
Complexity of Adaptive Spatial Indexing

for Robust Distributed Data

by

Matthew Vincent Mahoney

Master of Science
 Electrical Engineering

 Florida Institute of Technology
1987

A thesis
submitted to the Graduate School of

Florida Institute of Technology
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Science

Melbourne, Florida
January, 1998

 Copyright 1998 Matthew Vincent Mahoney
All Rights Reserved

The author grants permission to make copies for non commercial use.

__

We the undersigned committee
hereby approve the attached thesis

Complexity of Adaptive Spatial Indexing for Robust Distributed Data

by
Matthew Vincent Mahoney

__
Philip K. Chan, Ph.D.
Assistant Professor, Computer Science
Thesis Advisor

__
William D. Shoaff, Ph.D.
Program Chair and Associate Professor, Computer Science
Thesis Committee

__
Jay Yellen, Ph.D.
Program Chair, Operations Research
Associate Professor, Applied Mathematics
Thesis Committee

Abstract

Complexity of Adaptive Spatial Indexing for Robust Distributed Data

by
Matthew Vincent Mahoney

Thesis Advisor: Philip K. Chan, Ph.D.

A spatial index suitable for implementation of a multidimensionally keyed database (such as text
retrieval system) in an unreliable, decentralized, distributed environment is shown to have
complexity comparable to the Internet's Domain Name Service and better than USENET or Web
search engines. The index is a graph mapped into Euclidean space with high smoothness, a
property allowing efficient backtrack-free directed search techniques such as hill climbing. Updates
are tested using random search, then edges are adaptively added to bypass local minima, network
congestion, and hardware failures. Protocols are described. Empirical average case complexity for
n data items are: storage, O(n log n); query, O(log n log2 log n); update, O(log2 n log2 log n),
provided that the number of dimensions is fixed or grows no faster than O(log n).

Table of Contents

Acknowledgments...v
1. Introduction ...1
2. Background...4

Distributed Databases..4
Text Retrieval ..5
USENET...6
Search Engines..6
Domain Name Service...7

3. Data Structures and Algorithms..9
Spatial Mapping..10
Search Strategies...11
Update Algorithm..14
Randomized Hill Climbing..17
Multidimensional Data..19
Summary...21

4. Complexity Measurements..23
Experimental Setup...24
Deterministic Hill Climbing..25
Randomized Hill Climbing..29
Summary...31

5. Concurrent Access Protocols...32
First Level Protocol: Consistency, Flow Control, Preemptive Caching.........................33
Second Level Protocol: Updates...35
Third Level Protocol: Query Processing and Multi-Level Caching...............................36

6. Conclusion..40
References...43
Appendix..45

Test Results: Deterministic Hill Climbing..45
Test Results: Randomized Hill Climbing...47

Acknowledgments

I thank Dr. Philip Chan for his advice on preparing the thesis, both in pointing out technical
difficulties and in organizing the document, even before he was officially my thesis advisor or on
my committee. I also thank Dr. William Shoaff and Dr. Jay Yellen for their time spent on the
thesis committee and for feedback on this document.

Section 1

Introduction

Is an Internet database service feasible? Such a service, if it existed, would allow one to post any
text-based message to the Internet, which anyone else could then retrieve by keyword search,
without regard to location.

Of course we can already do this. One way is to post a news article to USENET. Some search
engines collect these posts and offer a text-retrieval service, allowing one to recall all posts
containing certain words, ranking them by relevance. Alternatively, one could put the data on a
Web server and retrieve it using one of the search engines. Both methods have their drawbacks:
USENET articles typically expire after a few weeks, and Web-based search engines may not update
their indexes for several days.

The problem is more fundamental than this. Both USENET and Web indexes require O(n2)
storage, where n is the number of articles or Web pages. USENET articles are copied to every
server, and search engines build complete indexes independently. As the Internet grows, so must
the number of servers. These servers already require enormous resources, and it will get worse.
Although memory, disk, and CPU performance has been doubling about every 18 months, the
Internet has been doubling in size every 12 months [Kantor, 1996].

There are more efficient systems, however. The Domain Name Service (DNS), which maps host
names to IP addresses, uses a distributed tree with redundant servers for reliability. Private
distributed relational databases (such as airline reservation systems) sometimes have a similar
organization. These systems have a different problem: If the root of the tree fails, then the whole
system fails. This is true even if the root is replicated on independent servers, because a single user
or organization has access to every copy, and could potentially make an error when updating the
master copy.

We describe a distributed data structure that is both efficient, like DNS, and which lacks a root,
like the Web and USENET. Users would be able to make updates immediately accessible (unlike
the Web) and have control over deletion (unlike USENET). Nobody would "own" this data
structure or decide how it is organized (unlike DNS), and there would be no single point of failure.
Servers could easily run on small computers without using significant resources.

The structure we describe is a smooth randomized graph; smooth, meaning that the graph can be
traversed efficiently, usually without backtracking; randomized meaning that search and update are
non-deterministic; performance is not guaranteed but is good on average.

Recall the title: "Complexity of Adaptive Spatial Indexing for Robust Distributed Data".

• Complexity -- We are interested in predicting performance: how fast, and how much storage?
The answer: about as efficient as DNS and much better than USENET or the Web.

• Adaptive -- The data structure adapts to changes in organization, usage patterns, hardware
failures, etc. The technique is a simple one: updates are immediately tested by simulating
queries, and we modify the graph (adding edges) as needed to improve performance.

• Spatial -- The data keys are mapped into a space over which a distance function is defined.
We can use Euclidean space in one dimension to implement a dictionary, simply ordering the
keys alphabetically, or we can use the multidimensional space of term vectors for text retrieval.
The technique generalizes to non-Euclidean spaces. For example, the keys could be sets,
because we can say that sets are close or far apart according to the number of common
elements.

• Indexing -- We are concerned with distributing the index -- knowledge about the location of
data -- not just the data itself.

• Robust -- Most data is still accessible when parts of the graph are removed. There is no single
point of failure.

• Distributed -- The query and update algorithms are concurrent, and can be implemented using
message passing.

• Data -- The technique applies to any data which is retrieved by matching a key, either exactly
or by a distance metric (i.e. text retrieval).

First, we discuss the background of distributed relational databases, text retrieval systems,
USENET, search engines, and DNS. Then we implement the adaptive spatial index as a smooth
randomized graph, describing the query and update operations and estimating complexity. Next,
we run simulations to measure average case complexity. Finally, we show how the algorithms
could be distributed, describing a 3-level protocol that maintains graph consistency and
implements the update and query operations concurrently.

Section 2

Background

We examine the distributed relational model and contrast it to text retrieval, which is easier to use
and where higher error rates are tolerable. Then we examine three widely used data systems on the
Internet: USENET, Web search engines, and DNS.

Distributed Databases

Most of the work in distributed databases [Bell, 1992] is toward implementing the relational model
[Korth, 1991; Tansel, 1993] across multiple servers, and deals with issues such as concurrency,
consistency across redundant copies, query optimization, etc. It is usually assumed that the
organization of the data (the metadata) and associated access privileges is simple enough that it
can all be kept in one place (or copied to every computer that needs it), and furthermore, that the
data can be centrally managed. That is not the case with very large systems such as the Internet,
where anyone may add data for his or her own purpose, regardless of whether it might conflict with
somebody else's data.

A smooth randomized graph (SRG) is not a relational database, but it does implement many of the
same functions. In theory, the tuples (table rows) of a set of relations (tables) could be encoded as
strings:

"Owner, Timestamp, Table-name: Attr1=Value1 Attr2=Value2 ..."

For example:

"XYZ Corp, 11/15/1997 Employees: Name=John Smith Phone=x3287"

Then the query SELECT FROM Employees WHERE Name="John Smith” would retrieve the
record with the phone number. Competing data would be resolved using the owner (assuming
there was a secure way to identify users). Multiple copies of old and new data would be resolved
using the timestamp. Arbitrary relational operations could be performed by downloading all of the
necessary data and performing the operations locally.

Text Retrieval

A text retrieval system answers queries such as Give me all documents containing "XYZ Corp,"
and "John Smith". These systems match words or terms between documents and queries, returning

those documents that contain all or most of the words. Words are weighted so that matches
between infrequent terms (such as "John Smith") are ranked higher than matches between common
words such as "and". A term is usually a word, but may be a group of words (“John Smith”) or the
root of a word after removing common suffixes such as “-s” or “-ed”. [Stanfill 1986; Harman,
1995; Grossman, 1998; Schäuble, 1997; Sparck Jones, 1997].

A text string (document or query) can be represented as a fuzzy bag. Recall that a bag is a set
allowing duplicate elements (allowing a word count), and that a fuzzy set is a set allowing
continuous membership values between 0 and 1 (allowing terms to be weighted). Therefore, a
fuzzy bag is simply a vector in which all elements are real and non-negative. A simple text
retrieval algorithm is:

Let Q be a query, a fuzzy bag of terms
Let D be a database containing documents as fuzzy bags of terms
Sort the elements Di of D on increasing |Q - D|
Return the first k documents of D

The parameter k allows one to trade off precision against recall. Precision is the fraction of
documents in the returned set that are relevant to Q. Recall is the fraction of documents in D
relevant to Q that are returned. The best text retrieval systems yield precision + recall of about
100% (out of a possible 200%) when matching query to document [Harman, 1995], and about
150% when matching document to document [Stanfill, 1986].

This algorithm is obviously inefficient. The best general purpose sorting algorithms have a time
complexity of O(n log n) in the number, n, of data items, although there are O(n) algorithms that
pick the k best elements from a list [Cormen, 1990]. A spatial index would allow fast lookup of
documents "near" Q without sorting. One such index is the k-d tree, which is O(log n) for a fixed
number of dimensions [Bentley, 1975]. However it is not clear that a k-d tree would be practical
for databases with tens of thousands of dimensions (one per word), or that it could be distributed
robustly. A k-d tree is a binary tree sorted on one of d dimensions at each level, repeating the cycle
every d levels.

