature

At the end we have a total of 6 features, each one covering a pattern that was

found during the FFT analysis.

Since the PCU, ICU and Floor data present the same cyclical patterns in the prior

FFT analysis, they will all contain the same set of features. The first feature of PCU ICU

and Floor is described in Figure 4.15.

Figure 4.15 First PCU ICU Floor feature, last week value.

The first feature utilizes the concept of a weekly cycle. Simply extracts the last

week’s value and uses it as its first vector value. The second feature is displayed in Figure

4.16.

Figure 4.16 Second PCU, ICU and Floor feature, last 3 weeks average.

This involves the average of the past three weeks. We have to keep in mind that

all of these three data sets are sampled in one day intervals (single day buckets).

Therefore there is no specific hour like in the EDInpt data set. The third feature involves

the weekly delta, which can be seen in Figure 4.17.

62

Figure 4.17 Third PCU ICU Floor feature, weekly difference.

As seen before, this data set also represents the weekly difference, but this time

it is done with a single day because of the nature in which the data is sampled. This

difference should give information to the algorithm about potential differences between

weekly jumps. Finally the last feature can be appreciated in Figure 4.18. This feature is

exactly the amount of beds used 52 weeks ago.

Figure 4.18 Fifth PCU ICU Floor feature, 52 weeks ago

We have to keep in mind that 52 weeks ago represents exactly one year (falls into

the same year, unlike 365). Throughout the feature extraction process it has to be kept in

mind that leap year could exist. In any case, in such situation the respective time

corrections should be done. As explained, all these features will play an important role,

and they are the result of an evolutionary process of trial and error. We found out that

these are the features that work probably the best from the spectrum explored.

Vector id Feature Description Figure

X1 52 weeks ago, same hour same day 4.9

X2 52 weeks ago, same hour average of 2
previous and next weeks

4.10

X3 365 days ago, same hour same day 4.11

X4 Past 3 weeks average 4.12

X5 Weekly change 4.13

X6 Yearly change 4.14

Table 4.4.a Summary of EDInpt feature vector

63

Vector id Feature Description Figure

X1 Last week value 4.15

X2 Last 3 weeks average 4.16

X3 Last week difference 4.17

X4 52 weeks ago 4.18

Table 4.4.b Summary of ICU, PCU and Floor features.

4.7. Empirical Results

This section will show the experimental results on the hospital data. For each data

set there are 4 figures. The first three figures will deal each one with a particular

algorithm applicable to that data set. The algorithms are Regression Tree Gradient

Descent, Neural Network and Regression Tree KGERS. Each graph will be of error vs main

parameter of the respective algorithm. The fourth Figure will illustrate the Error vs CPU

time that each algorithm performs.

4.7.1. Performance on EDInpt data set

Figure 4.19.a shows the performance of a Regression Tree Gradient Descent.

Figure 4.19.a Regression Tree Gradient Descent on EDInpt data

As it can be appreciated, these first batch of experiments deal with the EDInpt

data. Gradient Descent surprisingly shows a stable result even with a low value of

iterations. One possible explanation for this is that the splitting criteria performs well

enough, such that the entries at the leaf nodes don’t need many updates.

3

3.5

4

4.5

5

0 2000 4000 6000 8000 10000 12000

Er
ro

r
(r

m
se

)

Iterations in GD at leafs

Regression Tree with Gradient Descent: Iterations vs Error

Regression Tree
Mean

Regression Tree GD

64

Figure 4.19.b Neural network on EDInpt data

Figure 4.19.b shows the convergence of the neural network as its iterations

increase. This is expected, due to the nature of this machine learning algorithm. Notice

though, how the neural network requires as many iterations as the amount of data

present. This shows that the iterations parameters in back propagation is proportional to

the size of the input data.

Figure 4.19.c Regression Tree KGERS on EDInpt data.

3

3.5

4

4.5

5

0 200 400 600 800 1000 1200

Er
ro

r
(r

m
se

)

Iterations

Neural Network Iterations vs Error

Regression Tree Mean

Artificial Neural Network

3

3.5

4

4.5

5

0 200 400 600 800 1000 1200 1400

Er
ro

r
(r

m
se

)

k

Regression Tree with kgers: Iterations vs Error

Regression Tree
Mean

Regression Tree
KGERS

65

Figure 4.19.c shows the performance of a Regression Tree KGERS under the

EDInpt data. KGERS converges very quickly and stabilizes at the very end. This sort of

stabilization shows that the splitting criteria have done a fairly good job and that KGERS

can find the correct answer quickly.

Figure 4.19.d Error vs CPU time analysis for algorithms under EDInpt data

Finally, it can be shown in Figure 4.19.d the real cpu speed for each of the

mentioned algorithms under the EDInpt data. Figure 4.19.e shows a zoomed in version of

the error displayed. It can be seen that KGERS has a faster approach than the other

algorithms and the lowest error, unlike the Regression Tree Gradient Descent, which

seems not appearing in the graph.

3

3.5

4

4.5

5

0 1000 2000 3000 4000 5000 6000 7000 8000

Er
ro

r
(r

m
se

)

CPU Clock Ticks

Error vs CPU Time

Regression Tree Mean

Neural Network

Regression Tree Gradient
Descent

Regression Tree KGERS

66

Figure 4.19.e Error vs CPU time analysis for algorithms under EDInpt data, ZOOM

 Regression Tree KGERS is the algorithm that converges the fastest amongst the

candidates, while Gradient Descent takes some more time to reach this error. The Neural

Network performs also fairly slow compared to the regression trees. It can be shown that

while the Regression Tree Mean provides the best time complexity, it over fits and

doesn’t converge to the lowest possible error.

It can be noted that the CPU cycle performance of the Regression Tree is falling

into 3 buckets, there are around 250, 550 and 800. The reason this happens is explained

by the time complexity nature of the algorithm. Regression Tree KGERS’ most expensive

operation is the splitting criteria. This is when the algorithm has to choose amongst all the

possible splitting points the one which maximizes gain. Because KGERS is independent of

the input size, varying K doesn’t necessarily produce a higher CPU consumption. Instead,

the randomized nature of the splitting criterion discovering patterns is what causes the

algorithm CPU consumption to be between these buckets.

Figure 4.19.f shows how the CPU cycles increase as the number of leaf nodes in

the tree increase.

3

3.5

4

4.5

5

0 100 200 300 400 500 600 700 800 900 1000

Er
ro

r
(r

m
se

)

CPU Clock Ticks

Error vs CPU Time

Regression Tree Mean

Neural Network

Regression Tree Gradient
Descent

Regression Tree KGERS

67

Figure 4.19.f Leaf Nodes vs CPU cycles

Notice how the number of leafs and the CPU cycles used is almost a linear

relationship. This explains the bucket concentration in Figure 4.19.e. Table 4.5

summarizes the CPU cycles and the number of leaf nodes that each Regression Tree

KGERS has on average.

CPU Cycle Bucket Number of Leaves

200-300 1

500-600 2

700-800 3
Table 4.5 Average Leaf sizes with respect to CPU time

Table 4.6 shows a comparison of algorithms in terms of RMSE.

Algorithm Best RMSE

Regression Tree KGERS 3.31

Regression Tree Mean 3.75

Regression Tree Gradient Descent 3.33

Neural Network 3.35
Table 4.6 Error comparison of Algorithms under EDInpt data

0

2

4

6

8

10

12

14

16

18

20

0 200 400 600 800 1000 1200 1400

Le
af

 N
o

d
e

s

CPU Cycles

Leafs vs CPU cycles for Regression Tree KGERS

68

The algorithm producing the best Root Mean Square Error is the Regression Tree

KGERS. It has to be shown though, that these errors do not necessarily show a more

powerful contribution. But still, for the sake of forecasting and estimation, this

information is useful for the hospital. The special property about KGERS is the freedom it

possesses when being trained due to its randomized nature. This certainly helps into

giving flexibility to the algorithm when exploring the solution space. The difficulties are

that KGERS’ regression tree is still tied up to greedy partitioning, and as a consequence of

being a randomized search algorithm it shows several signs of instability. Still, stability can

be verified in Figure 4.19.f, where it is shown that the probability of error falls thoroughly.

Figure 4.19.f Error distribution in KGERS for EDInpt

Because KGERS is randomized, several trials are required to know the best error.

It happens that most of the trials fall under the 3.4 RMSE bin value. This means that for

this data set the algorithm behaves very stable, and the majority of trials hint towards the

minimum error.

4.7.2. Performance on ICU data set.

This section will perform the experiments on the ICU data presented on prior

sections.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5

p
e

rc
e

n
ta

ge

Error (rmse)

Error distribution for KGERS

69

Figure 4.20.a Regression Tree Gradient Descent on ICU data

Results for the Regression Tree Gradient Descent are not very pleasing, these are shown

in Figure 4.20.a. The algorithm takes much more time than Regression Tree Mean, and

still performs worse. The nature of the data shows a lot of noise present. This sort of

noise can confuse the splitting criteria and therefore generate a very unstable model.

Figure 4.20.b Neural Network on ICU data

Figure 4.20.b shows the performance of the Neural Network on the ICU data. The

Neural Network quickly converges to an error value, and seems to stay under that range.

This is an indicator that the Neural Network does perform well on the data. The

Regression Tree Mean has a similar RMSE to that one found by the Neural Network.

