

Incrementally Learning Rules

for Anomaly Detection

by

Denis Petrussenko

A thesis submitted to the College of Engineering at

Florida Institute of Technology
in partial fulfillment to the requirements

for the degree of

Master of Science
in

Computer Science

Melbourne, Florida
May, 2009

CS-2009-02

© Copyright 2009 Denis Petrussenko

The author grants permission to make single copies _______________________________

We the undersigned committee
hereby approve the attached thesis

Incrementally Learning Rules for Anomaly Detection

by
Denis Petrussenko

Philip K. Chan, Ph.D., Major Advisor

Associate Professor, Computer Science

Marius Silaghi, Ph.D.

Assistant Professor, Computer Science

Georgios C. Anagnostopoulos, Ph.D.

Assistant Professor, Electrical and Computer Engineering

William D. Shoaff, Ph.D.

Associate Professor and Department Head, Computer Science

iii

Abstract

Title: Incrementally Learning Rules for Anomaly Detection

Author: Denis Petrussenko

Committee Chair: Philip K. Chan, Ph.D.

LERAD is an algorithm which learns rules that can be used for anomaly detection.
However, because it is an offline algorithm, all training data has to be present before rules
can be generated. We desire to create rules incrementally, as training data becomes
available. Furthermore, accuracy should not suffer, remaining similar to offline LERAD.
We present an algorithm that accomplishes this by carrying a small amount of data
(namely, rules and sample sets) between days and pruning rules after the final day.
Experimental results show that the difference in accuracy between incremental and
offline LERAD is small enough to be statistically insignificant. Additionally, incremental
LERAD achieves similar accuracy to offline while generating fewer rules, thereby
decreasing overhead during detection.

iv

Table of Contents

List of Figures ... v

List of Tables ... vi

1) Introduction ... 1

2) Related Work ... 4

2.1) Overview ... 4

2.2) Rule Learning .. 4

2.3) Anomaly Detection ... 5

3) Approach ... 7

3.1) Original LERAD (Offline) .. 7

3.2) Basic Incremental Algorithm .. 11

3.3) Collecting Appropriate Statistics .. 14

3.4) Pruning Rules .. 17

4) Empirical Evaluation .. 20

4.1) Data .. 20

4.2) Experimental Procedures ... 20

4.3) Criteria .. 21

4.4) Establishing the Pruning Parameter ... 23

4.5) Ruleset Sizes ... 25

4.6) How Rule Statistics Affect Performance ... 27

5) Conclusions .. 35

5.1) Summary of Findings .. 35

5.2) Limitations and Possible Improvements .. 36

References ... 37

v

List of Figures

Fig. 1: Machine Learning Applied To Anomaly Detection ... 1

Fig. 2: Anomaly Detection With Rules ... 2

Fig. 3: Rule types .. 4

Fig. 4: Main steps of Offline LERAD algorithm (Adapted from Fig. 1 in Tandon & Chan,
2007) .. 8