USENET

USENET is the Internet news group posting service [Krol, 1992]. It provides a hierarchically
organized set of bulletin boards to which anyone may post articles for others to read. As a
database, it implements a simple mapping from the news group name to the set of recently posted
articles. Some Internet search engines also index and archive articles so that they can be retrieved
by keyword search.

USENET fully replicates the database at every server. When a user posts an article, it is
propagated from server to server until everyone has a copy. This makes it easy to recall articles,
but results in O(n2) storage and network traffic for n articles. This is because the number of
articles posted depends on the number of users, and the number of servers (assuming fixed load
capacity) also depends on the number of users. In other words, the storage cost is O(mn), where
there are m servers and n articles, and we are assuming that m and n must be proportional.

The system of replicating all articles on all servers worked well at first, but as the Internet has
grown (doubling in size each year from 1980 through 1996 [Kantor, 1996]), USENET has become
unwieldy. Servers typically have to limit the number of news groups, expire articles quickly, and
limit the number of users. The service is rarely free any more. Users must typically belong to an
organization or pay an Internet service provider.

Search Engines

Web search engines allow Web pages to be searched by keyword, as in a text retrieval system.
They are based on the older Archie and Veronica systems, which indexed FTP and Gopher sites
[Krol, 1992]. The search engine scans all known web sites and builds a term index, learning about
new sites either by following hypertext links or by allowing users to register sites [Steinberg,
1996].

Search engines are quite useful, but they suffer the same O(n2) storage complexity as USENET,
since every site essentially builds a copy of the same index. Again we are assuming that the
number of servers and the size of each copy of the index are both proportional to the number of
users. Although an index of the Web is much smaller than the Web itself, search engines still
require a substantial investment in hardware and network bandwidth that can only grow worse.

Domain Name Service

The Domain Name Service (DNS) maps Internet host names such as tuck.cs.fit.edu to IP addresses
such as 163.118.22.3 [Hunt, 1992]. This is a true distributed database. Instead of replicating the
database at every server (as was done originally when the Internet had only a few hundred
computers), the data is organized into a tree:

.
 / | \

 com edu uk ...
 / | \

 mit fit berkeley ...
 / | \
ee cs math ...
 / | \

 zach tuck ss5a ...

Fig. 2.1. The Domain Name System tree

Each node resides on a separate set of servers (a primary server and one or more secondary servers
for reliability), and is administered independently. Each server knows only the addresses of the
servers above and below it. To look up an address, a client (called a resolver) would start at the
root (indicated by a dot) and go down the tree. A server can respond iteratively, referring the client
to the child server, or recursively, querying the child server itself and relaying the answer back to
the client. Servers and resolvers can also cache information by making local copies to improve
performance, starting below the root of the tree if possible.

If the average number of children at each node is constant, then the depth of the tree grows with
O(log n) in the number of data items. Since a query accesses one server at each level of the tree,
query complexity is also O(log n).

Leaf nodes can be updated locally. If a DNS server is added or removed, however, the parent
server must be updated, a manual process that must be coordinated between the two administrators.
Caching introduces another difficulty, as there is no cache update mechanism. Since DNS data
does not change frequently, this is not a major problem. Cached data typically expires after a few
hours or days.

Storage complexity appears to be O(n), but is actually O(n log n) due to the need to replicate the
servers near the root to handle client load. Because every access involves one server at each level
(in most cases), the number of servers needed at each level is proportional to the number of users,
which we assume is proportional to n. Update complexity is O(log n), given the cost of replication

DNS is not decentralized like the Web or USENET. The organization that administers the root
node (currently InterNIC) effectively decides the overall structure of the data. The Web and
USENET have no controlling organization, but at the cost of O(n2) storage due to full replication
on every server. As we shall see, an SRG has the desirable properties of a DNS tree, but lacks a
root, and therefore has no need of centralized management.

Section 3

Data Structures and Algorithms

In this section, we describe the data structures and the algorithms for a spatial index, where there
is a mapping between the database keys and a space such as
Rd -- d-dimensional Euclidean space. We describe a property of graphs which we call smoothness,
which allows a graph to be searched efficiently using greedy algorithms [Cormen, 1990] such as
hill climbing [Mitchell, 1997]. We describe an adaptive update algorithm; in which we test
updates by searching for them from random points, adding edges as needed to maintain
smoothness. The adaptive algorithm repairs damage that might occur in an unreliable, distributed
implementation by forming new routes around defects or congested nodes. Because the update
algorithm is randomized, we call the data structure a smooth randomized graph, and we say that it
implements an adaptive spatial index.

Efficient indexing structures based on graphs are well known. In one-dimensional space, a sorted
binary tree with n vertices has O(log n) search complexity and O(n) storage complexity. A k-d tree
[Bentley, 1975] has the same complexities in multidimensional space. Both of these data
structures have a root, a fixed starting point for searching, but we can describe structures (smooth
graphs) that have the same complexities with arbitrary starting points.

Unfortunately, we do not know of any distributed index with O(n) storage cost. In all of the graphs
described, the longer edges (when the vertices are mapped into space) are traversed more
frequently than the shorter edges. This is irrelevant in a sequential implementation but results in
an unbalanced load distribution in a distributed implementation. The solution is to add redundant
long-distance edges, but this increases storage complexity to O(n log n).

We first define a spatial mapping, using a one-dimensional space as an example. Next we describe
search strategies, of which the simplest is hill climbing, and describe the graph properties that
make search efficient in a distributed implementation. We analyze complexity for the special case
of one-dimensional space, arguing (but not proving) that search complexity is O(log2 n). Then we
describe an update algorithm and show that it preserves the properties required for efficient search
in one dimension. Next, we describe randomized hill climbing, and use it to produce more efficient
search and update algorithms. Finally, we describe some multidimensional data structures that
have the same complexities as the one-dimensional case.

Spatial Mapping

We define a space (S, dist) as a set S and a real-valued distance function dist(a, b) defined over
pairs of elements in S, such that for all elements a, b, c, d ∈ S:

• dist(a, a) = 0

• dist(a, b) = dist(b, a) ≥ 0
• dist(a, b) > dist(a, c) ∧ dist(a, c) > dist(a, d) ⇒ dist(a, b) > dist(a, d)

For example, d-dimensional Euclidean space Rd is a space over d-dimensional vectors, where
dist(a, b) ≡ |a - b|. Note that in a Euclidean space, we have the triangle inequality, which states
that dist(a, b) + dist(b, c) ≥ dist(a, c). Although we study only mappings into Euclidean spaces, the
algorithms that we describe can be applied to spaces where the triangle inequality does not hold.
For instance, we could define dist(a, b) ≡ |a - b|2.

Many types of data can be mapped into space. For instance, historical weather data could be
mapped into the 3-dimensional space of longitude, latitude, and time. More generally, strings from
an alphabet Σ could be mapped into the 1-dimensional space [0, 1], where dist(a, b) ≡ |a - b|, by
interpreting the characters in the string as the digits 1 through |Σ| in a fractional number in base |Σ|
+ 1, i.e. ordering the strings alphabetically. For instance, if Σ = (A=1, B=2, ..., Z=26), then
map(“CAB”) = 3/27 + 1/272 + 2/273 = 0.1125844. A phone directory, keyed by name, might look
like this:

Map Name Phone
0.0

Alice 123

0.1 Bill 456
Bob 720

0.2

Jane 562
0.3 John 965

Mark 389
0.4 Matt 612

Fig. 3.1. A database mapping into [0,1]

The next step is to build a data a graph and assign each datum to a vertex. Some of these vertices
may be connected by edges. When possible, we will show graphs so that the position of each
vertex in the diagram corresponds to its mapping into space. For instance:

`

 S1 S2 S3 S4 S5 S6 S7

 . 0.03 0.10 0.12 0.27 0.29 0.37 0.38

Alice Bill Bob Jane John Mark Matt

Fig. 3.2. Mapped database keys inserted into a graph

We say that the length of an edge between vertices x and y is dist(x, y). We also use terms like
shorter, longer, closer, etc., in reference to the distance function in the obvious way.

Search Strategies

We are interested in finding efficient algorithms for searching and updating the graph that could
be implemented on a distributed system. Each vertex or datum might be stored on a separate
server, and each server would have only local knowledge about the graph, as indicated by the
edges. For example, server S1 in fig. 3.2 would know the following three facts: that the value of
key Alice is 123, that server S2 knows the value of Bill , and that server S3 knows the value of Bob.
A user on S1 wanting to know the phone number for Jane, would only know that
map(Jane) = 0.27, but would not know that the data is stored on S4. Only the neighbors of S4 (S3
and S6) would know where Jane is stored.

One search technique is called hill climbing [Mitchell, 1997]. Given a starting vertex (say, S1),
and a goal (say, 0.27), the idea is to traverse the graph along the edges, at each step choosing the
neighbor that is closest (in mapping space) to the goal. For instance, from S1 we would go to S3
(Bob) rather than S2 (Bill) because dist(Bob, Jane) = 0.15 < dist(Bill, Jane) = 0.17. From S3, we
could then find Jane on S4. Formally, let G be a graph, and let GOAL and START be vertices in
G:

Hill-Climb(G, GOAL, START)
Let CLOSEST := START
For each neighbor X of START do

If dist(X, GOAL) < dist(CLOSEST, GOAL) then
Let CLOSEST := X

If CLOSEST = START then return START (a minimum)
Else return Hill-Climb(G, GOAL, CLOSEST)

Hill climbing either returns the goal or a local minimum, a vertex that is closer to the goal than
any of its neighbors (vertices connected by an edge). We define the smoothness of the graph as the
fraction of hill climbs between all possible n2 pairs of n vertices that succeed in finding the goal.
A graph is smooth if it has a smoothness of 1.