3.25

3.3

3.35

3.4

3.45

3.5

3.55

3.6

3.65

3.7

3.75

0 2000 4000 6000 8000 10000 12000

Er
ro

r
(r

m
se

)

Iterations in GD at leafs

Regression Tree with Gradient Descent: Iterations vs Error

Regression Tree
Mean

Regression Tree GD

3.25

3.3

3.35

3.4

3.45

3.5

3.55

3.6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Er
ro

r
(r

m
se

)

Iterations

Neural Network Iterations vs Error

Regression Tree Mean

Artificial Neural Network

70

Figure 4.20.c Regression Tree KGERS leaves on ICU data

The Regression Tree KGERS at the leaf nodes seems very unstable. Although

unstable, is the algorithm that got the lowest RMSE amongst the others. Instability can be

due to the low mean and high variance of the data. Usually when the variance is really

high, this confuses the algorithm due to its randomized nature. Splitting criterion doesn’t

seem to help much, since the Neural Network could fit the problem without any trouble.

Figure 4.20.d Error vs CPU time analysis for algorithms under ICU data

Finally, Figure 4.20.d shows a summary of the results. The three algorithms

converge to similar errors, with Regression Tree Mean being the one with least

3.25

3.3

3.35

3.4

3.45

3.5

3.55

3.6

3.65

3.7

3.75

0 200 400 600 800 1000 1200 1400

Er
ro

r
(r

m
se

)

K

Regression Tree with kgers: Iterations vs Error

Regression Tree
Mean

Regression Tree
KGERS

3.25

3.3

3.35

3.4

3.45

3.5

0 50 100 150 200 250 300 350 400 450 500

Er
ro

r
(r

m
se

)

CPU Clock Ticks

Error vs CPU Time

Regression Tree Mean

Neural Network

Regression Tree Gradient
Descent

Regression Tree KGERS

71

computational time. Figure 4.20.e shows a closer view to the Error vs CPU on the ICU data

set.

Figure 4.20.e Error vs CPU time analysis for algorithms under ICU data, ZOOM

 Regression Tree KGERS shows a significant improvement into the error results.

These show the potential of KGERS to be into the least amount of errors within a

respectable range, doing better than any other algorithm with low computational time.

Algorithm Best RMSE

Regression Tree KGERS 3.27

Regression Tree Mean 3.31

Regression Tree Gradient Descent 3.39

Artificial Neural Network 3.29

Table 4.7 Error comparison of Algorithms under ICU data

Table 4.7 shows a contrast of the performance of the algorithms with respect to

this data set. Although KGERS performed better error-wise, this low error quantity came

from a very unstable distribution. The probability of KGERS landing into such error is

relatively small due to its instability. Out of all the algorithms the most reliable for this

data set appears to be a Neural Network. Noise is perhaps too big and confuses general

split in regression trees.

3.25

3.3

3.35

3.4

3.45

3.5

0 10 20 30 40 50 60 70 80 90 100

Er
ro

r
(r

m
se

)

CPU Clock Ticks

Error vs CPU Time

Regression Tree Mean

Neural Network

Regression Tree Gradient
Descent

Regression Tree KGERS

72

Figure 4.20.f Error Distribution for KGERS on ICU data

Figure 4.20.f shows that the probability of landing into a small error (3.3) is very small.

This is reflecting that the Regression Tree KGERS tends to land in an error bucket of

around 3.4.

4.7.3. Performance on PCU data set.

The next set of experiments will include results of the algorithms using the PCU

data set. The first algorithm ran into this data set is show in Figure 4.21.a.

Figure 4.21.a Regression Tree Gradient Descent on PCU data

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4

p
e

rc
e

n
ta

ge

Error (rmse)

Error distribution for KGERS

5.5

6

6.5

7

0 2000 4000 6000 8000 10000 12000

Er
ro

r
(r

m
se

)

Iterations in GD at leafs

Regression Tree with Gradient Descent: Iterations vs Error

Regression Tree
Mean

Regression Tree GD

73

The performance of the Regression Tree Gradient Descent on the PCU data is not

satisfactory. It seems that the tree is having trouble splitting and fitting gradient descent

at the leaves. This can be seen by the fact that the algorithm seems very unstable, varying

sometimes even more than the error of the Regression Tree Mean.

Figure 4.21.b Neural Network on PCU data

As typically seen, Neural Networks trained on back propagation tend to find their

way into local minima. This can be seen in Figure 4.21.b where the Neural Network

converges. Surprisingly the Regression Tree Mean seems to be doing a better job, with a

difference of 0.1 in error. So much better that the neural network can’t converge easily

below this value. A possible explanation for this is noisy data. Having an average could be

better in some sense, since its very similar to the idea of blurring an image. These

properties can also show that the error in the data tends to have a Normal distribution,

meaning that the Regression Tree Mean is capable of finding that measurement that can

be in between this error.

5.5

5.7

5.9

6.1

6.3

6.5

6.7

6.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Er
ro

r
(r

m
se

)

Iterations

Neural Network Iterations vs Error

Regression Tree Mean

Artificial Neural Network

74

Figure 4.21.c Regression Tree KGERS on PCU data

Figure 4.21.c shows the performance of KGERS on top of the PCU data. This

Regression Tree performs significantly better than the Regression Tree Gradient Descent.

Interestingly, this algorithm shows more stability than gradient descent. A possible reason

for this is the way splitting and stopping criterion is being used. Splitting is done through

KGERS and stopping criteria is done strictly through t test on shape. The RMSE discovered

by this algorithm shows a better settlement to that one of the previous two algorithms.

Figure 4.21.d Error vs CPU time analysis for algorithms under PCU data

Figure 4.21.d shows the average cpu power in clock ticks versus the error

discovered by the particular algorithm. A closer view can be appreciated in Figure 4.21.e.

5.5

5.7

5.9

6.1

6.3

6.5

6.7

6.9

0 200 400 600 800 1000 1200 1400

Er
ro

r
(r

m
se

)

Iterations in GD at leafs

Regression Tree with kgers: Iterations vs Error

Regression Tree
Mean
Regression Tree
KGERS

6

6.5

7

7.5

8

8.5

9

9.5

10

0 500 1000 1500 2000 2500

Er
ro

r
(r

m
se

)

CPU Clock Ticks

Error vs CPU Time

Regression Tree Mean

Neural Network

Regression Tree Gradient
Descent

Regression Tree KGERS

75

This closer view reveals that the error on PCU coming from the Regression Tree KGERS is

low. Computational complexity is also the lowest amongst the other algorithms. However

the error is very close to that one of the Regression Tree Mean.

Figure 4.21.e Error vs CPU time analysis for algorithms under PCU data, ZOOM

Like previous results, Regression Tree Gradient Descent seems to be doing better

using less CPU power. The neural network takes too long and doesn’t converge to a really

small error.

Algorithm Best RMSE

Regression Tree KGERS 6.01

Regression Tree Mean 6.23

Regression Tree Gradient Descent 6.12

Artificial Neural Network 6.41

Table 4.8 Error comparison of Algorithms under PCU data

Table 4.8 shows a summary of the algorithms final performance on the PCU data.

Notice that the PCU data has an average of 36.6 admissions in a 4 hour period. PCU beds

are very common since they involve usually walk in patients. Therefore the demand of

these is higher. The Regression Tree KGERS performed better in terms of error, and was

able to retrieve the least error amongst the other algorithms. Figure 4.21.f shows the

error distribution that the Regression Tree KGERS generated.

6

6.2

6.4

6.6

6.8

7

7.2

7.4

0 50 100 150 200 250 300 350 400 450 500

Er
ro

r
(r

m
se

)

CPU Clock Ticks

Error vs CPU Time

Regression Tree Mean

Neural Network

Regression Tree Gradient
Descent

Regression Tree KGERS

76

Figure 4.21.f Error Distribution for KGERS on PCU data

The error distribution shows a high probability of the error to be on the 6.2 bucket from

the Regression Tree KGERS. This shows that this algorithm is very stable for this data set,

and tends to find a proper answer.

4.7.4. Performance on Floor data set.

The final data set to be analyzed is the floor admissions. The next set of

experiments will run the procedures on the Floor data set.

Figure 4.22.a Regression Tree Gradient Descent on Floor data

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3

p
e

rc
e

n
ta

ge

Error (rmse)

Error distribution for KGERS

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

0 2000 4000 6000 8000 10000 12000

Er
ro

r
(r

m
se

)

Iterations in GD at leafs

Regression Tree with Gradient Descent: Iterations vs Error

Regression Tree
Mean

Regression Tree GD

77

Figure 4.22.a shows the Regression Tree not converging into a specific RMSE

error. This shows an untied relationship between iterations and level of precision that the

tree possesses. Error is significantly lower than that one of Regression Mean.

Figure 4.22.b Neural Network on Floor data

Figure 4.22.b shows that the Neural Network converges perfectly into a low error.

The advantage of this is the stability shown by the algorithm, which is superior than that

of the previous regression tree.

Figure 4.22.c Regression Tree KGERS leaves on Floor data

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

0 2000 4000 6000 8000 10000

Er
ro

r
(r

m
se

)

Iterations

Neural Network Iterations vs Error

Regression Tree Mean

Artificial Neural Network

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

0 200 400 600 800 1000 1200 1400

Er
ro

r
(r

m
se

)

k

Regression Tree with kgers: Iterations vs Error

Regression Tree
Mean

Regression Tree
KGERS

78

Figure 4.22.c shows the behavior that the Regression Tree KGERS presents on the

FLOOR data. While not perfect the algorithm still presents a better level of stability than

that of Regression Tree Gradient Descent. This figure also shows that while increasing K,

the algorithm starts converging slowly.