Fig. 5: LERAD data flow .. 9

Fig. 6: Main steps of incremental LERAD algorithm .. 12

Fig. 7: Incremental LERAD data flow for day 1 and 2 .. 13

Fig. 8: Incremental LERAD data flow for all days ... 14

Fig. 9: Sample Set Expansion ... 16

Fig. 10: Incremental LERAD with corrected rule statistics ... 17

Fig. 11: Incremental LERAD with corrected rule statistics and rule pruning 19

Fig. 12: Example ROC Curves ... 22

Fig. 13: ∆ܥܷܣs versus Bs ... 24

Fig. 14: Possible outcomes of rule comparison ... 26

Fig. 15: B=2, discrepancy in ݊ versus discrepancy in ܰ29 .. ܦ

Fig. 16: B=2, discrepancy in ݎ versus discrepancy in ܰ30 .. ܦ

Fig. 17: B=2, discrepancy in ݓ versus discrepancy in ܰ31 ... ܦ

Fig. 18: B=2, average discrepancy in ݊ versus average discrepancy in ܰ32 ܦ

Fig. 19: B=2, average discrepancy in ݎ versus average discrepancy in ܰ33 ܦ

Fig. 20: B=2, average discrepancy in ݓ versus average discrepancy in ܰ34 ܦ

vi

List of Tables

Table 1: Mock data sets ... 10

Table 2: Example rules ... 11

Table 3: Rules that detected attacks in OFF but did not detect in INCR 15

Table 4: Problem rules after using ܶܥ݇ܦ instead of 16 ... (6) ܶ݇ܦ

Table 5: INCR rules responsible for detections and false alarms .. 18

Table 6: P(T<=t) two-tail for two-sample T-test .. 24

Table 7: P(T<=t) two-tail for paired two sample T-test ... 25

Table 8: Rule comparison example ... 26

Table 9: Average rule set sizes (as percent of total number of OFF rules) 27

Table 10: Average size of final rule sets .. 27

1

1) Introduction

Intrusion detection is usually split into two approaches: signature and anomaly
detection. With signature detection, attacks are analyzed and unique descriptions are
generated that describe them. This allows for extremely accurate detections of known
attacks. However, the drawback is that attacks need to be analyzed and have a signature
before they can be detected. This approach does not work well with new or unknown
threats. With anomaly detection, a model is built to describe normal behavior and
anything that does not fit the model is marked as an anomaly, allowing for the detection
of previously unseen threats. The major drawback is that not all anomalous activity is
malicious and false alarms become a massive issue. This work is about an intrusion
detection algorithm that uses machine learning techniques to detect anomalies.

 In machine learning, a set of “normal” (i.e. attack-free) data is processed by the
learning algorithm, which results in a model being generated that represents the training
data. The model typically takes the form of weights, statistics or rules. In this paper, the
model is composed of rules. After a model is generated, it can be used for anomaly
detection. Records from a test set, which is data that has not been seen previously, are
compared against the model. In cases where a record does not fit the model, an alert is
generated. The alerts are then used to flag intrusions. See Fig. 1 for an illustration of this
concept.

Fig. 1: Machine Learning Applied To Anomaly Detection

 An example of anomaly detection is shown in Fig. 2. Data records are represented
by solid shapes and outlined ovals show the model, with each oval corresponding to a
single rule. In this case, the set of all rules (ovals) makes up the model from Fig. 1. Each
rule describes some data records and ideally, all rules together describe most training
data. Squares represent training data, with testing data being shown by diamonds,

2

triangles and circles. Diamonds fit into the model and will not generate alarm scores (i.e.
alarm value will be 0). Triangles are outside the model, but still pretty close. This will
result in low alarm scores, which may or may not be treated as an alarm, depending on
the state of the detector. Finally, circles are far away from the known model and
therefore will trigger large alarm scores, marking them as anomalies in virtually all cases.
In general, the further a record is away from the known model, the more likely it is to be
treated as an anomaly.

Fig. 2: Anomaly Detection With Rules

 LERAD, an algorithm proposed by Mahoney & Chan (2003), generates rules that
describe normal behavior. These rules can then be used to detect anomalies. However,
LERAD is an offline algorithm that generates rules only after seeing all training data. With
intrusion detection, it is beneficial to have an up-to-date system at all times. Time spent
waiting for training data is time during which previously unseen normal system activity
can trigger false alarms, leading to missed detections.

We want to start creating and updating rules as soon as possible, so that we can
detect anomalies with new updates rules frequently. For example, we would like to have
updated rules every day. We desire to generate rules incrementally, as data becomes
available. Furthermore, performance should be no worse than the offline algorithm.
Because the goal is similar accuracy, the difference between incremental and offline
algorithms should be statistically insignificant on multiple datasets.