The example above is not smooth because hill-climb(S3, “John”) = S4, which is the vertex
representing Jane. From S3 (Bob), we first go to S4 (Jane) because it is closer to John than any of
Bob’s other neighbors, S1 or S2 (Alice or Bill). However, we cannot proceed further toward John
because every path from Jane to John must first move in the wrong direction, away from John.

One way we can cope with the problem of local minima is by repeating the search from a different
starting point picked at random, repeating until successful. Let GOAL be a vertex in graph G:

Find(G, GOAL)
Repeat

Let START := a random vertex in G
Let FOUND := Hill-Climb(G, GOAL, START)

Until FOUND = GOAL
Return FOUND

Find must eventually succeed, if only by the lucky guess START = GOAL.

Obviously we are interested in smooth graphs to minimize the number of iterations in find. In one
dimensional space, one such graph is an ordered list, in which each vertex is connected to the two
closest vertices above and below it in the mapping space. In other words, if we label the n vertices
from 1 to n in order of ascending map value, then the i’th vertex (labeled i in fig. 3.3) is connected
to the vertices labeled i + 1 and i - 1 (except for vertices 1 and n).

1 2 3 n

Fig. 3.3. A sorted linked list

Hill climbing on a sorted list of n vertices has O(n) search complexity in the worst case. We can
improve search time by adding “shortcuts”, or edges connecting more distant points. For instance,
given n nodes, we could add n/2 edges of length 2, n/4 edges of length 4, n/8 edges of length 8, and
so on, for a total approaching 2n edges. Specifically, if a vertex label has the form i2m, m ≥ 0, then
we add edges to (i - 1)2m, and (i + 1)2m if those vertices exist. For example:

9 10 11 12 13 14 15 161 2 3 4 5 6 7 80

Fig. 3.4. A smooth graph with “shortcut” edges

Storage complexity is still O(n), although there are twice as many edges as an ordered list. Hill
climbing now requires O(log n) edge traversals. At worst case, we can go from any node to any
other node by taking 2 log2 n - 1 = O(log n) steps of 1, 2, 4,..., n’/4, n’/2, n’, n’/2, n’/4, ..., 4, 2,
1, where n’ is the highest power of 2 less than n The first half of the search starts with a step size
of 1 or more, followed by steps that at least double in length up to the longest step, no more than n.
The second half goes back down, each step at most half the length of the previous one. Usually we
can skip some of these steps. For instance, we can hill climb from node 1 to node 14 by traversing
nodes 2, 4, 8, and 12, with steps of size 1, 2, 4, 4, 2.

The graph in fig. 3.4 is not well suited for a distributed implementation, even assuming perfectly
reliable hardware, because the longer edges are traversed more frequently, increasing the load on
the servers at the ends of the longer edges and creating a load imbalance. If an edge connects
vertices i2m and (i + 1)2m, then it is traversed whenever the start and goal are on opposite sides of
the edge and the starting vertex is in the range (i - 1)2m + 1 through i2m or (i + 1)2m through
(i + 2)2m - 1. For example, the edge (8, 12) is traversed whenever the start is in the range 5-8 and
the goal is 12 or higher, or the start is 12-15 and the goal is 8 or less. The size of these ranges is
proportional to the length of the edge.

Another way to see the problem is to note that hill climbing traverses equal numbers of edges
whose length ranges from k/2 to k for all k from 2 to n. For instance, the worst case step sequence
(1, 2, 4, ..., n’, ..., 4, 2, 1) traverses 2 edges in each range [1,2), [2,4), [4,8), etc. The problem is
that there are fewer long edges than short ones. There are n edges in [1,2), n/2 in [2,4), n/4 in
[4,8), and so on. To balance the load, we would need to add redundant edges in the higher ranges.

Since there would be n edges in each range, and log2 n ranges, storage complexity (since edges
require storage space too), would be O(n log n).

Returning to fig. 3.4., it should be clear that we could randomly remove some of the shortcut edges
without reducing smoothness (as long as we retain the sorted list as a subgraph), and that hill
climbing would still be faster than the plain sorted list. In fact, we could just place the shortcut
edges randomly and still see an improvement. This is called a smooth randomized graph or SRG.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 3.5. A smooth randomized graph

Update Algorithm

It would be difficult to add or delete a vertex in a regular structure such as fig. 3.4, but the process
is simple for a randomized graph such as fig. 3.5. To delete a vertex, we simply remove it along
with its adjacent edges. Because the distribution of edges by length is the same (on average) for
each vertex as for the graph as a whole, deletion should not affect this distribution. Deletion may
reduce smoothness, causing some degradation of the find algorithm.

To add a vertex, we insert it with no initial edges, then search for it from several random locations.
Whenever a search returns a local minimum instead of the goal, we add an edge between the
minimum and the goal so that a future search from the same point would succeed. We repeat the
tests until some fraction (say, 1/2) of the tests succeed.

Let G be a graph. Let GOAL be the vertex to add:

Update(G, GOAL)
Add GOAL to G with no connecting edges
Repeat until hits > misses

Let START := a random vertex in G
Let FOUND := Hill-Climb(G, GOAL, START)
If FOUND = GOAL then count a hit
Else add an edge between FOUND and GOAL and count a miss

We need to show that (1) update preserves smoothness, (2) it preserves a distribution that allows
efficient (logarithmic) search, and (3) that update itself is efficient. Recall that for the one-
dimensional case, the proper distribution of edge lengths to achieve load balancing is one with
equal numbers of short and long edges. More precisely, we need an approximately uniform
distribution of edge lengths over intervals [k/2, k) for all k in [2/n, 1] for an n-vertex graph
mapped into [0, 1]. Since there are log2 n disjoint subintervals of the form [k/2, k) in [1/n, 1], and
we need about n edges in the first interval [1/n, 2/n) to have an ordered list as a subgraph to ensure
smoothness, there must be n log2 n edges.

We now argue (2), that update preserves a uniform distribution of edge lengths (on a logarithmic
scale) when updates are randomly distributed in one dimension. Without loss of generality, we
consider the mapping space [0, 1]. If the graph has n vertices, then the average distance between
adjacent vertices (in space) is 1/n. Given an initially smooth graph G and an update vertex C, let
A be the closest vertex in mapping space, and let B be the closest vertex in the opposite direction
from C (see fig. 3.6). Because G is smooth, the first iteration of update(G, C) will add an edge
between A and C, because hill climbing from any vertex in G (except C) will reach a minimum at
A. Subsequent hill climbing will then succeed from all starting vertices and update will terminate.
Note that G is no longer smooth, as hill climbing from C to B fails.

 C

 AC=1.5
 A B D2 D1 D0

1

2

1004015

4

Fig. 3.6. How update adds long edges

Let D0 be the next vertex to be updated such that D0 is closer to C than to A in mapping space (to
the right of AC, the point between A and C, in fig. 3.6) and the update algorithm randomly
chooses a starting vertex so that the search path passes through C. The search fails, so an edge is
added between C and D0. Because map(C) has a mean of 1/2, the mean of dist(C, D0) is 1/2 the
distance to the boundary of the mapping space, or 1/4.

Let Di, i > 0, be the first vertex to be updated after Di-1 such that Di is closer to C than to Di-1 or A
(between AC and the point midway between C and Di-1), and the update algorithm randomly
chooses a starting vertex that results in hill climbing through C. Then the search will fail and an
edge will be added between C and Di. Note that if the update is anywhere else, then hill climbing
can proceed from C to either A or Di-1. The distance from C to Di is between 0 and 1/2 of dist(C,
Di-1) or 1/4 of dist(C, Di-1) on average. (We are neglecting the small contribution of dist(A, C) ≈
1/n on the probability distribution).

If we now count the Di vertices, whose mean distances are 1/4, 1/42, 1/43, ... 1/n, we find that there
are about log4 n of them. Of course, this analysis assumes that the random position of Di is
uniformly distributed, but it may not be because its position may affect the probability that the
update algorithm will route a test search through C. If Di is further away, then it is more likely
that an edge could route the search around C that would not be taken of Di were closer. This is
illustrated below:

A

C

Di1 Di2

F

Di-1

S

Fig. 3.7. How updated edges may be distributed nonuniformly

Both Di1 and Di2 are closer to C than to Di-1, so both update(S, Di1) and update(S, Di2) would result
in an edge to C, except that there may be another vertex F such that Di1 is closer to C than F but
Di2 is closer to F than C. Therefore, the next Di in the sequence will be Di1, the one closer to C.
This effect biases the distribution of edges to C so that each is less than 1/4 of the length of the
previous one. If the effect is independent of scale, then we can still say that E(dist(C, Di)) = E(d(C,
Di-1))/k for some k (not necessarily 4). The expected values of distances from C form the sequence
1/k, 1/k2, 1/k3, ..., 1/n, which has about logk n = O(log n) elements. Furthermore, the distribution
of edges is still the one required for load balancing in a distributed environment: equal numbers of
edges of each length on a logarithmic scale.

We have argued (but not proved) (2) above, that search is efficient, but we have not shown that (1),
update preserves smoothness. In fact it does not. In fig. 3.6, a search for B from A (or from its
left) fails after C is updated. It may be necessary to periodically update old data to restore lost
smoothness.

We are now ready to analyze the average case complexity of find and update in 1-dimensional
space. We have just argued that storage complexity is O(n log n), or that the average degree (edges
per vertex) is O(log n). From our previous discussion, the average path length for hill climbing is
O(log n), but at each step, we must choose from among O(log n) neighbors to find the one closest
to the goal. As a result, hill climbing is O(log2 n). The find algorithm repeats hill climbing until
successful, so its complexity is O((log2 n)/smoothness). But update runs until at least 1/2 of search
tests succeeds, implying a smoothness between 1/2 and 1. Therefore find has average time
complexity of O(log2 n).