Figure 4.22.d Error vs CPU time analysis for algorithms under Floor data

Finally Figure 4.22.d shows the relationship between the algorithms and CPU time

usage. As it can be appreciated the Regression Tree KGERS has the least cpu power and a

low error. The neural network however seems to perform better. The Regression Tree

Mean leaf nodes doesn’t perform very well, and is unable to give a low error. However,

when zooming in into figure 4.22.e, it can be appreciated that the Regression Tree KGERS

is still the one capable of achieving the lowest error in the least amount of time, even if

this error difference is not significant.

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

0 500 1000 1500 2000 2500

Er
ro

r
(r

m
se

)

CPU Clock Ticks

Error vs CPU Time

Regression Tree Mean

Neural Network

Regression Tree Gradient
Descent

Regression Tree KGERS

79

Figure 4.22.e Error vs CPU time analysis for algorithms under Floor data, ZOOM

Algorithm Best RMSE

Regression Tree KGERS 10.08

Regression Tree Mean 11.37

Regression Tree Gradient Descent 10.14

Artificial Neural Network 10.08

Table 4.9 Error comparison of Algorithms under Floor data

From these algorithms, Regression Tree KGERS for leaf nodes and the Neural

Network were able to get a minimum error. KGERS presents an unstable pattern and

lower CPU consumption, in contrast to the other algorithms, but is still able to get into a

low error. The Regression Tree Gradient Descent for the leaf nodes seems to do better

than Regression Tree mean at the leaf nodes. The way noise is distributed in this data set

shows the different behaviors of these algorithms. Another key factor for this is the mean

and variance of the data, both are high thus providing more instability to the Regression

Trees.

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

0 50 100 150 200 250 300 350 400 450 500

Er
ro

r
(r

m
se

)

CPU Clock Ticks

Error vs CPU Time

Regression Tree Mean

Neural Network

Regression Tree Gradient
Descent

Regression Tree KGERS

80

Figure 4.22.f Error Distribution for KGERS on Floor data

Figure 4.22.f shows the error distribution for the Regression Tree KGERS on the

Floor data. It shows that this algorithm has high degree of instability due to the

distribution portrayed here. While the algorithm is able to fall into the lowest possible

error (which is an RMSE of 10.1) it has higher possibilities to fall under the 10.2 through

10.4 bins. This shows that the data might contain a lot of noise, therefore making it hard

for the Decision Tree to achieve a low error.

4.8. Contributions to hospital

Previous algorithms show the result of the actual prediction executed in real

hospital admissions data from Holmes Regional Medical Center in Melbourne Florida.

During the following weeks of presenting these results to the hospital, staff and directors

were pleased with the results and proposed to use the models in weekly bases. So far

three weeks have been forecasted and they have been using the data successfully. As a

start, only the EDInpt admission data has been processed for real application and staffing

purposes. A summary of the results can be seen in Table 4.10.

0

0.05

0.1

0.15

0.2

0.25

10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11 11.1 11.2 11.3 11.4

p
e

rc
e

n
ta

ge

Error (rmse)

Error distribution for KGERS

81

Week time RMSE Mean Absolute
Error

90% confidence
interval

% error

Feb 25th – Mar 3rd 3.6 2.8 -6.2 to 5.2 26%

Mar 4th – Mar 10th 3.3 2.7 -6.2 to 5.2 24%

Mar 11th – Mar 17th 3.6 2.9 -6.0 to 5.2 26%

Mart 18th – Mar 24th 3.8 3.2 -6.0 to 5.2 28%

Mar 25th – Mar 31st 3.1 2.5 -6.0 to 5.2 23%

Apr 1st – Apr 7th 4.0 3.4 -6.0 to 5.2 30%

Apr 8th – Apr 14th 3.0 2.4 -6.0 to 5.2 19%
Table 4.10 Hospital runs using models with EDInpt data

This summary of results shows that for now errors tend to be high. Nevertheless,

the hospital is mostly interested in the confidence interval calculated for such runs.

Before this the hospital used to run simple regression techniques involving only looking at

the exact value of that admission bucket one year ago. This provided noisy results with

higher error than those of the models shown here. Holmes Regional Medical Center has

future plans with these models and potentially put them in operation.

4.9. Summary

As seen before, previous algorithms show a general good performance in the

hospital data. Noisy data such as ICU present a difficulty for randomized algorithms such

as KGERS. Nevertheless, the Regression Tree KGERS at the leaf nodes showed more

accuracy, especially in PCU and EDInpt data. The Regression Tree KGERS also is able to get

the least RMSE in the FLOOR and ICU data. The only problem with these is the instability

of the algorithm, showing a lot of spikes. For these previous ones, the Neural Network

would be a better fit, since it’s more stable and able to perform as close. The hospital is

more interested in the absolute error and the confidence intervals. To their terms, these

are very satisfactory and could meet the necessary qualities to make the models

operational, and help with the staffing problem.

82

Chapter 5
Empirical Evaluation with Synthetic Datasets

This chapter will cover the experimental procedures that evaluate and compare

both, linear and non linear regression algorithms on the synthetic data set. As seen

before, each algorithm presents advantages and disadvantages. In other words, there

can’t be an algorithm that follows the “one size fits them all” rule. To discover the

advantages and disadvantages of the algorithms used, it will be required to evaluate

carefully and assess each one of them with a respective data set. The synthetic data set

was prefabricated to test certain aspects of these machine learning algorithms such as

accuracy under noise and over fitting. While these aspects might not be present in the

hospital data set, they serve as a guide to see how the algorithms would behave against

other types of noise. This data set will be referred as synthetic data set. As mentioned

before, the objective of this chapter is to evaluate the potential contributions that the

newly devised algorithms have on time complexity, accuracy of prediction and over fitting

in other algorithms that show different characteristics from the hospital data set. The

following experiments will show the robustness of the new algorithms with respect to a

data set that degrades in quality.

5.1. Data Sets Overview

There are 6 data sets used to evaluate the performance of the algorithms. These

data sets can be divided in two groups. These six synthetic data sets contain two separate

groups. Because the experiments are divided into two sub sections (nonlinear and linear

regression), there exists to flavors of this synthetic data set group. One is on top of a multi

dimensional linear function; the second one is in a non linear function. Later on, the

purpose and application of this data set will be explained.

It must be noted, that there will be a training set and validation set for each data

set.

 Training Set: The set of vectors used as training data. The model will be generated

from these set of points.

 Test Set: The set of vectors used as evaluation criteria. The test set is never seen by

the algorithm and doesn’t take any part from the model. The model’s task is to use

the test set as verification on its accuracy and fitness.

83

The two previous points are standard protocols of machine learning that are

necessary for evaluation and the scientific process. As argued in earlier chapters, when

evaluating algorithms, it is always important to test several aspects that might jeopardize

the performance of a machine learning algorithms. Such criteria are things such as over

fitting and accuracy under noise. We will see later in the experimental section that there

is the evaluation of two types of algorithms: linear and non linear regression algorithms.

Although different, the Synthetic data sets contain the same variations. The variation list

is summarized in Table 5.1, in conjunction of a brief explanation of the purpose.

Synthetic data
set variation

Description Motivation

No error Data contains no error in training set and
test set. Derived strictly from a custom
function.

None, used for control.

Low Error Data strictly derived from a custom
function, with 1% of noise. Noise follows a
normal distribution.

Accuracy under noise

Medium Error Data strictly derived from a custom
function, with 13% of noise. Noise follows a
normal distribution.

Accuracy under noise

High Error Data strictly derived from a custom
function, with 30% of noise. Noise follows a
normal distribution.

Accuracy under noise

High Error on
train, no error
on test

Data strictly derived from a custom
function, with 30% of noise. Noise follows a
normal distribution. Noise only in training
set, not in test set.

Accuracy under noise and
over fitting

One irrelevant
feature

One of the features is completely irrelevant
to the target value.

Accuracy under noise and
over fitting

1/3 of
irrelevant
features

One third of the features are completely
irrelevant to the target value.

Accuracy under noise and
over fitting

Table 5.1 Variations of SYNTHETIC data sets.

The variation of Synthetic data sets helps comparing the two main weaknesses

present in most of machine learning algorithms. It helps not only to show their strength

and precision, but also under what circumstances are they more feasible to use. This is a

good contribution and could certainly be applied to other fields and applications.

The synthetic data set for the linear features consists of a simple hyper plane of

16 dimensions. It can be summarized in equation (1).

84

 


0

14

1

wxwy
i

ii
 (1)

The weights chosen are described in Table 5.2. Here the algorithms task is to

figure out the weights of the hyperplane. Later on we will see the accuracy of these

algorithms and explanations of why some of them take longer to converge. The contents

of the non linear Synthetic data set is a simple sine function, it is meant to provide a

simple base, in which all non linear regression algorithms can converge and represent.

With a base like this, it will be easier to see the reactions and potential disadvantages

derived from noise and over fitting.

Weight Value

W0 8

W1 .25

W2 23

W3 -7

W4 0.25

W5 6

W6 10

W7 40

W8 30

W9 2

W10 7

W11 89

W12 10

W13 2

W14 8
Table 5.2 List of weights used by linear function.

The exact function used for non linear regression is described in equation (2).

  )sin(10 xy (2)

The respective weights for equation (2) are described in Table 5.3.

Weight Value

α0 2.0

α1 7.0
Table 5.3 List of weights used by non linear function.