 Offline LERAD works by creating a small sample set to represent the large training
set (representing, for example, a week of data) and picking records from it at random,
using matching attributes from both records to form rules. They are then trained and
validated on the rest of the training data. Our incremental algorithm performs similar
steps, working with smaller sets of training data (for example, with each day of the week).
The sample set is shrunk from the offline version and carried between days. However, it
looks similar to offline after processing the same amount of data. Rules are generated in
the same fashion as before and also carried between days. We then modify the sample
set structure to include some statistics about the training data it was generated from,

3

leading to generated rules having closer anomaly scores to those from offline.
Furthermore, we address the issue of online generating too many rules by pruning them
after all training data is processed.

 Our contributions include:
• an algorithm which creates rules that can be used for anomaly detection

incrementally, as data becomes available;
• an incremental version of LERAD with accuracy similar, to the point of their

difference not being statistically significant, to the original, offline version of
LERAD;

• although incremental LERAD boasts similar accuracy to offline, this is
accomplished with fewer rules, leading to less overhead during detection.

 The next section contains related work. Following that, section 3 describes details
of our approach, with evaluation and analysis provided in section 4. The paper is
concluded in section 5, with an overview and some limitations. Note that because LERAD
is an offline algorithm, we refer to it as OFF in this paper. Our version is referred to as
incremental LERAD, or INCR.

4

2) Related Work

2.1) Overview

2.2) Rule Learning
LERAD is a rule algorithm that generates association rules. However, because they

are created strictly from one class of training data (normal), they are used for
characterization. In general, there are two general kinds of rule learning algorithms, those
that learn classification rules and those that learn association rules (see Fig. 3). Rules that
can have any attribute as the consequent are known as association rules. They normally
present valuable information about relationships in the dataset. Rules where the attribute
of the consequent is fixed are classification rules, meant to separate the data into known
classes. When the consequent is present, the value is used as the class label. If the
consequent is missing, that can be thought of as an implicit class label. That is, if a rule
matches at all, the record belongs to the single default class. Rules that are meant to
describe a single class are known as characterization rules, as opposed to rules that split
data into several classes, which are known as classification rules. Problems that
characterization rules are applied to (such as anomaly detection) are harder to work with
than multi-class problems. This is due to the fact that the boundary around a single class
is usually far less apparent than when a solution space is split into multiple known classes.

Fig. 3: Rule types

CN2 (Clark and Niblett, 1989) is an induction rule learning algorithm that
generates classification rules to label available training data. It uses a beam search
approach and evaluates rules based on their classification accuracy over training data.
The resulting ruleset is able to classify all training data into known classes.

Another algorithm that generates rules for classification of data is RIPPER (Cohen,
1995). Like CN2, it also generates rules to classify all training data. Both algorithms
employ a greedy beam search to find the best rules. However, during rule generation,

5

where CN2 just keeps growing a rule until it stops increasing in performance, RIPPER both
grows and prunes the rules that it generates, effectively increasing the beam size.

Marginal Method (Das and Schneider, 2007) looks for anomalous instances in the
training set. This is accomplished by building a set of rules that look at attributes which
are determined to be statistically dependent. The resulting rules are used to determine
which training records are unexpected or anomalous. They can then be used to classify
training data as “normal” or “abnormal”.

APRIORI (Agrawal and Srikant, 1994) generates all association rules above certain
confidence and support levels that apply to the training data. The resulting rules are not
used to classify training data, but rather to predict trends present in it. Because they are
valuable in predicting shopping behavior, for example, it is desirable to find as many
association rules for a given dataset as possible. The rules are meant to provide
information and are not used for classification tasks.

WSARE (Wong et al, 2005) generates a single rule for a target day, along with a
probability of it being true. The goal is to describe as many anomalous training records as
possible. This is accomplished by establishing a baseline and looking for training records
that deviate from it. The output rule is the best (most statistically significant) description
of all relationships in the training data. Again, it is meant to provide information and not
used for classification. However, since the rules describe the most anomalous occurrence,
any record that matches them can be classified as abnormal.