The update algorithm runs until 1/2 of search tests succeed. Since each failure results in an edge,
and the average degree is O(log n), this implies O(log n) successes and O(log n) failures. Since
each test is O(log2 n), update has average time complexity of O(log3 n).

Randomized Hill Climbing

There are more efficient query and update algorithms than the ones based on hill climbing.
Suppose that in the innermost loop, instead of comparing each neighbor to find the closest to the
goal at each step, we take a step as soon as we find a neighbor that is any closer, abandoning the
rest of the comparisons. We would need to traverse more edges, since we would make less
progress at each step by choosing a sub-optimal neighbor, but we would do fewer comparisons at
each step.

Let G be a graph. Let GOAL and START be vertices in G.

Randomized-Hill-Climb(G, GOAL, START)
Let S be the set of neighboring vertices of START
While S is not empty, loop

Remove vertex V from S, choosing randomly
If dist(GOAL, V) < dist(GOAL, START)

Then return randomized-hill-climb(G, GOAL, V)
Return START

Recall the uniform distribution of edge lengths on an exponential scale. The distribution looks
something like this.

 Density
 of neighbors

Neighbors of X closer to G

 G

 x-8 x-4 x-2 x-1 x x+1 x+2 x+4 x+8
Mappings of neighbors of x

Fig. 3.8. Distribution of neighbors of vertex x in R

Deterministic hill climbing, like a binary search, converges exponentially toward the goal, taking
large steps at first, and then successively smaller ones. If the goal is mapped to, say, X + 5, then
hill climbing would take the best step possible, say X + 4. Randomized hill climbing, on the other
hand, might have several other choices, say X + 1, X + 2, X + 8, etc. At first, about half of the
neighbors make forward progress, but this fraction decreases as we approach the goal.

Suppose that n vertices are mapped uniformly into an interval in R, and each vertex has an average
of k = O(log n) neighbors distributed as above. Then at the start of randomized hill climbing,
almost k/2 neighbors make forward progress, so we do 2 comparisons per step. If we approach the
goal at an exponential rate, then at each step the number of neighbors that makes forward progress
decreases at a constant rate, so the total number of comparisons is

k/(k/2) + k/(k/2 - 1) +...+ k/3 +k/2 + k/1 ≈ k ln k/2 = O(log n log log n)

However, we approach the goal at a slightly less than exponential rate because we take sub-optimal
steps. We later show empirical evidence which suggests that the overall complexity of randomized
hill climbing is O(log n log2 log n), probably because the average search path has increased by a
factor of O(log log n). Nevertheless, this is an improvement. Since update still performs O(log n)
tests, its complexity would be O(log n) higher than search, or O(log2 n log2 log n), again an
improvement over deterministic hill climbing for the average case.

Multidimensional Data

Often we find it useful to map data into more than one dimension. For instance, if we keyed
weather data by longitude and latitude, we could compose queries of the form “give me the weather
forecast for all cities within 100 miles of Chicago”. In a text retrieval system, we would map
documents into a very high number of dimensions (one per word or term) so that we could request
documents that are “similar” to some other query or document, i.e., containing many words in
common.

We now give examples of regular data structures of n vertices in d-dimensions, 1 ≤ d ≤ log2 n that
have the same storage and search time complexities as the one-dimensional spatial index described
above. The simplest example is a hypercube in d = log2 n dimensions. A hypercube is a graph G =
{V, E}, V = {0, 1}d,
E = {(a, b): a, b ∈ V, dist(a, b) = 1}. The following is a 4-dimensional hypercube (d = 4).

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

Fig. 3.9. A 4D hypercube

Each vertex has d = log2 n neighbors, so there are n/2 log2 n edges, or O(n log n) storage
complexity. Hill climbing traverses at most d edges, and must examine d neighbors for each
traversal, so search is O(d2) = O(log2 n) worst case. Randomized hill climbing also traverses d
edges, but because path length does not increase, complexity is O(log n log log n) by our previous
argument. We do not analyze update complexity, because the algorithm is not applicable to
regular structures.

When the number of dimensions is between 1 and log2 n, we can construct a hypergrid and use
“shortcut” edges in each dimension to reduce search complexity. We define a hypergrid of order k
in d dimensions as a graph G = (V, E): V = {0, 1, 2, ..., k}d, E = {(a, b), a, b ∈ V, dist(a, b) = 1}.
Vertices are regularly spaced in d dimensions, with at most 2d neighbors (one on either side in d
dimensions). A hypercube is a special case of an order k = 1 hypergrid.

An order k hypergrid in d dimensions has n = (k + 1)d vertices and nd edges, so has O(nd) space
complexity. Worst case search complexity is at least O(dk), because the path length between
diagonally opposite corners (such as {0}d and {k}d) is dk.

We could reduce the maximum path length to O(d log k) by adding “shortcut” edges along each
dimension as we did for the 1-dimensional list. In the following example (k = 4, d = 2), every pair
of vertices is connected by a path of length
d log2 k = 4 or less.

04

00

03

02

01

14

10

13

12

11

24

20

23

22

21

34

30

33

32

31

44

40

43

42

41

Fig. 3.10. An order-4 2D hypergrid with shortcut edges.

The rule is that if two vertices a = (a1, a2,..., ad) and b = (b1, b2,..., bd) differ in only one dimension,
i (a - b = (0, 0, ... ai - bi, ..., 0)), and ai = c2m, and bi = (c ± 1)2m for some integers c and m, then a
and b are neighbors. However, it should be clear that any edges added to a hypergrid will reduce
the average number of edges that must be traversed during hill climbing.

Hill climbing in d dimensions can be reduced to d cases of hill climbing in one dimension From
our previous analysis of one-dimensional lists, we saw that we could obtain logarithmic search
complexity by doubling the number of edges, but that this technique did not extend to distributed
systems because the longer edges would be more heavily traveled. Once again, this is the case. To
achieve load balancing, we must increase the number of edges along rows in each dimension by
O(log k). Since there are n = (k + 1)d vertices, and the average degree is O(d log k) = O(log kd) =
O(log n), we have a space complexity of O(n log n).

Hill climbing in d dimensions, requires O(log k) steps in each of d dimensions, or O(d log k) =
O(log n) steps. Each step examines O(log n) neighbors, so time complexity is O(log2 n), just as in
the one dimensional case. Randomized hill climbing examines fewer neighbors, but may traverse
more edges, but we should expect a complexity between O(log n) and O(log2 n).

Summary

We described data structures for mapping a database index into a space. We described two
algorithms, hill climbing and randomized hill climbing, for searching the graph, though other
algorithms are well known. These algorithms are greedy, making decisions based on local
knowledge. The effectiveness of these algorithms (do they succeed?) depends on a property we
called smoothness. Efficiency (how fast do they report success or failure?) depends on the
distribution of edge lengths. Logarithmic search complexity is possible with O(n) storage in a
centralized implementation, but this is not known to be true for distributed implementations. It
appears that O(n log n) storage is required but we have no proof of this.

For the special case of one-dimensional data, we analyzed search and update complexity using both
deterministic and randomized hill climbing, based on the assumption of O(n log n) edges and a
uniform distribution (on a logarithmic scale) by length. We presented a plausible argument that
the update algorithm generates the necessary distribution, but a proof would require that we show

that the distribution of new vertices affecting the addition of edges to an older vertex is
independent of the configuration of the graph on average, or at least that the distribution is
independent of scale.

Finally, we looked at special cases from 1 up through log n dimensions, showing O(n log n)
storage complexity, O(log2 n) search complexity using deterministic hill climbing, and between
O(log n) and O(log2 n) search complexity using randomized hill climbing. These should not be
considered proofs, because we have not shown that the analyses can be extended to the randomized
graphs that would be produced byt the update algorithm in multidimensional space.

Section 4

Complexity Measurements

In section 3 we described algorithms for searching and updating spatially indexed data using a
randomized graph with high smoothness. We have also calculated average space and time
complexity under certain conditions, and found them to be worse than what could be obtained in a
non-distributed implementation. The special cases we examined were n vertices in d-dimensional
spaces, 1 ≤ d ≤ log2 n, and the vertices are distributed either uniformly at random in one
dimension, or regularly in more than one dimension. Under these conditions, space complexity is
O(n log n), search complexity is O(log2 n) or better (but worse than O(log n)), and update
complexity in one dimension is O(log3 n) or better (but worse than O(log2 n)).

Those were average cases, but we can easily analyze worst case complexity for the general case:

Query time: O(n) for smooth graphs, infinite for non smooth graphs. In the smooth case, the
following would be built by adding vertices in ascending order in one dimensional space:

1 --- 2 --- 3 --- ... --- n

The update algorithm does not guarantee smoothness, however. Consider a disconnected graph:

1 2

Such a graph could result if we add node 2 using the update algorithm, then choose node 2 as the
random starting point for testing. The test succeeds, so we have one hit and no misses, and we
stop. A query for 2 will eventually succeed by randomly choosing 2 as the start, but there is no
guarantee of when.

We can reduce the incidence of disconnected updates by forcing a minimum number of tests, say
m. This reduces the probability of a disconnected update to 1/nm.

Update time: O(n) to construct a fully connected graph. It is possible to construct a graph G = (V,
E) such that dist(a, b) = C > 0 for some constant C and for all a ≠ b in V, in which case the only
possible smooth graph is a fully connected one. This could happen with d = n dimensions, where
the i'th vertex has a value of the form 0000...001000..., with n coordinates set to 0, except for the
i'th coordinate, which is set to 1. The distance between every pair of distinct vertices is the same
(21/2), therefore hill climbing (either deterministic or randomized) will fail if the start and goal
vertices are not already connected.