85

Notice that these two functions have a ε symbol at the end, that is, equations (1)

and (2). It happens that this is going to be the noise added during feature alteration

described in Table 5.1. This noise will have a normal distribution, and depending on the

intensity the mean and variance parameters are adjusted. A normal distribution is defined

in equation (3).

2

2

2

)(

22

1
)(










x

exf (3)

This is a well known probability of density function, where x is the desired noise,

and the output is the probability that it would occur. The two parameters are σ2 which

represents the variance of the noise distribution and μ the mean. As mentioned before,

noise percentage contains three levels. These are displayed in Table 5.1, and these levels

will be the desired mean used for that particular level of noise. The variance remains

constant, is represented by a 20% of the error mean. This helps in exploring a broad range

of the total noise spectrum.

5.2. Experiment procedures

There exist two sets of the experiments. The first set will evaluate the

performance on linear functions. The second set will focus on the non linear algorithms.

The reason why there are two groups of experiments is because there is a level of

granularity for piece wise linear regression. The ultimate goal is to propose a regression

tree that performs piece wise linear regression in the most optimal way, targeted towards

hospital data. In order to have this, linear regression must be explored at its lower level.

The algorithms proposed for the leaf nodes of the regression tree must be compared to

those already existent. This is done to demonstrate that the advantages behind the

motivations for KGERS are empirically valid. For the second group of experiments, the

proposed regression tree will now be tested using the newly devised linear regression

algorithms. This comparison is done against other methods of regression. The algorithms

chosen for the linear regression experiments are described in Table 5.4.

86

Algorithm Description

KGERS Algorithm proposed. Aims to provide same and closer results
to those of Least Squares. Empirical evidence will have to proof
that its time complexity is lower, and that it can sometimes
achieve global optimal.

Gradient Descent Most common linear regression method. This algorithm will be
compared to KGERS and empirical evidence should contrast
advantages and disadvantages.

Least Squares Algorithm that returns global optimal. The problem with this
algorithm is that it might not be decidable, as in one of the
matrixes might not be invertible, therefore unable to find a
solution. It is used as a benchmark on accuracy on the
regression.

Table 5.4 algorithms for linear regression experiments

The second experimental part contains the same procedures mentioned in

chapter 4, section 4.2. This will be on the non linear regression algorithms on the second

set. The algorithms used are summarized in table 4.3 of chapter 4.

5.3. Linear Regression Experiment results

Each run of KGERS is the average of 5 runs itself. Same process applies to the CPU

usage of KGERS. Since KGERS is considered a randomized algorithm, an average is always

required to know the correct inclinations under different parameters. Given this

overview, the subsections here are going to deal with the experimental results directly.

5.3.1. Computation time

Figure 5.1 shows the comparison of the three algorithms in terms of N. Notice

that the scale of the Y axis is logarithmic. The X axis is the size of the training of the

Synthetic data with no error associated with it. The Y axis represents the total CPU time

spent by each algorithm. The CPU time is measured in clock cycles, meaning that each

cycle is a burst of instructions being executed. All the experiments in this study were run

on the same machine, a dual core Pentium. The machine was not running any extra CPU

intensive software and was hardened to the most. It is important to know that still the

operating system has other tasks in between that could be the source of the spikes. In

general, the tendency is likely remain constant and this kind of noise can be ignored. As

expected, by the theoretical complexity analysis done in previous sections, Gradient

descent grows linear, while KGERS and Least Squares remain constant. Equation (5)

reviews Gradient Descent’s time complexity.

)(2MNO (5)

87

We have to remember that while equation (5) shows a quadratic growth of N, in

the experiments the iterations parameter remains constant. This means that the

complexity of Gradient Descent in the experimental data is O(N) instead of O(N2). Figure

5.1.a shows this behavior. Dimensionality also remains constant so that’s why the

mentioned complexity remains the same.

Figure 5.1.a Linear regression algorithm speed analysis

A closer look in Figure 5.1.b. reveals the gradual increase of KGERS and Least

squares. It has to be noted that the reason why KGERS shows an increase in clock ticks is

because the algorithm still needs to parse and process the data. The more data, the more

time this overhead takes. This overhead is already included in the other algorithms.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1000 6000 11000 16000 21000 26000 31000 36000 41000 46000

C
p

u
 C

lo
ck

 T
ic

ks

n

Empirical Time Complexity (Synthetic data set)

kgers

Least Squares

Gradient
Descent

88

Figure 5.1.b Linear regression algorithm speed analysis zoom

As expected, the time complexity for Gradient Descent grows much faster than

that of KGERS and Linear Least Squares. Interestingly, Linear Least Squares also shows

trends of linear increase with respect of the size of N. The only difference is that this

growth is much smaller. Also, Linear Least Squares contains a matrix multiplication

operation, which causes a very subtle increase with respect to N. After 11000 examples

used Least Squares CPU clock tick usage passes that one of KGERS. KGERS remains almost

at a constant speed, reason being that KGERS is independent of N. If KGERS wants to aim

for accuracy, it will have to fix the K parameter depending on how linear the data tends to

be.

5.3.2. Performance on noisy data

As mentioned before, this experiment will try to explain the performance of

algorithms and behavior based on varying noise. There are three levels of noise that have

been recorded. Before comparing the levels of noise though, a control experiment is

needed.

5.3.2.1. No Noise

Figures 5.2.1.a, 5.2.1.b and 5.2.1.c. show that the algorithms can ultimately

converge and perfectly perform regression on a line data. KGERS doesn’t show any sign of

error, gradient descent converges very fast and linear least squares can achieve an error

of 0.

0

50

100

150

200

250

300

1000 6000 11000 16000 21000 26000 31000 36000 41000 46000

C
p

u
 C

lo
ck

 T
ic

ks

n

Empirical Time Complexity (Synthetic data set)

kgers

Least Squares

Gradient
Descent

89

Figure 5.2.1.a Kgers on Synthetic data, no noise.

As seen in Figure 5.2.1.a, KGERS can easily achieve a perfect regression if there is

no noise. This is because KGERS extracts chunks of the data and tries to fit a line. If the

data contains no error, this means that any m+1 points (where m is the dimensionality)

will generate a perfect hyperplane.

Figure 5.2.1.b Gradient Descent on Synthetic data, no noise.

Gradient Descent requires some CPU power to converge. Because it keeps

updating weights step by step, the error will be directly dictated by how many iterations

the algorithm experiences. The more iterations, the closer it gets to the answer. Notice

how it converges since the scale in the Y axis is logarithmic. After several iterations the

1.00E-13

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

0 200 400 600 800 1000 1200 1400

Er
ro

r
(r

m
se

)

K

kgers - k vs error

Linear Least
Squares

kgers

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0 200 400 600 800 1000 1200 1400

Er
ro

r(
rm

se
)

Iterations

Gradient Descent - iterations vs error

Gradient
Descent

Linear Least
Squares

90

error stays the same. Interestingly, the algorithm gets really close to the answer but not

quite, unlike KGERS and linear least squares, which immediately get to the answer.

Figure 5.2.1.c Algorithm comparison on synthetic data without noise.

Notice how KGERS and Linear Least Squares perform much better with the data.

They show straight convergence and a good answer.

5.3.2.2. Low Noise

Figures 5.2.2.a, 5.2.2.b and 5.2.2.c show the performance of the algorithms with

low noise.

Figure 5.2.2.a Kgers on Synthetic data, low noise.

Figure 5.2.2.a show that KGERS gains some inaccuracy with a little noise, although

this quantity is very small, we are talking about exponent to the -12. This is surely a tiny

number, and can be thought as if KGERS actually converges to 0 in error.

1.00E-13

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

0 50 100 150 200 250 300 350 400 450

Er
ro

r
(r

m
se

)

Cpu Clock cycles

Algorithms error vs cpu time

kgers

gradient descent

Linear Least Squares

1E-13

1E-11

1E-09

0.0000001

0.00001

0.001

0.1

10

1000

0 200 400 600 800 1000 1200 1400

Er
ro

r
(r

m
se

)

K

kgers - k vs error

kgers

Linear Least Squares

91

Figure 5.2.2.b Gradient Descent on Synthetic data, low noise.

Gradient descent converges into not the global optimal, which is dictated by

Linear Least squares in Figure 5.2.2.b. Although the noise and error it gets is very small, is

considerably bigger than that of KGERS.

Figure 5.2.2.c Algorithm comparison on synthetic data, low noise

The CPU Time analysis in Figure 5.2.2.c shows that KGERS is slightly slower than

Linear Least Squares, although not significantly. It does show that with little noise, KGERS

is capable of finding a better answer than that of Gradient Descent.

1E-13

1E-11

1E-09

0.0000001

0.00001

0.001

0.1

10

1000

0 200 400 600 800 1000 1200 1400

Er
ro

r(
rm

se
)

Iterations

Gradient Descent - iterations vs error

Gradient Descent

Linear Least
Squares

1E-13

1E-11

1E-09

0.0000001

0.00001

0.001

0.1

10

1000

0 100 200 300 400 500

Er
ro

r
(r

m
se

)

Cpu Clock cycles

Algorithms error vs cpu time

kgers

gradient descent

Linear Least Squares

92

5.3.2.3. Medium Noise

Figure 5.2.3.a KGERS on Synthetic data, medium noise.

Figure 5.2.3.a shows a very similar pattern for KGERS. With medium level noise it

is capable to converge into small values. This shows that small amounts of noise do not

affect KGERS in a big manner. The slight upward convergence of KGERS shown in this

graph displays that KGERS’s inaccuracy is growing linearly with the value of parameter K.