2.3) Anomaly Detection
 The goal of anomaly detection is to determine expected or normal behavior of a
system and flag instances that do not follow the normal characteristics. This usually
involves building a model of the system and comparing new data with the model. A
number of anomaly detection algorithms have been developed and applied to host
intrusion detection, analyzing data collected from system calls, web logs, general system
attributes and network traffic. While most anomaly detection algorithm applications
center on analyzing a single source of data, this is not a requirement. For example, LERAD
is applied both to network logs and system calls. Furthermore, anomaly detection does
not always involve detecting computer intrusions. It can be applied to any process where
anomalies exist and are useful to detect, such as manufacturing or epidemiology.

 VtPath (Feng et al, 2003) analyzes system calls at the kernel level. Looks at call
stack during system calls and builds an execution path between subsequent calls. Such a
model allows for detection of a corrupted stack, unexpected return addresses, changing
system calls and previously unseen virtual paths between them.

6

 Kruegel et al (2003) look at actual system call parameters, instead of just system
calls. A model is built for each system call per application and deviation from all models is
analyzed during detection. Models are built from parameter length, character
distribution, structure and tokens.

 Kruegel and Vigna (2003) examine activity logs for web applications, looking at a
specific subset of parameterized web requests. Models are built on request parameters,
based on their presence, length, character distribution, structure and tokens.

 A slightly different approach is taken by Robertson et al (2006). Again,
parameterized web requests are analyzed, but models are now built for each resource,
based on parameter length, character distribution, structure and tokens. During
detection, parameters outside the model are treated as alerts and a signature is
generated that can match same or similar ones. Heuristics are used to classify alerts into
attack types, but only after an anomalous event occurs to trigger an alarm. Anomaly
signatures are used to group many alerts together, simplifying the system administrator’s
job.

 Shavlik and Shavlik (2004) propose monitoring various system attributes to
determine unauthorized or abnormal system usage. A model is built by learning weights
for all attributes during normal operation. During detection, scores are generated based
on weights and probabilities of attributes having certain values. This approach examines
overall computer usage, not any particular application.

 A comparative study of outlier detection algorithms applied to network data is
done by Lazarevic et al (2003). Specifically, algorithms analyzed include distance to k
nearest neighbors, just nearest neighbor, Mahalanobis distance, density based local
outliers and unsupervised support vector machines. Density based local outliers
performed far better than others. However performance was not high enough to allow
for on-line network data analysis.

 PAYL (Wang et al, 2005) examines anomalous packets coming into and then being
sent out from the same host. A model generated for each deployment site, using n-grams
from network packet datagrams, looking at distribution of single bytes. The algorithms
used for input/output correlation also provide signatures that can detect similar activity.
This data can be quickly shared between various sites to deal with zero-day threats.

7

3) Approach

3.1) Original LERAD (Offline)
 LEarning Rules for Anomaly Detection, or LERAD (Mahoney & Chan, 2003), is an
efficient, randomized algorithm that creates rules in order to model a time series. The
rules describe what data should look like and are used to generate alarms when it no
longer corresponds to the model. Rules have the format: ܽଵ = ଵଵݒ ∧ ܽଶ = ଶଷݒ ∧ … => ܽ௖ ∈ ,௖ଵݒ} ,௖ଶݒ … } ݎ] [ݓ ݊

where ܽ௜ is attribute ݅ in the dataset, ݒ௜௝ is the ݆th value of ܽ௜ and ݎ, ݊ and ݓ are statistics
used to calculate a score upon violation.

 is the number of unique values in the rule’s consequent, which represents how ݎ
likely the rule is to be violated. For example, a rule with a high ݎ value has already been
exposed to a lot of new values, so it is not very surprising to see another new one. On the
other hand, rules with a low ݎ value have not seen a lot of variation in the data, so seeing
a new value is less expected. The problem is that ݎ values rely on rules to be exposed to a
lot of data before they are accurate, which is where ݊ comes in. ݊ is the number of
records that matched the rule’s antecedent. Each time ݊ is incremented, the ݎ value can
potentially be increased as well, if the consequent attribute value in the tuple is not
already present in the rule. In effect, ݊ is amount of confidence we have that the ݎ value
of a rule is correct. Then rules with high ݊ values and low ݎ values are desired as they
reflect properties of data that are known to not change, generating a larger “surprise”
when they are violated. This was proposed in Witten & Bell (1991).