Storage: O(n2) for the edges of a fully connected graph.

The purpose of the next subsection is to experimentally determine the complexity for cases of
interest: randomly distributed data in d-dimensional space.

Experimental Setup

We now construct smooth randomized graphs and estimate complexity empirically. For our first
test, we first insert all of the vertices to build an n-vertex graph with no edges. Then we adaptively
add edges by picking pairs of distinct vertices and searching for one from the other by deterministic
hill climbing, adding an edge between the goal and any local minima found, repeating until exactly
half of the tests succeed. Finally we test the graph by sequentially searching for every vertex from
random starting points, not giving up until the goal is found. The data is uniformly distributed in
d-dimensional space, [0, 1]d.

BUILD-SRG:
Create a disconnected graph of n vertices
While hits ≤ misses do

Pick 2 distinct vertices START ≠ GOAL at random from G
Let FOUND := Hill-Climb(G, GOAL, START)
If FOUND ≠ START then connect them and count a miss
Else count a hit

Note that this is different than using the update procedure described in section 3. Although the
update procedure is adaptive, it only ensures the accessibility of a vertex from previously added
vertices, not from vertices added later. In an actual implementation, it might be better to
continuously test the availability of data as the graph changes, and add edges as needed so that data
remains accessible at all times.

Also, the update algorithm does not require that the start and goal vertices be distinct. We chose
distinct vertices to avoid the pathological case of counting a hit on the first iteration, which could
occur with probability 1/n for n vertices. Another solution would be to force a minimum number of
iterations. Either solution should have a negligible effect on the results when n is large.

Deterministic Hill Climbing

Space Complexity

For our first experiment, we build graphs of n = 23, 26, ..., 218 vertices in spaces of
d = 1, 8, 64, and 512 dimensions. We then plot the average degree (2 edges/n) vs. n for each of the
four values of d. For clarity, we also plot the point n = 1, where we know that degree = 0. Note
that the X axis (n) is logarithmic, and the Y axis (degree) is linear.

Vertices

Average
Degree

0

5

10

15

20

25

30

35

1 8 64 512 4096 32768 262144

1 Dimension

8 Dimensions

64 Dimensions

512 Dimensions

Fig. 4.1. Average degree per vertex.

We observer the following. For d = 1, the line is straight, suggesting that degree increases
logarithmically with n, confirming our earlier expectations. In fact, the measured degree is very
close to ln n + 1, as seen in the following table:

 n Degree ln n + 1 Trials
 1 1.00 0.00 theoretical
 8 3.08 2.62 average of 128
 64 5.16 5.11 average of 16
 512 7.24 7.47 average of 2
 4096 9.32 9.57 1
 32768 11.40 11.67 1
262144 13.48 13.32 1

Table 4.1. Measured degree in [0, 1]

Although this suggests a relationship, it is by no means proof of O(log n) degree. Our worst case
analysis has shown only that the degree is at least 2(n - 1)/n or O(1) (a tree) and at most n - 1 or
O(n) (fully connected). This allows us to reject quadratic and higher order polynomial functions as
candidates. (In any case, fitting a quadratic function to the data would result in a negative
coefficient for the n2 term). Our analysis of regular graphs with shortcut edges allowing binary
search in one dimension has shown that an O(log n) relationship would be reasonable. However,
we cannot conclude, based on the data, that the actual relationship does not have higher
complexity. For instance, we could conceivably have within the worst case limits:

degree = ln n + 1 + εnk = O(nk), k ≤ 1

or based on the data alone,

degree = ln n + 1 + εen = O(en)

for some very small constant ε.

When we repeat the experiment for vertices mapped to higher dimensional space, [0,1]d, where d =
64 or 512, and plot the average degree as before (fig. 4.1), we find that the line curves upward
away from the d = 1 line, suggesting a growth rate greater than O(log n). The interesting curve is
for d = 8, which curves upward at first, then straightens out around the middle of the graph (at
about n = 28 = 256), again suggesting O(log n) growth. In this case, we can fit the following
approximation:

 n degree 81/2 ln n - 5.6 Trials
 1 0.00 -5.60 theoretical
 8 2.69 0.28 average of 16
 64 6.73 6.16 average of 2
 512 12.06 12.04 1
 4096 17.70 17.93 1
32768 23.55 23.81 1

Table 4.2. Measured degree in [0, 1]8

In other words, we find that when d < log2 n, that

degree ≈ d1/2 ln n + C

for some constant C. When d = 1, we have C = 1, or degree = ln n + 1. When d = 8, we have C =
-5.6, or degree = 2.828 ln n - 5.6. Due to the long simulation times for large n and large d (up to
one day on a 100 Mhz 486 PC), it was not feasible to collect enough data points to find a plausible
equation for the constant C.

The results suggest that when d < log2 n, space complexity is O(n log n), since the number of edges
is (n)(degree) = O(n)O(log n).

Time Complexity

We now wish to estimate search time complexity, which is:

(comparisons per vertex)(edges per search) / smoothness

When using deterministic hill climbing, comparisons per vertex is the same as the average degree,
which we believe to be O(log n) for [0, 1]d, d ≤ log2 n. The number of edges traversed per search
should be O(log n) as long as degree > 2, because we know that the number of vertices reachable in
m steps through vertices of degree k is at most (k - 1)m. Smoothness should be greater than 1/2
because BUILD-SRG runs until 1/2 of the randomly picked searches succeeds.

Nevertheless, we will measure these quantities. When running BUILD-SRG, we count the number
of edges traversed by hill climbing, including any newly inserted edges, and divide by the number
of hill climbs performed (hits + misses). This data is taken from the same experiment used to
construct fig. 4.1. We have plotted the average number of edge traversals per hill climb (Y axis)
against n (X axis) in the 1, 8, 64, and 512 dimensional spaces [0, 1]d.

Vertices (n)

Average
search

path
length

0

1

2

3

4

5

6

7

8

8 64 512 4096 32K

d=1

d=8

d=64

d=512

Fig. 4.2. Average number of steps for deterministic hill climbing.

We observe a logarithmic growth rate. In one dimension, average path length is approximately ln
n - 2, and less in higher dimensions. This is to be expected because the average degree is higher.

We next measure a quantity related to smoothness, again as part of the same experiment. We do an
exhaustive search for every vertex using hill climbing, and count the number of failures. The
technique is to go sequentially through each vertex in the graph and search for it from random
starting points until we find it.

For each vertex v in G do
While Hill-Climb(G, v, random vertex in G) ≠ v do

Count 1 failure

This is a more severe test of smoothness (which we know to be at least 1/2 by construction),
because we could spend a lot of time on one single hard-to-find vertex. The graph below plots the
average number of failures per vertex. This number would be 0 in a perfectly smooth graph, and at
least 1 in a graph with smoothness 1/2.

Vertices (n)

Failures per
search

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 64 512 4096 32768 262144

d=1

d=8

d=64

d=512

Fig. 4.3. Average number of failures before finding each vertex

The experiment shows that smoothness increases toward 1 as n grows, a reassuring result. The
data therefore supports O(log2 n) search complexity because edge traversals per hill climb and
comparisons per edge traversal are both O(log n), and 1/smoothness is O(1). If this is so, then
update is O(log3 n) because we perform O(log n) hill climbs per update (one hit and one miss per
neighbor).

Randomized Hill Climbing

In the next experiment, we replaced hill climbing in BUILD-SRG with randomized hill climbing,
as described in section 3. Recall that randomized hill climbing chooses the first neighbor that
makes forward progress instead of the neighbor making the most progress, so makes fewer
comparisons at each step. The experiment was conducted only on one-dimensional data with
vertices randomly distributed in [0, 1] with uniform probability as before. We counted hill climbs
and edge traversals as before, and also counted test comparisons in the innermost loop of the
randomized hill climbing algorithm (because this number is now less than the average degree).
We plotted average degree (neighbors per vertex), average path length (edge traversals per hill
climb including edge insertions), and average number of distance comparisons per edge traversal.
Each point represents a single trial.

Vertices (n)

0

2

4

6

8

10

12

14

16

18

20

 4 16 64 256 1K 4K 16K 64K 256
K

Degree

Path length

Comparisons

Fig. 4.4. Complexity of nondeterministic hill climbing for 1 dimensional data.

We then found equations that approximated the data: The procedure was to start with simple
equations predicted from section 3 or from earlier experiments (i.e. guessing degree = ln n), then
subtract or divide these predictions from the actual data and make adjustments. The process was
done manually with the help of computer generated tables. Errors were not analyzed statistically.
One set of closely fitting formulas is:

• degree = ln n + ln 2 ln1/2 n = O(log n)
• path length = 5/8 ln n ln ln n = O(log n log log n)
• comparisons = (1 + 1/n0.288) ln ln n + 1 = O(log log n)

The closeness of the fit as n grows can be seen more easily by examining the actual data and
comparing with the formulas.

n Degree Path Len. Compares
Actual Formula Actual Formula Actual Formula

2 1.00 1.27 1.50 -0.16 2.33 0.33
4 1.50 2.20 2.17 0.28 1.85 1.55
8 2.50 3.08 1.80 0.95 2.14 2.13
16 3.75 3.93 2.40 1.77 2.58 2.48
32 4.69 4.76 3.16 2.69 2.76 2.70
64 5.75 5.57 4.03 3.70 2.95 2.86
128 6.13 6.38 4.74 4.79 2.96 2.97
256 7.34 7.18 5.79 5.94 3.12 3.06
512 7.90 7.97 7.03 7.14 3.15 3.13
1K 8.77 8.76 8.24 8.39 3.20 3.20
2K 9.46 9.54 9.50 9.68 3.25 3.26
4K 10.32 10.32 10.76 11.01 3.31 3.31
8K 11.09 11.09 12.16 12.38 3.36 3.36
16K 11.85 11.86 13.58 13.78 3.41 3.41
32K 12.61 12.63 15.04 15.22 3.46 3.46
64K 13.34 13.40 16.51 16.68 3.51 3.50
128K 14.08 14.16 18.05 18.17 3.55 3.55
256K 14.85 14.93 19.58 19.68 3.60 3.59

Table 4.3. Experimental and theoretical degree, edge traversals per search, and comparisons per
edge traversal using randomized hill climbing to build an SRG.