This means that in some way, with small noise, KGERS could over fit. This however can be

discarded since the RMSE reported by KGERS is very small, close to 0.

Figure 5.2.3.b Gradient Descent on Synthetic data, medium noise.

Gradient Descent shows a very similar convergence to a local minimum than that

of low noise data. Figure 5.2.3.b shows this, and it seems that Gradient Descent cannot

find a lower error than that found by KGERS.

1E-13

1E-11

1E-09

0.0000001

0.00001

0.001

0.1

10

1000

0 200 400 600 800 1000 1200 1400
Er

ro
r

(r
m

se
)

K

kgers - k vs error

kgers

Linear Least Squares

1E-13

1E-11

1E-09

1E-07

1E-05

0.001

0.1

10

1000

0 500 1000 1500

Er
ro

r(
rm

se
)

Iterations

Gradient Descent - iterations vs error

Gradient Descent

Linear Least Squares

93

Figure 5.2.3.c Algorithm comparison on synthetic data, medium noise

The CPU analysis displayed in Figure 5.2.3.c shows that KGERS is still close to the

global optimal found by Linear Least Squares. Gradient Descent seems much slower and

converges into a larger error for medium noise. These results are very similar to those

mentioned in Figure 5.2.2.c, which is CPU speed analysis of low noise data.

5.3.2.4. High Noise

Figure 5.2.4.a KGERS on Synthetic data, high noise.

High noise data imposes a new error threshold, much larger than those displayed

in the Figures 5.2.2.x. Figure 5.2.4.a shows that KGERS is able to stick up with the global

minimum imposed by Linear Least Squares, even in large amounts of errors.

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

10

100

1000

0 50 100 150 200 250 300 350 400 450

Er
ro

r
(r

m
se

)

Cpu Clock cycles

Algorithms error vs cpu time

kgers

gradient descent

Linear Least Squares

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

0 200 400 600 800 1000 1200 1400

Er
ro

r
(r

m
se

)

K

kgers - k vs error

kgers

Linear Least Squares

94

Figure 5.2.4.b Gradient Descent on Synthetic data, high noise.

Figure 5.2.4.b shows that Gradient Descent is converging to a much larger error,

this error which rounds around 18%. As seen here, Gradient Descent is again very far from

the global optimal error imposed by Linear Least Squares.

Figure 5.2.4.c Algorithm comparison on synthetic data, high noise

High noise error on the synthetic data shows that KGERS is very well accurate, by

preserving at rmse almost constant at 1e-12. Figure 5.2.4.c. shows that KGERS is able to

resist this noise, and completely perform as well as Linear Least Squares. On top of this,

unlike Linear Least Squares, KGERS is guaranteed to return an answer (as long as there are

enough points).

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0 500 1000 1500

Er
ro

r(
rm

se
)

Iterations

Gradient Descent - iterations vs error

Gradient Descent

Linear Least
Squares

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

0 20 40 60 80 100 120 140 160 180

Er
ro

r
(r

m
se

)

Cpu Clock cycles

Algorithms error vs cpu time

kgers

gradient descent

Linear Least
Squares

95

5.3.3. Performance on Over fitting

Previous experiments show how KGERS is able to successfully resist noise and

maintain itself at a good RMSE rate. Even with high noise, we saw how Gradient Descent

scales up in its RMSE, while KGERS remains constant and true to the global optimal. The

next set of experiments performed is meant to test over fitting and performance analysis

using the linear synthetic data.

5.3.3.1. Noise Only on Test Set

Figure 5.3.1.a KGERS on synthetic data, Noise only on Test Set

Figure 5.3.1.a shows KGERS converging to an RMSE of 12e-7, and not over fitting.

The noise level in the training sets is very high, around 30%. This displays that KGERS can

even perform better than Linear Least Squares, almost half of the time.

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 200 400 600 800 1000 1200 1400

Er
ro

r
(r

m
se

)

K

kgers - k vs error

kgers

Linear Least Squares

96

Figure 5.3.1.b Gradient Descent on synthetic data, Noise only on Test Set

Figure 5.3.1.b shows that gradient descent converges (notice that the scale in the

Y axis is logarithmic). This means that gradient descent has found a local minima to fall

into, and will not reach the global optimal proposed by Linear Least Squares.

Figure 5.3.1.c Algorithm comparison on synthetic data, high noise only on training data

An overview of the CPU performance of these algorithms on top of the noisy

training data is shown in Figure 5.3.1.c. It can be appreciated that KGERS can sometimes

surpass the error discovered by Linear Least squares.

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

0 200 400 600 800 1000 1200 1400

Er
ro

r(
rm

se
)

Iterations

Gradient Descent - iterations vs error

Gradient Descent

Linear Least Squares

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

0 50 100 150 200

Er
ro

r
(r

m
se

)

Cpu Clock cycles

Algorithms error vs cpu time

kgers

gradient descent

Linear Least Squares

97

5.3.3.2. One Irrelevant Feature

Figure 5.3.2.a KGERS on synthetic data, one irrelevant feature

Figure 5.3.2.a shows the behavior of KGERS under synthetic data with one

irrelevant feature. In the case of this linear regression, one of the weights is unused. The

algorithm should be able to set this weight to 0 in the hyperplane, since it is irrelevant.

KGERS shows a quick convergence to the global optimal.

Figure 5.3.2.b Gradient Descent on synthetic data, one irrelevant feature

Again, in Figure 5.3.2.b, gradient descent shows similar patterns. These display

the algorithm converging to a high error, being very sensible with only 1 irrelevant

attribute.

1E-05

0.0001

0.001

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400
Er

ro
r

(r
m

se
)

K

kgers - k vs error

kgers

Linear Least Squares

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400

Er
ro

r(
rm

se
)

Iterations

Gradient Descent - iterations vs error

Gradient Descent

Linear Least Squares

98

Figure 5.3.2.c Algorithm comparison on synthetic data, one irrelevant feature.

Finally the CPU performance for this data set reveals that KGERS can match and

stay at the same level of Linear Least Squares. Reasoning behind this is the random nature

of KGERS, which allows for the algorithm to punish those sets with high error with respect

to the rest of the data.

5.3.3.3. 1/3 Irrelevant Features

Figure 5.3.3.a KGERS on synthetic data, 1/3 irrelevant features

Figure 5.3.3.a shows that KGERS resists to the extra noise against one third of the

weights being irrelevant. Also it shows that KGERS manages to do even better than Linear

Least Squares in a couple of points. This means that KGERS is not as greedy as other

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0 50 100 150 200 250
Er

ro
r

(r
m

se
)

Cpu Clock cycles

Algorithms error vs cpu time

kgers

gradient descent

Linear Least
Squares

1E-05

0.0001

0.001

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400

Er
ro

r
(r

m
se

)

K

kgers - k vs error

kgers

Linear Least Squares

99

algorithms, and can actually explore areas of the solution space that any other non-

randomized algorithm wouldn’t.

Figure 5.3.3.b Gradient Descent on synthetic data, 1/3 irrelevant features

Gradient Descent is showing worst results as noise and more irrelevant features

are added to the synthetic data pool. Figure 5.3.3.b. shows this. Although smooth

convergent, the curve that Gradient Descent displays is incapable of hitting a very low

error, unlike Linear Least Squares.

Figure 5.3.3.c Algorithm comparison on synthetic data, 1/3 irrelevant features.

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400

Er
ro

r(
rm

se
)

Iterations

Gradient Descent - iterations vs error

Gradient Descent

Linear Least Squares

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0 50 100 150 200 250 300 350 400

Er
ro

r
(r

m
se

)

Cpu Clock cycles

Algorithms error vs cpu time

kgers

gradient descent

Linear Least Squares

100

The final analysis of CPU time and error for each algorithm, shown in Figure

5.3.3.c, demonstrates that the initial speculated motivations behind KGERS design are

correct. KGERS is able to converge, and in similar CPU time like Linear Least Squares.

KGERS certainly offers some contributions based on speed, accuracy and resistivity to

noise and over fitting. All these features mentioned are essential for the correct

construction of a Regression Tree. One disadvantage of KGERS is its instability. As we see

in Figure 5.2.2.a, KGERS shows an increase in instability when noise is present. This all

depends on the size of K; the bigger K is the more likely the algorithm can find its way to a

global optimal. This of course, comes of the price of CPU power.

5.4. Non-linear Regression – Experiment results

This research has come a long way to arrive to this point. In this section the new

devised Regression Tree will be compared against other off the shelf algorithms that

perform regression. These algorithms are described in Table 4.3 of the previous chapter.

This section includes a similar structure to that one of linear regression experimental

results; and the objective is the same. We want these algorithms compared, and being

able to show the main advantages and disadvantages that they offer.

5.4.1. Computational Time

Time complexity analysis shows a constant time for a regression tree using

KGERS. As we can see, in Figure 5.4.a, time increases as the size of the input set increases.

This is expected, since KGERS at the leaf nodes doesn’t utilize the entire example set to

learn the proper hyperplane. Interestingly, gradient descent and the Forward Feed Neural

network portray a similar rate of growth. It can be observed from this figure that the

Neural Network is multiple magnitudes beyond CPU clock ticks than than the other

algorithms. Figure 5.4.b shows a closer version for Regression Tree KGERS, Regression

Tree Gradient Descent and Regression Tree Mean. Amongst these, Regression Tree Mean

shows the least growth, however Regression Tree KGERS shows almost a constant time in

CPU clock ticks. This is again due to the fact that KGERS doesn’t use the entire input space

to resolve a solution and produce regression. The opposite can be said with Regression

Tree Gradient Descent, which shows a more rapid growth.