 is a measure of how well a rule performs on the validation set. It is calculated ݓ
by observing the difference in mutual information between instances where rules
conform to records and when they are violated (Tandon & Chan, 2007). Let ܻ be the
target attribute of rule ݎ௜ and ܺ be the antecedent of ݎ௜, then:

௜ݓ ቆܻ ∈ ൛ݕଵ, ,ଶݕ … , ௝ൟܻݕ ∉ ൛ݕଵ, ,ଶݕ … , ௝ൟݕ ቤܺቇ = ൫ܻܫ ∈ ൛ݕଵ, ,ଶݕ … , ;௝ൟݕ ܺ൯ − ൫ܻܫ ∉ ൛ݕଵ, ,ଶݕ … , ;௝ൟݕ ܺ൯

where ܫ(ܽ; ܾ) is the mutual information of ܽ and ܾ, calculated as:

;ܽ)ܫ ܾ) = ܲ(ܽ, ܾ) log ቆ ܲ(ܽ, ܾ)ܲ(ܽ)ܲ(ܾ)ቇ

8

The ௡௥ values of rules can be thought of as the belief of a rule about its own quality, e.g

statistics that predict how well a rule should perform. The ݓ value is more of a
predictiveness score, i.e. how well the rule actually performs.

 After rules are generated and their statistics are calculated, they are used by
LERAD to generate anomaly scores on unseen data. For each record ݀ ∈ ௜ݎ every rule ,ܦ
will either match or not match antecedent values. Only rules that do match are used to
compute the anomaly score. Let ܴ be the set of rules whose antecedents match ݀, then
score is calculated by: ܵܿ݁ݎ݋(݀) = ෍ ௜ݓ௜ݐ ݊௜ݎ௜௥೔∈ோ

where ݐ is the amount of time since this rule was last involved in an alarm. The goal is to
look for rule violations that are most surprising, and a rule that has been violated recently
is more likely to be violated again, as opposed to a rule that has been matching records
for a long time. Scores above a certain threshold are then used to trigger actual alarms.

Input: sample set (ܦ௦), training set (ܦ௧) and validation set (ܦ௩)
Output: LERAD rule set R

1. Generate candidate rules ܴ′ from ܦ௦ and evaluate them
2. Perform coverage test – select a “minimal” set from ܴ′ that covers ܦ௦:

a. Sort ܴ′ in increasing order of probability of being violated
b. Discard rules from ܴ′ that do not cover any attribute values in ܦ௦

3. Train the rest of ܴ′ on ܦ௧
4. Validate ܴ′ on ܦ௩

a. Increase weight on rule conformance (increase rule belief)
b. Decrease weight on rule violation (reduce rule belief)

Fig. 4: Main steps of Offline LERAD algorithm (Adapted from Fig. 1 in Tandon & Chan, 2007)

 The LERAD algorithm is composed of four main steps in pseudocode shown in Fig.
4, with the corresponding dataflow in LERAD displayed in Fig. 5. Rule generation (step 1)
involves picking antecedent and consequent attributes based on similarities of tuples
randomly picked from the sample set. After a sufficient number of rules are generated, a
coverage test is performed to minimize the number of rules (step 2). This is accomplished
by only keeping enough rules to describe ܦ௦ and removing those that do not cover
additional records (e.g. improve the model). Step 3 is to then expose the rules to the
training set and update their ݊ and ݎ values based on how they apply to ܦ௧. Finally, the
weight of evidence is calculated for each rule (step 4) by applying it to ܦ௩ and observing
how many times it conforms or violates. The output is a set of rules ܴ, which is used to
generate alarms on unseen data.