The product of degree, path, and comparisons yields a search complexity of
O(log n log2 log n). Update still requires O(log n) searches per new vertex, or
O(log2 n log2 log n) complexity. Space complexity remains O(n log n).

Summary

We conducted experiments to estimate space and time complexity of smooth randomized graphs
with n uniformly distributed vertices in d-dimensional space using a modified update algorithm.
From the data we estimate the following complexities, when d ≤ log2 n:

Deterministic Hill Climbing Randomized Hill Climbing
Storage O(n log n) O(n log n)
Search time O(log2 n) O(log n log2 log n)
Update time O(log3 n) O(log2 n log2 log n)

Table 4.4. Summary of measured SRG complexities

We did not characterize the cases of d > log2 n, but complexity is apparently higher.

Section 5

Concurrent Access Protocols

In a distributed system, the data represented by vertices, and the pointers represented by edges, may
be stored on different servers in a connected network. Because we can easily simulate a parallel
system on a sequential one (but not the other way around), we can, without loss of generality,
describe a system in which every vertex is stored on a different server.

A pair of connected vertices:

X1 --- X2

on servers S2 and S2 is modeled by storing on S1 both the value Y1 of key X1 (indicated X1=Y1) and
the location or network address S2 of key X2 (indicated X2:S2). The link is bi-directional, so that S2

stores the corresponding information about S1.

S1 = {X 1=Y1, X2:S2} --- S2 = {X 2=Y2, X1:S1}

We describe a three layer protocol as one possible distributed implementation of a smooth
randomized graph. The protocol makes no distinction between queries (X=?) and updates (X=Y).
In both cases, the objective is to create a vertex X on some server and route messages to it from
random points in the network. Because these messages (and acknowledgments) carry local
information about the graph that can be stored, they effectively add edges between the senders and
receivers. Once a query vertex has been inserted into the graph, the answer can be extracted from
its neighborhood using a regional traversal. The query can then be deleted, or could be left in
place to signify an interest in receiving future updates.

The first level protocol is the one that adds edges to the graph. It also repairs inconsistencies and
removes edges from dead or congested servers. The second level protocol implements the update
algorithm by routing messages from random points. The third level protocol extracts the answers
from the newly updated query.

Both the first and third level protocols can cache data to improve efficiency. Caching is optional
with individual servers, but can result in the propagation of the answers to frequently asked
questions to many parts of the network, greatly improving response time and reliability. Because
caching introduces the possibility of retrieving inconsistent copies, we add timestamps and
signature routing to all data.

First Level Protocol: Consistency, Flow Control, Preemptive
Caching

Servers can become inconsistent in any number of ways. For instance, a vertex may be updated,
inserted, or removed without notifying neighbors. Vertices may also disappear temporarily or
permanently due to hardware failure or congestion. If a server does not respond, we don’t know if
the server has disappeared or if it is merely slow, but in either case we may wish to avoid it in the
future.

The first level protocol repairs inconsistencies by removing whatever each server knew about the
other (right or wrong) and replacing it with fresh data. Every message and acknowledgment at this
level includes the key, X, of the sender. It is assumed that the receiver can identify the sender as
well. When server S1 sends X1 to S2, it deletes the outgoing edge, X2:S2, if any. When S2 receives
X1 from S1, it adds the edge X1:S1 to its database, replacing any previous edge to S1, and sends an
acknowledgment X2 back to S1. When S1 receives the acknowledgment from S2, it adds back the
edge X2:S2 to its database. We are now guaranteed that S1 and S2 will be consistent and be
connected by an edge, regardless of their previous states of either.

In the following example, the keys on both servers (Alice and Bob) have each been updated without
the knowledge of the other server, producing two inconsistencies.

S1={Alice=123, Bill:S2} ---- S2={Bob=456, Alicia:S1}

S1 sends "Alice, (rest of message)" to S2

S1 removes the edge to S2

S2 updates edge to S1 with key “Alice”

S1={Alice=123} <---- S2={Bob=456, Alice:S1}

S2 replies "Ack:Bob" to S1
S1 adds edge to S2 with key “Bob”

S1={Alice=123, Bob:S2} ---- S2={Bob=456, Alice:S1}

If server S2 is down, then S1 will never receive an acknowledgment, and remove the edge to it.
When a message is routed through S1 as part of a search at a higher level protocol, the message
will be routed to some other server. Later when S2 comes back up, the edge would be added back
when a message happens to be routed from S2 to S1. If S2 is simply responding slowly due to being
overloaded, then this protocol achieves flow control by routing messages away from S2 until it is
ready.

For example, in fig. 5.1, two messages for X1 and X2 are routed through S1 at the same time.
Either message could be routed through either S2 or S3, although S2 is closer (in 2-d space). If S1

routes X1 to S2, then receives X2 before the acknowledgment from S2, then it has no choice to route
X2 to S3 until the edge to S2 is restored.

X1 X1

 X1

 X2 X2

 X2

S1

S2

S3

X2

X1

Fig. 5.1. Flow control. After S1 sends message X1 through S2, it must route around it until S2

returns an acknowledgment.

Note how caching could easily be added to the protocol by including the values along with the
keys, i.e. sending "Alice=123" and responding "Ack:Bob=456", then storing these values:

S1={Alice=123, Bob=456:S2} ---- S2={Bob=456, Alice=123:S1}

This is preemptive caching because the data being cached has not yet been requested.

Second Level Protocol: Updates

We are now ready to describe the query/update protocol. Suppose server S wishes to query X or
advertise that it knows X=Y. Then at the second level protocol, S would send a message
containing X to several random locations, with instructions to route each messages back to itself,
using a directed search if possible. At the minima, the message returns to X, creating an edge. If
X is an update (X=Y), then we are done. If X is a query (X=?), then we would obtain the answer
from the neighborhood of X using the third level protocol.

Create a vertex S={X=?} or S={X=Y}
Send (S, X) to several (O(log n)) random servers.
At each server {X0=Y0, X1:S1, X2:S2, ...} receiving (S, X), do concurrently

Find Xc in {X 0, X1, X2, ...} closest to X
If c = 0 then send () to S (a minima)
Else send (S, X) to Sc

The example in fig. 5.2 shows the effect of routing one message (S, X) to the new vertex S starting
at S1. Hill climbing toward X proceeds through S2 and S3, then reaches a minimum. At this point,
the message is routed to S, taking the address from the message. The first level protocol then adds
an edge between S3 and S.

 ()
(S,X) (S,X)

SS1

S2

S3

Fig. 5.2. Update protocol. Testing access to S from S1 results in an edge being added between S
and S3.

The algorithm does concurrent hill climbing, except that it bypasses nodes for which it is waiting
for an acknowledgment from a previous message. It could also do a randomized search by
substituting at line 4:

Pick Xc in {X 0, X1, X2, ...} with probability inversely related to dist(X, Xc)

We should note that picking a random server at line 2 is not trivial; it would require knowledge of
every server in the network. One way to implement this step is to start at a known server and
traverse several (O(log n)) edges randomly as above, but using a uniform distribution. We could
add a hop count to the message, incremented by each server, to decide when to switch from
randomized routing to directed routing.

Third Level Protocol: Query Processing and Multi-Level
Caching

At this point, we have inserted X into the graph. If X is an update, then we are done. If X is a
query (X=?), then we still need to extract the answer Y from the neighborhood of X.

If, during insertion, we encountered a vertex X=Y, then this is surely a minima since dist(X, X) =
0. Therefore, this vertex will be a neighbor of X=?. One way to extract the data is:

For each neighbor Si={Xi=Yi} of S={X=?} do
If dist(Xi, X) = 0 then return Yi

Note that if the first level protocol implements caching, then all of the needed information is
already stored on S. If not, then Yi could be returned when the message is routed back to S in the
last step of the second level protocol.

In the case of a neighborhood query (such as for text retrieval where distance determines
relevance), we are now interested in all strings Xi such that
dist(X, Xi) ≤ T, where T is some threshold. A key=value mapping is the special case of T = 0. An
update is the special case of T < 0.

Suppose we wish to find all data within some threshold distance T of point Q in graph G. One
sequential algorithm is:

Update(G, Q)
Query(G, Q, Q, T)
Remove Q from G

where

Query(G, Q, V, T)
If V is not tagged and dist(Q, V) < T then

Output V
Tag V
For each neighbor X of V do

Query(G, Q, X, T)

We treat a query as a temporary update where we store only the key. Once update connects the
query to the graph, we can retrieve the relevant data from its neighborhood. We can then remove
the query vertex and its edges (or leave them in place to signify an interest in being notified of
future updates).

The query algorithm does a recursive depth-first traversal of the neighborhood of Q within the
hypersphere of radius T. In this example (where d = 2 dimensions), the neighbors of Q might be
traversed in the order shown.

T

Q

Z

1
3

4

5

2

Fig. 5.3. Illustration of the query algorithm. A depth-first traversal bounded by T visits every
vertex within T provided that the graph is smooth. This graph is not smooth and vertex Z is

missed.