101

Figure 5.4.a non linear regression algorithms speed analysis

Figure 5.4.b non linear regression algorithms speed analysis zoom.

As seen in this figure other algorithms increase linearly with respect to the size of

the input. KGERS will not continue growing as the input size grows since its time

complexity is independent of N. The real data in later experiments presents a larger set,

meaning that the growth line of these algorithms will keep increasing linearly with respect

to the input size. The spikes are caused due to irregularities in the CPU tasks. Memory

allocation and compiler optimizations all take part into this noise. Finally we see that the

Regression Tree with mean at leaf nodes performs very fast, and doesn’t seem to increase

0

20000

40000

60000

80000

100000

120000

1000 6000 11000 16000 21000 26000 31000 36000 41000 46000

C
p

u
 C

lo
ck

 T
ic

ks

n

Empirical Time Complexity (Synthetic data set)

regression tree
KGERS
regression tree GD

regression tree
mean
neural network

0

500

1000

1500

2000

2500

3000

1000 6000 11000 16000 21000 26000 31000 36000 41000 46000

C
p

u
 C

lo
ck

 T
ic

ks

n

Empirical Time Complexity (Synthetic data set)

regression tree
KGERS
regression tree GD

regression tree
mean
neural network

102

as much as the others, however it has to be remembered that KGERS split is simple and

requires a lot of tree levels in order to fit a non linear function correctly.

5.4.2. Performance on noisy data

The following set of experiments will give us an idea of the performance that the

proposed KGERS Regression Tree has over other algorithms. It should also be able to

expose possible flaws that such algorithm possesses.

5.4.2.1. No Noise

Figures 5.5.1.a, 5.5.1.b, 5.5.1.c and 5.5.1.d show the performance of these

algorithms on a data set with no noise.

Figure 5.5.1.a RT Gradient Descent Analysis on Synthetic data with no noise

Figure 5.5.1.a shows that the gradient descent algorithm in the regression tree

converges close to zero. The convergence is reached fast and is limited by the size of the

tree. Keep in mind that the function is a sine wave, thus piece wise linear regression will

still have some traces of error.

0

0.5

1

1.5

2

2.5

3

0 2000 4000 6000 8000 10000 12000

Er
ro

r
(r

m
se

)

Iterations in GD at leafs

Regression Tree with Gradient Descent: Iterations vs Error

Regression Tree
Mean

Regression Tree
GD

103

Figure 5.5.1.b Neural Network Analysis on Synthetic data with no noise

Figure5. 5.1.b shows the results of neural network acting on Synthetic data (a

simple sine wave) with no error. As it can be appreciated, the neural network tends to

converge, but gets stuck into a seamless cycle of noise. A reason for this is that the

learning rate is constant. Certain problems require an adjustable learning rate which will

achieve better convergence.

Figure 5.5.1.c RT KGERS on Synthetic data with no noise

Regression tree with KGERS is shown in Figure 5.5.1.c. Because the splitting

criteria discovered already the best places to do linear regression, KGERS doesn’t need a

significant number of iterations (parameter K) to find a line. Remember that if an example

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000 8000

Er
ro

r
(r

m
se

)

Iterations

Neural Network Iterations vs Error
Regression Tree Mean

Artificial Neural Network

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200 1400

Er
ro

r
(r

m
se

)

k

Regression Tree with kgers: Iterations vs Error

Regression Tree
Mean

Regression Tree
KGERS

104

set of points fits perfectly in a line, KGERS would only need m+1 (where m is the

dimensionality) in order to find a line that fits perfectly with respect to all the points.

Figure 5.5.1.d CPU Analysis on Synthetic data with no noise

Figure 5.5.1.d presents the basis for this error study. As we can see, KGERS and

the Gradient Descent Regression tree achieve the lowest levels of errors with least CPU

time consumption. On the other hand, the neural network requires some extra time to

get closer to the convergent answer. As expected the Regression Tree using the mean

didn’t do a good job, this is because of the inflexibility at its leaf nodes. The next set of

experiments take place with low error data. These will be shown in Figures 5.5.2.a,

5.5.2.b, 5.5.2.c and a complete comparison in Figure 5.5.2.d.

0

0.5

1

1.5

2

2.5

3

0 500 1000 1500 2000 2500

Er
ro

r
(r

m
se

)

CPU Clock Ticks

Error vs CPU Time

Regression Tree Mean

Neural Network

Regression Tree KGERS

Regression Tree Gradient
Descent

105

5.4.2.2. Low Noise

Figure 5.5.2.a RT Gradient Descent Analysis on Synthetic data with low noise

Figure 5.5.2.a shows the error convergence of a Regression Tree using Gradient

Descent in the leaf nodes. The error achieved here is still not significantly high, and very

similar to that of the data set without errors.

Figure 5.5.2.b Neural Network Analysis on Synthetic data with low noise

As seen in Figure 5.5.2.b and 5.5.1.b the neural network converges to a medium

error. The problem cause for this is a bigger need of intermediate neurons to completely

be able to plot the target function. In Any case, it seems that it is affected by low noise

quantities.

0

0.5

1

1.5

2

2.5

3

0 2000 4000 6000 8000 10000 12000

Er
ro

r
(r

m
se

)

Iterations in GD at leafs

Regression Tree with Gradient Descent: Iterations vs Error

Regression Tree
Mean

Regression Tree
GD

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000 8000

Er
ro

r
(r

m
se

)

Iterations

Neural Network Iterations vs Error

Regression Tree Mean

Artificial Neural Network

106

Figure 5.5.2.c RT KGERS on Synthetic data with low noise

The KGERS Regression Tree shown in Figure 5.5.2.c shows that KGERS seems

unaffected to noise, and keeps a high accuracy on the data. As mentioned before, the

splitting criteria does a good job in finding the correct splitting points to find a line,

making KGERS use less iterations.

Figure 5.5.2.d CPU Analysis on Synthetic data with low noise

Finally, Figure 5.5.2.d shows that KGERS has the best performance amongst all

algorithms with respect to synthetic data with low errors.

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200 1400

Er
ro

r
(r

m
se

)

k

Regression Tree with kgers: Iterations vs Error

Regression Tree
Mean

Regression Tree
KGERS

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200

Er
ro

r
(r

m
se

)

CPU Clock Ticks

Error vs CPU Time

Regression Tree Mean

Neural Network

Regression Tree Gradient
Descent

Regression Tree KGERS

107

5.4.2.3. Medium Noise

Figure 5.5.3.a RT Gradient Descent Analysis on Synthetic data with medium noise

Figure 5.5.3.a shows now the experiment with medium error. Again, Gradient

Descent is able to converge properly after several iterations. The gain again in inaccuracy

is insignificant to that compared with synthetic data with low error.

Figure 5.5.3.b Neural Network Analysis on Synthetic data with medium error

Figure 5.5.3.b shows that the neural network does suffer from an increase in

error, surprisingly more than a regression tree with medium error.

0

0.5

1

1.5

2

2.5

3

0 2000 4000 6000 8000 10000 12000

Er
ro

r
(r

m
se

)

Iterations in GD at leafs

Regression Tree with Gradient Descent: Iterations vs Error

Regression Tree
Mean

Regression Tree GD

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000 8000

Er
ro

r
(r

m
se

)

Iterations

Neural Network Iterations vs Error

Regression Tree Mean

Artificial Neural Network

108

Figure 5.5.3.c RT KGERS on Synthetic data with medium error

Regression Tree with KGERS in Figure 5.5.3.c shows a KGERS keeping accuracy

having an average RMSE of 0.27. The splitting criteria does well enough that K doesn’t

vary much even after several iterations.

Figure 5.5.3.d CPU Analysis on Synthetic data with medium error

The final summary for medium error is found in Figure 5.5.3.d. It shows that again

KGERS emerges victorious amongst the other algorithms with respect to noise. A possible

nature is the randomized nature of KGERS, and that the splitting criteria does a very good

job identifying the most “linear” areas of the graph.

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200 1400

Er
ro

r
(r

m
se

)

k

Regression Tree with kgers: Iterations vs Error

Regression Tree
Mean

Regression Tree
KGERS

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700 800 900 1000

Er
ro

r
(r

m
se

)

CPU Clock Ticks

Error vs CPU Time

Regression Tree Mean

Neural Network

Regression Tree Gradient
Descent

Regression Tree KGERS

109

5.4.2.4. High Noise

Figure 5.5.4.a RT Gradient Descent Analysis on Synthetic data with high noise

Figure 5.5.4a shows a Regression Tree using Gradient Descent that doesn’t

perform better than a Regression Tree with mean leafs. Surprisingly, a lot of noise will

really alter the splitting criteria and not let the tree develop good lines.

Figure 5.5.4.b Neural Network Analysis on Synthetic data with high noise

The same can be said with the neural network in Figure 5.5.4.b. This analysis

shows that the Neural Network doesn’t converge in a low error value, even worse than

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 2000 4000 6000 8000 10000 12000

Er
ro

r
(r

m
se

)

Iterations in GD at leafs

Regression Tree with Gradient Descent: Iterations vs Error

Regression Tree
Mean

Regression Tree GD

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 1000 2000 3000 4000 5000 6000 7000 8000

Er
ro

r
(r

m
se

)

Iterations

Neural Network Iterations vs Error

Regression Tree Mean

Artificial Neural Network

110

the mean. Because the noise has a Normal distribution, it is intuitive that the mean

performs very well. The mean is probably one of the lowest values of that can generate

error for a particular sample that has a Normal distribution.