9

DT

DS

DV

R

R’

Step 1

Step 3

Step 4

Output

Input

R
Step 2

Fig. 5: LERAD data flow

 While applying LERAD on data from Table 1, rules that are generated in various
stages are shown in Table 2. Candidate rules in a) are a possible outcome of step 1. Rule 1
was generated by picking records 3 and 5 from the sample set. The first matching
attribute happened to be destination, so it became the rule consequent. port was the
next matching attribute, therefore it was added to the antecedent. Since there were no
other matching attributes, the antecedent did not grow further. In a similar fashion, rule 2
was created from records 3 and 4 and rule 3 from records 1 and 2. Note that LERAD will
produce more rules on the same data than those in a), the ones shown are just an
example. The rules are sorted by their n/r values during step 2, as shown in b), to ensure
the coverage test works properly. When checking rules in b) against the mock sample set,
rule 1 will match both antecedent and consequent values on all records that rule 3 would.
Because rule 3 is not able to match any records that have not been matched, or covered,
by rule 1, it is removed, as shown in c). During step 3, rules are trained on all data, which
is not shown, usually resulting in expanded consequent values (and increased rs). For
example, records 27 and 33 in the training set provide extra consequent values for rule 1.
The n values also increase for most rules at this stage, as rules match previously unseen

10

records. Note that rules from the validation set are not used for training, since they are
held out for the next step. The validation step applies candidate rules, shown in d), to the
validation set. Statistics are updated and the w value is calculated and in original LERAD,
rules with ݓ ≤ 0 are deleted. In this case, rows in the validation set act as negative
evidence for rule 2 from d), causing it to be removed. Then final output of LERAD is then
presented in e).

Table 1: Mock data sets
Training Set word1 word2 ip dest port
1 HELO example.com 10.0.0.17 10.0.0.200 25
5 HELO sample.com 10.0.0.24 10.0.0.201 25

…
14 GET /about.html 10.0.0.8 10.0.0.15 80
18 POST /about.html 10.0.0.13 10.0.0.15 80
22 POST /index.html 10.0.0.4 10.0.0.15 80

…
27 … … … 10.0.0.16 80
33 … … … 10.0.0.10 80

Sample Set word1 word2 ip dest port
1 HELO example.com 10.0.0.17 10.0.0.200 25
2 HELO sample.com 10.0.0.24 10.0.0.201 25
3 GET /about.html 10.0.0.8 10.0.0.15 80
4 POST /about.html 10.0.0.13 10.0.0.15 80
5 POST /index.html 10.00.4 10.0.0.15 80

Validation Set word1 word2 ip dest port
1 HELO somehost.com 10.0.0.12 10.0.0.202 26
2 HELO otherhost.com 10.0.0.12 10.0.0.203 27

…

11

Table 2: Example rules

a) Candidate rules after step 1 (rule generation) n/r
ݐݎ݋݌ 1 = 80 => ݐݏ݁݀ ∈ {10.0.0.15} 3/1
2݀ݎ݋ݓ 2 .ݐݑ݋ܾܽ/= ℎ݈݉ݐ ∧ ݐݎ݋݌ = 80 => ݐݏ݁݀ ∈ {10.0.0.15} 2/1
1݀ݎ݋ݓ 3 = ܱܮܧܪ => ݐݎ݋݌ ∈ {25} 2/1

b) Candidate rules during step 2 (ranking before coverage test) n/r
ݐݎ݋݌ 1 = 80 => ݐݏ݁݀ ∈ {10.0.0.15} 3/1
1݀ݎ݋ݓ 2 = ܱܮܧܪ => ݐݎ݋݌ ∈ {25} 2/1
2݀ݎ݋ݓ 3 .ݐݑ݋ܾܽ/= ℎ݈݉ݐ ∧ ݐݎ݋݌ = 80 => ݐݏ݁݀ ∈ {10.0.0.15} 2/1

c) Candidate rules after step 2 (coverage test) n/r
ݐݎ݋݌ 1 = 80 => ݐݏ݁݀ ∈ {10.0.0.15} 3/1
1݀ݎ݋ݓ 2 = ܱܮܧܪ => ݐݎ݋݌ ∈ {25} 2/1

d) Candidate rules after step 3 (training on entire training set) n/r
ݐݎ݋݌ 1 = 80 => ݐݏ݁݀ ∈ {10.0.0.15 10.0.0.16 10.0.0.10} 9/3
1݀ݎ݋ݓ 2 = ܱܮܧܪ => ݐݎ݋݌ ∈ {25} 7/1

e) Final LERAD rules after step 4 (validation) n/r
ݐݎ݋݌ 1 = 80 => ݐݏ݁݀ ∈ {10.0.0.15 10.0.0.16 10.0.0.10} 9/3