If the graph is smooth, a query is guaranteed to find every node X within T of Q, because by the
definition of smoothness, there must be a path between Q and X such that every node on the path is
closer to Q than X, and therefore within T as well. The graph above misses Z, but is not smooth
because a search for Q through Z would encounter a local minimum.

A concurrent implementation of the query algorithm uses the database key X, the server address S,
and the time, t, to uniquely define a tag. We can combine the second and third level protocols so
that as messages are routed back to S from the minima, they also propagate requests for data closer
to X than T.

Create a vertex S={X=?,now} or S={X=Y,now}
Send (S,X,T,now) to several random servers.
At each server {(X0=Y0,t0), (X1:t1,S1), (X2:t2,S2), ...} receiving (S,X,T,t),

do concurrently
Find Xc in {X 0, X1, X2, ...} closest to X
If c = 0 then (a minima)

If dist(X, X0) <= T and (X:t,S) is not in database then
Add (X:t,S) to database -- tag
Send (X0=Y0,t0) to S
Send (S,X,T,t) to all S1, S2, ...

Else send () to S
Else send (S,X,T,t) to Sc

In the following example, we add query node S, then route one of the messages to it from node 1
using the normal update protocol. Once the message is within T of the goal S (node 3), we
recursively propagate the message to all neighbors. All nodes within T also send a response
(X=Y,t) back to S, establishing a new edge (dotted line). We prevent looping (i.e. 3 to 4a to 5a to
3) by storing a tag that uniquely identifies the message and discarding duplicates.

S

3

4b

4a

2

1 4c

5a

Fig. 5.4. Combining update and query protocol. The update test message initiates a local graph
traversal when it enters the circle.

It is important that all servers agree on the distance function. If not, then it should be included in
the message (S,X,T,t,dist). This could lead to another difficulty: a graph may be smooth under one
distance function but not under another. A server might have to anticipate what version of dist
other clients might use by sampling past requests.

Multi-level Caching

The caching mechanism introduced in level 1 could be generalized, such that we send and store
messages of the form

 (X1=Y1:t,S1S2...Sn)

where S1 is the server storing the original value of X1, last updated at time t, and the S2, S3, ...
traces the order in which it was copied to each server. There is no reason why we cannot return a
cached copy of (X=Y:t,S) in response to a query (X=?), and have the receiver save those copies.
Then if a particular datum proves to be popular, then many copies will be propagated through the
network, making the data available even if the original server is overloaded with requests. A client
would use the signature list (S1S2:...) and timestamp (t) to resolve multiple copies of a datum from
different sources, preferring newer data and data from trusted servers.

Servers may delete cached data at any time. Caching is not required for the protocol to work.

Section 6

Conclusion

A spatial index is useful not just for mapping keys to values, but for any type of database where we
are interested in retrieving data "close" to some key, for example, an associative memory or a text
retrieval system. One example might be a mailing list where we wish to identify duplicate entries
with slightly different spellings.

A distributed spatial index could create a powerful system. Anyone could insert data for all to
read, but only the owner would be able to update or delete the data. We described USENET, the
Web, and DNS, all of which could be implemented this way, but it is even more powerful than that.
For example, email could be thought of as a mapping where the key is the recipient's name, and the
value is the message, encrypted for privacy. A chat room is a mapping from the name of the room
or channel to the messages posted to it, but we reverse the usual roles of the query and update,
expiring updates immediately while letting the query persist until we leave the room. Imagine if
the Web used key strings instead of location-specific URL’s to retrieve Web pages. Frequently
accessed pages could be cached on other servers for faster access, and would still be available even
if the original server were down.

Although there are ways to index data more efficiently than with a random graph, none are suitable
for a large scale distributed implementation. The SRG employs adaptive techniques to recover
from network congestion, hardware failure, and human failure, where one person could bring down
the system. We have shown evidence strongly suggesting that the smooth randomized graph does
have reasonably good complexity, better than current systems on the Internet, and we described a
protocol that would allow a distributed implementation, error recovery, and decentralized
management. Still, a number of issues need to be addressed:

• How to allocate vertices among servers. If every user has his or her own server, vertices
would be allocated locally. Service providers could also rent server space. A system that gives
users unlimited free space is subject to abuse.

• Security. If data is stored locally, then the owner of the data would be responsible for
protecting it. The issue is in how to identify the owners of data when a query gives different
answers from different sources. Clients need a secure way of identifying the source of the
data.

• Distance function. The SRG query and update algorithm depend on all servers using the same
distance function. What function is best? If the client decides, then a graph that is smooth
under one function may not be smooth under another.

We also need to decide just how these servers should be implemented. What would be the details
of the message representation? What protocol should they use, HTTP/CGI, telnet, or something
new? TCP virtual circuits or UDP datagrams?

All of these issues can probably be solved to some level of satisfaction, though it is not the purpose
of this thesis to do so. We focused on the complexity issue: is it feasible to build such a system for
a network that doubles in size each year? We analyzed the complexity, and compared it with
distributed data services now on the Internet.

Storage Query Update Robust?
USENET O(n2) O(1) O(n) Yes
Web O(n2) O(1) O(n) Yes
DNS O(n log n) O(log n) O(log n) No
SRG O(n log n) ~O(log n) ~O(log2 n) Yes
Sequential
(Hash table)

O(n) O(1) O(1) No

Fig. 5.1. Comparison of distributed data systems
(“~” means “about”. Actual complexity is O(log2 log n) higher).

Although the SRG compares favorably with other distributed systems, we wonder if we could do
better. An SRG compares poorly with widely used sequential data structures running on single
computers, for example, hash tables [Cormen, 1990]. Why is this? Nearly all commonly used data
structures, even those with less efficient access times, such as trees, linked lists, arrays, etc., are
O(n) in storage. Is there a fundamental law that demands O(n log n) storage in distributed systems
(and therefore at least O(log n) search or update time)? We know no proof of such a law, nor do
we know of any counter example.

The relatively low cost of an SRG depends on the number of dimensions in the spatial index being
O(log n), which for the Internet, would be about 30. This would seem to preclude text retrieval,
where there are thousands of dimensions, one per term. But would it? The complexity results are
based on uniformly distributed data, but we know that text vectors are not uniformly distributed. In
all natural languages, words have a Zipf distribution, such that the n'th most common word occurs
with frequency about k/n, where k = 0.1 in English [Zipf, 1935]. Surprisingly, the Zipf
distribution is common to many other types of data, not just text. Cache memory designs are based
on measurements showing a Zipf distribution among address accesses during typical program
execution, for example [Stone, 1993]. [Kauffman, 1996], states that all complex systems, such as
the DNA-gene regulatory system, evolve toward the boundary between stability and chaos. The
attractors (state cycles), and thus the outputs, of such systems have a Zipf distribution.

We did not explore the effects of a non uniform distribution on complexity, but it would be
reasonable to expect that a higher number of dimensions could be supported. If we look at the
range of distances between all possible pairs of n vertices in d dimensions, we find that the
distribution becomes narrow as d increases. In other words, if d is small, then there are some pairs
of points that are close together and other pairs that are far apart, but if d is very large, then all
pairs of points are about the same distance apart. We believe that it is this effect which increases
the storage cost of an SRG as d increases.

Our experiments were conducted with uniformly distributed random data, but we know that real
data is not like that. If data tends to cluster together, then we would observe a distribution of
distances that mimics a smaller number of dimensions. This might result in a lower storage cost.

We saw earlier that we could trade off the number of edges vs. path length to reduce
communication costs at the expense of memory and computation. It is very tempting to find the
optimal tradeoffs in a prototype system and use them in the final design. Unfortunately, in a small
system, the optimal tradeoff may very well be a fully connected graph and a path length of 1, i.e.,
full replication of the index on every server. Unfortunately, that is exactly what we have with
USENET and the Web search engines, and it is only when n becomes very large that we realize
that there is a better way.

References

Bentley, Jon Lewis, "Multidimensional Binary Search Trees Used for Associative
Searching", Communications of the ACM, 18(1975), pp. 509-517.

Bell, D., and J. Grimson, Distributed Database Systems, Addison-Wesley, 1992.

Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest, Introduction to
Algorithms, McGraw-Hill, 1990.

Grossman, David. A., and Ophir Frieder, “Information Retrieval: Algorithms and
Heuristics”, Kluwer Academic Publishers: to be published (1998).

Harman, D. (ed), "Overview of the Third Text REtrieval Conference (TREC-3)",
National Institute of Standards and Technology Special Publication
500-225, Gaitersberg MD 20879, 1995.

Hunt, Craig, TCP/IP Network Administration, O'Reilly & Assoc., 1992.

Kantor, A., and M. Newbarth, "Off the Charts", Internet World, Dec. 1996, p. 44.

Kauffman, Stuart A., "Antichaos and Adaptation", Scientific American web site,
http://www.sciam.com/explorations/062496kaufman.html, 1996
(Oct. 27, 1997)

Korth, H. and A. Silberschatz, Database System Concepts, McGraw-Hill, 1991.

Krol, E., The Whole Internet User's Guide and Catalog, 2nd Ed., O'Reilly &
Assoc., 1992.

Mitchell, Tom M., Machine Learning, McGraw-Hill, 1997.

Schäuble, Peter, “Multimedia Information Retrieval”, Kluwer Academic
Publishers, 1997.

Sparck Jones, Karen, and Peter Willett, eds., “Readings in Information Retrieval”,
Morgan Kaufmann Publishers, 1997.

Stanfill, Craig, and Brewster Kahle, "Parallel Free-Text Search on the Connection
Machine System", Communications of the ACM, 29(1986) pp. 1229-1239.

Steinberg, S., "Seek and Ye Shall Find (Maybe)", Wired, May 1996, p. 108.

Stone, Harold S., High Performance Computer Architecture, 3rd. Ed.,

Addison Wesley, 1993.