Figure 5.5.4.c RT KGERS on Synthetic data with high noise

Figure 5.5.4.c shows that KGERS maintains the lowest error amongst the other

algorithms with least computational time consumption. It performs almost 50% better

than the Regression Tree with mean. It has to be noticed that there is an increase of

instability that doesn’t seem to converge for KGERS compared to the previous data set.

Figure 5.5.4.d CPU Analysis on Synthetic data with high noise

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400

Er
ro

r
(r

m
se

)

k

Regression Tree with kgers: Iterations vs Error

Regression Tree
Mean

Regression Tree
KGERS

0

1

2

3

4

5

6

0 100 200 300 400 500 600 700 800 900 1000

Er
ro

r
(r

m
se

)

CPU Clock Ticks

Error vs CPU Time

Regression Tree Mean

Neural Network

Regression Tree Gradient
Descent

Regression Tree KGERS

111

5.4.3. Performance on Over fitting

The next set of experiments is meant to test over fitting for each algorithm.

Starting with Figure set 5.5.5 these show the reaction of the algorithms in error with

respect to synthetic data designed to over fit.

5.4.3.1. No Noise on Test Set

Figure 5.5.5.a RT Gradient Descent Analysis on Synthetic data with no noise on Test Set

Figure 5.5.5.a shows the Regression Tree with Gradient Descent performing with

greater error than that of a Regression Tree with mean error. A reason for this is the fact

that the noise has a Gaussian distribution which might bias this kind of mean regression

to perform better.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 2000 4000 6000 8000 10000 12000

Er
ro

r
(r

m
se

)

Iterations in GD at leafs

Regression Tree with Gradient Descent: Iterations vs Error

Regression Tree
Mean

Regression Tree GD

112

Figure 5.5.5.b Neural Network Analysis on Synthetic data with no noise on Test Set

The neural network in Figure 5.5.5.b shows a relatively high error with respect to

the Regression Tree with mean at leaf nodes. Using a test set with no error, and a training

set with high error, does some damage to greedy algorithms like back propagation.

Figure 5.5.5.c RT KGERS on Synthetic data with no noise on Test Set

Figure 5.5.5.c shows that the Regression Tree with KGERS turns a little more

unstable, with an increase in error. Still it is capable of reaching lower error rates than

those by the neural network and the Regression Tree with Gradient Descent.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 1000 2000 3000 4000 5000 6000 7000 8000

Er
ro

r
(r

m
se

)

Iterations

Neural Network Iterations vs Error

Regression Tree Mean

Artificial Neural Network

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400

Er
ro

r
(r

m
se

)

k

Regression Tree with kgers: Iterations vs Error

Regression Tree
Mean

Regression Tree
KGERS

113

Figure 5.5.5.d CPU Analysis on Synthetic data with no noise on Test Set

An overall view of these can be appreciated in Figure 5.5.5.d. In overall, the

Regression Tree with Mean leafs presents a faster and better approach for highly noisy

data. Of course, this should be verified with other type of error distribution, but again,

this direction might diverge from the initial objective, which is to find a good algorithm for

the hospital data.

5.4.3.2. One Irrelevant Feature

Figure 5.5.6.a RT Gradient Descent Analysis on Synthetic data with one extra irrelevant feature

0

1

2

3

4

5

6

0 100 200 300 400 500 600 700 800 900 1000

Er
ro

r
(r

m
se

)

CPU Clock Ticks

Error vs CPU Time

Regression Tree Mean

Neural Network

Regression Tree Gradient
Descent

Regression Tree KGERS

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6

0 2000 4000 6000 8000 10000 12000

Er
ro

r
(r

m
se

)

Iterations in GD at leafs

Regression Tree with Gradient Descent: Iterations vs Error

Regression Tree
Mean

Regression Tree GD

114

The next batch of experiments covers one extra irrelevant feature on the

synthetic data. Figure 5.5.6.a shows that the Regression Tree with Gradient Descent leafs

resists to this noise, and can converge to a lower error than that of a simple mean.

Figure 5.5.6.b Neural Network Analysis on Synthetic data with one extra irrelevant feature

Figure 5.5.6.b shows the Neural Network, still stuck in a high error range. As

mentioned before, back propagation tends to get stuck in the local minimum solution,

and sometimes is hard to find the global optimal.

Figure 5.5.6.c RT KGERS on Synthetic data with one extra irrelevant feature

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6

0 1000 2000 3000 4000 5000 6000 7000 8000

Er
ro

r
(r

m
se

)

Iterations

Neural Network Iterations vs Error

Regression Tree Mean

Artificial Neural Network

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400

Er
ro

r
(r

m
se

)

k

Regression Tree with kgers: Iterations vs Error

Regression Tree
Mean

Regression Tree
KGERS

115

Randomized algorithms such as the Regression tree with KGERS seem to be able

to have low error (2.1 at the best case) to this noise, compared to the Regression Tree

mean which does around 3.5 of RMSE. Some evidence of KGERS CPU advantage can be

appreciated in Figure 5.5.6.c.

Figure 5.5.6.d CPU Analysis on Synthetic data with one extra irrelevant feature

The summary of the extra irrelevant feature is shown in Figure 5.5.6.d. The CPU

cycles required to achieve a low error are higher than usual spanning up to 400 CPU clock

ticks, and KGERS shows signs of high instability.

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200

Er
ro

r
(r

m
se

)

CPU Clock Ticks

Error vs CPU Time

Neural Network

Regression Tree Gradient
Descent

Regression Tree KGERS

Regression Tree Mean

116

5.4.3.3. Two extra Irrelevant Features

Figure 5.5.7.a RT Gradient Descent Analysis on Synthetic data with two extra irrelevant features

The final batch of experiments involves using two irrelevant features. The first

algorithm, which is the Regression tree with Gradient Descent at the leafs shows a very

similar error curve.

Figure 5.5.7.b Neural network on Synthetic data with two extra irrelevant features

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 2000 4000 6000 8000 10000 12000

Er
ro

r
(r

m
se

)

Iterations in GD at leafs

Regression Tree with Gradient Descent: Iterations vs Error

Regression Tree
Mean

Regression Tree GD

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 1000 2000 3000 4000 5000 6000 7000 8000

Er
ro

r
(r

m
se

)

Iterations

Neural Network Iterations vs Error

Regression Tree Mean

Artificial Neural Network

117

Figure 5.5.7.b Neural Network has a very similar curve to that one of Figure

5.5.7.a. The neural network seems to converge into a high quantity of error.

Figure 5.5.7.c RT KGERS on Synthetic data with two extra irrelevant features

The Regression Tree with KGERS in Figure 5.5.7.c shows that this algorithm starts

to get very unstable. The more irrelevant attributes, the harder it is for these regression

tree algorithms to find a good tree. The result is a very large tree with too many

parameters. This can be thought as over fitting. Still regression is well done at the leaves,

and a lot of times this error is better than that one of the neural network.

Figure 5.5.7.d CPU Analysis on Synthetic data with two extra irrelevant features

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400

Er
ro

r
(r

m
se

)

k

Regression Tree with kgers: Iterations vs Error

Regression Tree
Mean

Regression Tree
KGERS

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Er
ro

r
(r

m
se

)

CPU Clock Ticks

Error vs CPU Time

Regression Tree Mean

Neural Network

Regression Tree Gradient
Descent

Regression Tree KGERS

118

Finally, Figure 5.5.7.d shows the summary of CPU power versus error for each

algorithm in this last batch of experiments. The pattern found here is that the more noise

is injected to the data set, the more likely to over fit. The Regression tree using KGERS

trades this over fitting with instability. This is a great advantage, since instability would

mean that there is something wrong with the training set. This could come from either

the features or noise itself. Algorithms like the Neural Network don’t present any signs of

trouble when doing this, and silently fit the noisy data.

As shown before, KGERS seems to be a better fit for a Regression Tree seeking for

linear approximation. We can see that during the presence of noise it can preserve

accuracy (degrading at most by 30% of MAE error) and can ultimately show signs of

instability instead of fitting on the error.

5.5. Summary

This chapter shows the behavior of the new linear regression algorithm KGERS

when facing regression with a data set with degrading noise. The algorithm becomes

more unstable, however it still has the possibility of converging to a correct global

optimal. Other algorithms such as Gradient Descent and Linear Least Squares tend to over

fit. Surprisingly Linear Least Squares does hold its position and shows resistivity into noise

although not always. The next section shows the behavior of the new devised regression

tree which uses KGERS splitting, T-Test Shape stopping criterion and KGERS regression.

This new algorithm is compared to standard off the shelf algorithms, such as gradient

descent Regression Tree and the Feed Forward Neural Network. Experiments show that

the KGERS Regression Tree does show some sign of robustness. Inconsistency is a

problem; the randomized algorithm becomes more unstable as there is more noise

instead of over fitting. It was shown that KGERS Regression Tree is significantly faster than

the Feed Forward Neural Network and the Gradient Descent Regression Tree. Most of

these advantages are due to its independence of the input size N.