3.2) Basic Incremental Algorithm
Each dataset used for LERAD is divided into three sets: training, validation and

test. For day ݇, let the sample set be ܦ௞ௌ, training set be ܦ௞் and validation set be ܦ௞௏.
With OFF, training data consisted of one dataset and testing data of another. With INCR,
training data is split into roughly equal-sized sets, or “days”, with testing data remaining
in a single set. Regardless of being split up, the training data for INCR is exactly the same
as for OFF. The sample set is generated by randomly copying a small amount of records
from ܦ௞் . Lastly, ܦ௞௏ consists of a small fraction (e.g. 10%) of all training set records,
removed before training data is loaded. Training records that are moved into the
validation set are chosen at random, but the exact records used in INCR and OFF are
always the same.

12

Input: ݉ sample sets (ܦଵௌ to ܦ௠ௌ), ݉ training sets (ܦଵ் to ܦ௠்) and ݉ validation sets (ܦଵ௏ to ܦ௠௏)
Output: LERAD rule set R
For each day ݇:

1. Generate candidate rules ܴ௞ᇱ from ܦ௞஼ௌ = ଵௌܦ} ∪ ଶௌܦ ∪ … ∪ ௞ௌ} and evaluate themܦ
2. Perform coverage test – select a “minimal” set of candidate rules that covers ܦ௞஼ௌ:

a. Sort ܴ௞ᇱ in increasing order of probability of being violated
b. Discard rules from ܴ௞ᇱ that do not cover any attribute values in ܦ௞஼ௌ

3. Discard rules from ܴ௞ᇱ that are already present in ܴ௞ିଵ (e.g. were created during
any previous day)

4. Create daily rule set ܴ௞ by combining old rules with new: ܴ௞ = ܴ௞ିଵ ∪ ܴ௞ᇱ
5. Train ܴ௞ on ܦ௞்
6. Validate ܴ௞ on ܦ௞௏

c. Increase weight on rule conformance (increase rule belief)
d. Decrease weight on rule violation (reduce rule belief)

Fig. 6: Main steps of incremental LERAD algorithm

INCR applies the same basic algorithm to training data as OFF. The main
difference is that rules are carried between (Fig. 6, step 4), and trained on, later days (Fig.
6, step 5 and 6). Sample set data is also carried between days. For sample set generation,
INCR mirrors OFF and creates a new sample set ܦ௞ௌ for each day ݇ of data. However, daily
sample set size is shrunk from the OFF size proportional to the number of days in training

data, หܦ௞ௌห = ห஽ೄห௠ . This prevents INCR from having access to many more sample records to

create rules with than OFF, which would result resulting in different rules. Using more
records during rule generation is not necessarily detrimental, but it does stray from the
OFF algorithm, and so was avoided. Furthermore, instead of using just ܦ௞ௌ, sample sets
from previous days are now carried over and joined together into the “combined” sample
set ܦ௞஼ௌ (Fig. 7), from which ܴ௞ᇱ (new rules for day ݇) are generated (Fig. 6, step 1).
Because for any day ݇, ܦ௞் and ܦ௞௏ are massive compared to ܦ௞ௌ, they are not carried over
between days.