Tansel, et. al., Temporal Databases, Benjamin/Cummings Publishing Co., 1993.

Zipf, George Kingley, The Psycho-Biology of Language, an Introduction to
Dynamic Philology, M.I.T. Press, 1935, 1965.

Appendix

Test Results: Deterministic Hill Climbing

Test results for deterministic hill climbing (Fig. 4.1, 4.2, 4.3). Columns are:
• Trials: Number of independent experiments. Remaining data is averaged over the trials.
• n: Number of vertices.
• dim: Number of dimensions (d).
• ln n: Natural log of n (for reference only).
• Order: Average number of neighbors per vertex, weighting each vertex equally
• Fanout: Average number of neighbors tested at each vertex during hill climbing. This number

may be larger because high-order vertices are traversed more frequently, or smaller because
the neighbors are counted before the graph is complete.

• Path: Average number of edges traversed during hill climbing, including the added edge if
any.

• Finds: Average number of hill climbs needed before a vertex is found after completion of the
build phase. Approximate inverse of smoothness.

Trials n dim ln n Order Fanout Path Finds
 128 8 1 2.08 2.56 2.85 1.61 1.3340
 16 8 8 2.08 2.88 2.98 1.57 1.1953
 2 8 64 2.08 4.25 4.07 1.40 1.0625
 16 64 1 4.16 5.05 5.15 2.86 1.1563
 2 64 8 4.16 7.00 6.96 2.38 1.1328
 1 64 64 4.16 7.75 7.75 2.16 1.3281
 2 512 1 6.24 7.47 7.46 4.30 1.1895
 1 512 8 6.24 12.08 11.99 3.12 1.1094
 1 512 64 6.24 17.04 19.02 2.68 1.2051
 1 4096 1 8.32 9.58 9.47 5.81 1.0483
 1 4096 8 8.32 17.65 17.50 3.90 1.1003
 1 4096 64 8.32 33.69 43.37 3.06 1.1926
 1 32768 1 10.40 11.67 11.39 7.36 1.0277
 1 32768 8 10.40 23.55 22.99 4.66 1.0802

Trials n dim ln n Order Fanout Path Finds
 128 8 1 2.08 2.62 2.88 1.58 1.2627
 16 8 8 2.08 2.69 2.93 1.49 1.6172
 2 8 64 2.08 2.63 3.36 1.41 2.0000
 1 8 512 2.08 2.75 2.97 1.30 1.8750
 16 64 1 4.16 5.11 5.19 2.86 1.1777
 2 64 8 4.16 6.73 6.88 2.37 1.1875
 1 64 64 4.16 8.00 9.47 2.07 1.1406
 1 64 512 4.16 9.09 8.77 2.04 1.1563
 2 512 1 6.24 7.47 7.40 4.33 1.0537
 1 512 8 6.24 12.06 12.09 3.12 1.0977
 1 512 64 6.24 16.46 20.08 2.66 1.1738
 1 512 512 6.24 19.20 22.85 2.51 1.1895
 1 4096 1 8.32 9.57 9.41 5.84 1.0378
 1 4096 8 8.32 17.70 17.51 3.90 1.0930
 1 4096 64 8.32 33.56 42.39 3.06 1.1626
 1 32768 1 10.40 11.67 11.39 7.36 1.0277
 1 32768 8 10.40 23.55 22.99 4.66 1.0802

Trials n dim ln n Order Fanout Path Finds
 4 256 1 5.55 6.65 6.66 3.80 1.1465
 2 256 2 5.55 7.58 7.49 3.44 1.1309
 1 256 4 5.55 8.59 8.46 3.15 1.1016
 1 256 8 5.55 10.37 10.45 2.85 1.1250
 1 256 16 5.55 11.55 12.29 2.68 1.1602
 1 256 32 5.55 12.70 13.14 2.58 1.1719
 1 256 64 5.55 13.84 14.26 2.50 1.1133
 1 256 128 5.55 13.73 15.47 2.49 1.2188
 1 256 256 5.55 14.69 15.53 2.40 1.1445
 1 256 512 5.55 14.20 16.72 2.39 1.2227
 1 256 1024 5.55 14.75 16.12 2.38 1.2070

Trials n dim ln n Order Fanout Path Finds
 1 1024 1 6.93 8.05 8.03 4.87 1.0811
 1 1024 2 6.93 9.41 9.13 4.30 1.0645
 1 1024 4 6.93 11.29 11.06 3.76 1.0889
 1 1024 8 6.93 13.83 13.95 3.39 1.1191
 1 1024 16 6.93 17.06 17.85 3.10 1.1426
 1 1024 32 6.93 19.60 21.91 2.91 1.1699
 1 1024 64 6.93 21.31 24.97 2.82 1.1846
 1 1024 128 6.93 23.64 27.74 2.71 1.1738
 1 1024 256 6.93 25.53 29.21 2.64 1.1660
 1 1024 512 6.93 24.62 32.01 2.64 1.2168
 1 1024 1024 6.93 25.11 33.50 2.61 1.1963

Trials n dim ln n Order Fanout Path Finds
 1 4096 1 8.32 9.58 9.41 5.85 1.0457
 1 4096 2 8.32 11.32 10.91 5.12 1.0459
 1 4096 4 8.32 13.82 13.29 4.44 1.0728
 1 4096 8 8.32 17.75 17.63 3.89 1.0984
 1 4096 16 8.32 22.90 24.67 3.51 1.1270
 1 4096 32 8.32 29.08 32.74 3.24 1.1497
 1 4096 64 8.32 34.24 41.95 3.06 1.1523

Trials n dim ln n Order Fanout Path Finds
 1 16384 1 9.70 10.96 10.74 6.85 1.0359
 1 16384 2 9.70 13.09 12.60 5.94 1.0422
 1 16384 4 9.70 16.24 15.50 5.12 1.0587
 1 16384 8 9.70 21.51 21.11 4.42 1.0867

Trials n dim ln n Order Fanout Path Finds
 1 65536 1 11.09 12.37 12.04 7.87 1.0336
 1 65536 2 11.09 14.83 14.17 6.79 1.0345
 1 65536 4 11.09 18.70 17.72 5.77 1.0505
 1 65536 8 11.09 25.55 24.81 4.91 1.0768

Test Results: Randomized Hill Climbing

Test results for randomized hill climbing (Fig. 4.4). Each line represents one trial. Key:
• n: number of vertices.
• d: number of dimensions (second table. d = 1 in the first table).
• deg: Average number of neighbors (same as “order” above).
• path: as above.
• tests: “fanout” as above.
• length: Average edge length. Vertices are uniformly distributed in [0, 215/d1/2)d. dist(a, b) ≡ |a

- b|2 (Euclidean distance squared). The space was chosen so that the maximum distance
between diagonally opposite corners is 230.

n= 2 deg= 1.00 path= 1.50 tests= 2.33 length=400118230
n= 4 deg= 1.50 path= 2.17 tests= 1.85 length=135625335
n= 8 deg= 2.50 path= 1.80 tests= 2.14 length=146632048
n= 16 deg= 3.75 path= 2.40 tests= 2.58 length=210729953
n= 32 deg= 4.69 path= 3.16 tests= 2.76 length=150764551
n= 64 deg= 5.75 path= 4.03 tests= 2.95 length=135981257
n= 128 deg= 6.13 path= 4.74 tests= 2.96 length=112885719
n= 256 deg= 7.34 path= 5.79 tests= 3.12 length=102618208
n= 512 deg= 7.90 path= 7.03 tests= 3.15 length= 86481803
n= 1024 deg= 8.77 path= 8.24 tests= 3.20 length= 86274867
n= 2048 deg= 9.46 path= 9.50 tests= 3.25 length= 77062958
n= 4096 deg= 10.32 path= 10.76 tests= 3.31 length= 71470495
n= 8192 deg= 11.09 path= 12.16 tests= 3.36 length= 65274216
n= 16384 deg= 11.85 path= 13.58 tests= 3.41 length= 61596182
n= 32768 deg= 12.61 path= 15.04 tests= 3.46 length= 57251611
n= 65536 deg= 13.34 path= 16.51 tests= 3.51 length= 54378841
n=131072 deg= 14.08 path= 18.05 tests= 3.55 length= 51458284
n=262144 deg= 14.85 path= 19.58 tests= 3.60 length= 48878647

n= 4 d= 2 deg= 1.00 path= 0.75 tests= 1.33 len=115892273
n= 8 d= 3 deg= 3.25 path= 1.73 tests= 2.56 len=149059743
n= 16 d= 4 deg= 3.75 path= 2.30 tests= 2.51 len= 95908214
n= 32 d= 5 deg= 5.50 path= 2.63 tests= 3.22 len=112717106
n= 64 d= 6 deg= 6.88 path= 3.08 tests= 3.74 len= 90161646
n= 128 d= 7 deg= 8.95 path= 3.40 tests= 4.46 len= 89725966
n= 256 d= 8 deg= 11.30 path= 3.96 tests= 5.07 len= 85027810

n= 512 d= 9 deg= 13.89 path= 4.44 tests= 5.78 len= 83748440
n= 1024 d= 10 deg= 16.70 path= 4.89 tests= 6.50 len= 79138167
n= 2048 d= 11 deg= 19.86 path= 5.38 tests= 7.22 len= 76455514
n= 4096 d= 12 deg= 23.79 path= 5.81 tests= 8.21 len= 74114184
n= 8192 d= 13 deg= 27.82 path= 6.27 tests= 9.09 len= 71483939
n=16384 d= 14 deg= 32.53 path= 6.73 tests= 10.14 len= 69748360
n=32768 d= 15 deg= 37.94 path= 7.19 tests= 11.28 len= 67660581
n=65536 d= 16 deg= 43.92 path= 7.64 tests= 12.52 len= 65862563