119

Chapter 6
Conclusions

The empirical evidence in this study shows two kinds of contributions. The first

contribution is the nature of KGERS as linear regression and as a composition of

Regression Tree algorithms. KGERS shows lower error from other algorithms (around 3%

less), and faster regression (75% faster than Neural Networks on average) on the hospital

data. This lead to the trial usage of the models to estimate the admissions from the ED

data for 3 weeks. The second set of contributions deal with general algorithmic properties

of KGERS, which show more efficient regression when exposed to noisy data. One of the

main limitations is the estimation of the K parameter in KGERS, which was done manually

for this study. New improvements would include exploring systematic ways of estimating

K.

6.1. Contributions

The first of contributions talks about the medical informatics problem that

Melbourne Holmes Regional Medical Center is facing. The second set of contributions

deal with the algorithmic evaluation results, and the new devised techniques used for

piecewise linear regression.

6.1.1. Medical Informatics Contributions

The first contribution is the accuracy on the estimations of future admissions

from the EDInpt data. Currently, Holmes Regional Medical Center is using the models

proposed on this study to estimate admissions. While the error still goes around 16% (in

terms of MAE), the absolute error is lower and allowable within the hospital interests.

There is satisfaction on the staff side. As a result there has been 3 weeks of trial usage of

the models presented in this research to estimate admissions. Currently the research’s

direction might go into official operation on the hospital side.

The second contribution deals with the rest of admissions data. Estimation of the

other 3 hospital data sets (PCU, ICU, and Floor) does present low error (around 16% in

terms of MAE). Because of time constrains these results have not been presented to the

hospital, however they show similar levels of errors to those of the EDInpt data set. This

means that the forecasting with these data sets also present desirable results that might

help with the holding problem.

120

The final contribution is the fact that the Regression Tree using KGERS at the leaf

nodes presents higher accuracy than the other traditional algorithms. This confirms the

initial suspicion that the other algorithms are more likely to over fit and not perform as

well under noisy circumstances.

6.1.2. Algorithmic Contributions

The Regression Tree using KGERS for splitting and leaf nodes is the first

algorithmic contribution from this research. Experiments confirm that the time

complexity is independent from the input size, making it faster than the other traditional

algorithms.

The second algorithmic contribution is the fact that KGERS linear regression does

guarantee a solution, unlike Linear Least Squares. Linear Least Squares only gives a

solution when its input matrix is invertible, otherwise it will fail. KGERS can perform as

fast as this algorithm and guarantee a solution at the same time.

KGERS in the leaf nodes shows that is maintains low error (around 20%) when

exposed to high noise (33% of noise) for non linear regression. While the traditional

algorithms over fit, or sometimes don’t even converge, KGERS seems to keep the same

error and not completely diverge from low error quantities.

Linear regression using KGERS presents a time complexity of O(M2), where M is

the dimensionality of the problem. This shows that KGERS is independent from N,

providing a faster way of doing splitting and regression for Regression Tree models. Other

algorithms such as Neural Networks, need to analyze the entire input space.

KGERS is a good choice for piece wise linear regression since at the leaf nodes it is

almost guaranteed by design that the data presents a linear pattern. This means that if

the input space is split into very linear chunks, KGERS is a great choice since it doesn’t

need to look at the entire input space to generate a low error hyperplane. This can even

potentially be done with low values of K.

6.2. Limitations and Potential improvement

The disadvantages of KGERS can be observed from the experimental data in

chapter 5. The regression tree using KGERS presents problems when there is low error on

the data. The jump from no error to a small quantity of error is big (around a 14% of MAE

increase in noise). Although this is countered by the fact that this algorithms keeps the

rate of error from noise small compared to other algorithms like back propagation in the

neural network.

Since KGERS is a randomized search algorithm, it can present instability problems

when data is very noisy. This means that the likelihood of getting a low error decreases.

Future work in this area involves exploring techniques and heuristics that might decrease

121

this erratic probability when the noise is high. Estimating the correct value for K (number

of sub sets that KGERS does) is done manually. New statistical ways can be explored to

automate this, and let the algorithm pick the correct value for K.

KGERS algorithm uses an EPS design (equal probability of selection). This EPS

design could be a potential limit in the process of learning. Using sampling methods could

improve the performance if applied carefully. The problem with an EPS design with

respect to the hospital data is that several points occur more often than others. For

example, the likelihood of having 25 patients is lower than that of having only 13 patients

a time slice in the EDInpt. Sampling theory states that a biased population requires a

biased sampling. Amongst the existent techniques are stratified sampling and clustering

sampling. Stratified sampling will extract candidate subsets from those feature vectors

that share similar semantics, in terms of their Y value. Clustering sampling can use the

feature vectors, cluster them in groups and extract samples of these subgroups with

similar probability of proportion. Biasing the training data in terms of sampling, so it

reflects the true population, can potentially give more honest results.

Another possibility for future work involves looking at Box Jenkins models (Wei

Yin Loh 2008), such as ARIMA. These models also use information about the distribution

of noise in the data, calling it random shock modeling. Finally, on the hospital side, there

is still work to be done regarding modeling of the holding problem. The EDInpt, PCU, ICU

and Floor models output could be combined to perform regression on the average

holding time of patients. There is still plenty of work on this area and we believe that the

contributions presented in this study will help improving the efficiency of hospitals.

122

Bibliography

Andrea Matsunaga, Jose A.B. Fortes (2010), "On the Use of Machine Learningng to

Predict the Time and Resources Consumed by Applications," ccgrid, pp.495-504, 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, 2010.

Bagnall, A. J. and Janacek, G. J. (2004). Clustering time series from ARMA models with

clipped data. In Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining (KDD '04). ACM, New York, NY, USA, 49-58.

2004.

Buja, A., Lee Y-S. (2001), "Data mining criteria for tree-based regression and

classification", ACM Special Interest Group on Management of Data, pp. 27 – 36.

Chetan Gupta, Abhay Mehta, Umeshwar Dayal (2008), "PQR: Predicting Query

Execution Times for Autonomous Workload Management," icac, pp.13-22, 2008

International Conference on Autonomic Computing.

D. Montgomery, Johnson L. (1976), Forecasting and Time Series Analysis. Washington,

DC: McGraw-Hill. Chp 4, 5.

Dobra, A., Johannes, G.(2002), "SECRET: A Scalable Linear Regression Tree Algorithm",

proceedings of the 8th ACM SIGKDD international conference on Knowledge

discovery and data mining (KDD '02). ACM, New York, NY, USA, 481-487, 2002.

Golding, D, Ricardo, Mardales, George Nagy (2006) "In Search of Meaning for Time

Series Subsequence Clustering: Matching Algorithms Based on a New Distance

Measure" , pp.347-356, Proceedings of the 15th ACM international conference on

Information and knowledge management, 2006.

Huang, C.; Townshend, J. R. G. (2000). "A stepwise regression tree for nonlinear

approximation: applications to estimating subpixel land cover"

123

Izrailev, S., Angrafiotis, D. (2000), "A Novel Method for Building Regression Tree

Models for QSAR Based on Artificial Ant Colony Systems", J. Chem. Inf. Comput. Sci.

2001, 41, pp. 176-180.

Kohonen, T. (2008). Data management by self-organizing maps. In Proceedings of the

2008 IEEE world conference on Computational intelligence: research frontiers

(WCCI'08), Jacek M. Zurada, Gary G. Yen, and Jun Wang (Eds.). Springer-Verlag, Berlin,

Heidelberg, 309-332.

Leegon, J., Joens, I., Lanaghan, K., Aronsky, D., (2006) Predicting Hospital Admission in

a Pediatric Emergency Department using an Artificial Neural Network, Proc. of

American Medical Informatics Association (AMIA) p. 1004 Dep. of Biomedical

Informatics Vanderbilt University, Nashville, TN, USA.

Li, J., Guo, L., (2009) Hospital Admision Prediction Using Pre-hospital Variables IEEE

International Conference on Bioinformatics and Biomedicine, p 283-286

Mitchell, T. (1997), Machine Lerning, McGraw-Hill.

Nikolov, Ventsislav (2010). "Optimizations in Time Series Clustering and Prediction" ,

pp.528-533, International Conference on Computer Systems and Technologies, 2010.

Perlich, C., Rosset, S., Lawrence, R., Zadrozny, B., (2006) High-Quantile Modeling for

Customer Wallet Estimation and Other Applications. Industrial and Government Track

Paper. IBM T.J. Watspn Research Center & Universidade Federal Fluminense, p 977-

985

Pissarenko, D. (2002). Neural Networks For Financial Time Series Prediction: Overview

Over Recent Research. BSc thesis. pp 25-32. 2002.

Specht, D.F. (1991); , "A general regression neural network," Neural Networks, IEEE

Transactions on , vol.2, no.6, pp.568-576, Nov 1991 .

Vogel, D., Asparouhov, O., Scheffer, T. (2007), "Scalable Look-Ahead Linear Regression

Trees" , International Conference on Knowledge Discovery and Data Mining, pp.757-

764, 2007

124

Wei, F., Joe, M., Philip, S. Yu. (2006), "A general framework for accurate and fast

regression by data summarization in random decision trees.", Proceedings of the 12th

ACM SIGKDD international conference on Knowledge discovery and data mining (KDD

'06). ACM, New York, NY, USA, 136-146, 2006.

Wei-Yin Loh (2008), " Classification and Regression Tree Methods" , Encyclopedia of

Statistics in Quality and Reliability, Wiley, pp.315-323, 2008

Yohannes Y., Webb P., Classification and Regression trees, CART: A user manual for

identifying indicators of vulnerability to famine and chronic food insecurity,

Washington.

	Cover
	Chapter1
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	Chapter6
	Bibliography