As before, a coverage test is performed (Fig. 6, step 2) after ܴ௞ᇱ is generated to
ensure that rules maintain their quality level, only now using ܦ௞஼ௌ instead of ܦ௞ௌ, since that
is what the rules were created from. After coverage test, the remaining rules in ܴ௞ᇱ are
compared with ܴ௞ିଵ, which contains rules from all previous days. Any rules present in ܴ௞ᇱ
that already exist in ܴ௞ିଵ are removed from ܴ௞ᇱ (Fig. 6, step 3). This is not an issue
because at this point, rules in ܴ௞ᇱ have only been trained on ܦ௞஼ௌ, which consists mostly
data that ܴ௞ିଵ has already been exposed to. The only information lost is what ܴ௞ᇱ gained
from training on ܦ௞ௌ (which is part of ܦ௞஼ௌ). This is remedied by merging new rules with
old, ܴ௞ = ܴ௞ିଵ ∪ ܴ௞ᇱ (Fig. 6, step 5) and training ܴ௞ on ܦ௞் (which is a superset of ܦ௞ௌ).
Before training, rules from ܴ௞ିଵ already have some statistics from previous days and

13

rules from ܴ௞ᇱ have statistics from being trained on ܦ௞஼ௌ. These are not reset before
training, statistics from ܦ௞் are simply added to it. That way, a rule trained (for example)
on days 1 to ݇ has the same information as a rule trained on ்ܦ that consists of all
records from days 1 to ݇. After training, ܴ௞ is validated on ܦ௞௏. Again, the previous weight
value is not reset but rather combined with the value from day ݇.

Fig. 7: Incremental LERAD data flow for day 1 and 2

 The flow of data from day 1 to day 2 of incremental LERAD is shown in Fig. 7. It
looks similar to offline LERAD, shown in Fig. 5, with the exception that sample sets and
rules are passed along. The combined sample set ܦ௞஼ௌ is shown growing in size, with
previous sample sets appended to the next day. For any day, the candidate rule set ܴ௞ᇱ is
created and then significantly shrunk by the coverage test. The remaining rules are passed
on to the next day (after training and validation).

 Fig. 8 shows the transfer of information through all days of incremental LERAD.
Each day involves creating a new ܴ௞ᇱ from the sample sets of all previous days. Most of ܴ௞ᇱ
is lost in the coverage test, with some tuples removed due to duplicates from previous
days as well. After each day, ܴ௞ grows a little bit, after rules from day ݇ are added to all
previous ones.

14

Fig. 8: Incremental LERAD data flow for all days

3.3) Collecting Appropriate Statistics
 LERAD generates rules strictly from the sample set, which is a comparatively small
collection of records that is meant to be representative of the entire dataset. The first
step in LERAD rule generation is to pick antecedent and consequent attributes based on
similarities of tuples randomly picked from the sample set. Afterwards, known
consequent values for each rule may change in the training phase and rules can be
completely dropped in the coverage test, but the antecedent and consequent attributes
are never changed after they are initially picked. Thus, the sample set is solely and
entirely responsible for the structure of all rules generated by LERAD.

 Using ܦ௞஼ௌ instead of ܦௌ allowed INCR to generate rules with the same structure
as those in OFF. However, even though rules were structurally the same, the statistics
they carried were different. Comparing rules present in both INCR and OFF, but only
detecting attacks in OFF, a number of deficiencies can be seen in INCR rules (see Table 3).

15

Table 3: Rules that detected attacks in OFF but did not detect in INCR
OFFLINE Rules ࢝ ࢔ ࢘ INCREMENTAL Rules ࢔ ࢝ ࢘
if SA3=172 then
 SA1 = 113 114 112 115

2.92 10857 4 if SA3=172 then
 SA1 = 113 114 112

2.03 1586 3

if DUR=0 F1=.S then
 DP = 113 25 80 79 22 515

2.11 19139 6 if DUR=0 F1=.S then
 DP = 113 25 80 79 22 515

1.88 11118 6

if W3=. then W2 = . 3.44 7596 1 if W3=. then W2 = . 3.38 6408 1
if W1=.^@GET then W3 =
.HTTP/1.0^M^ .align=

3.06 12867 2 if W1=.^@GET then W3 =
.HTTP/1.0^M^ .align=

2.99 11260 2

All statistics carried by INCR rules are lower than those of OFF, resulting in missed
detections due to lower alarm scores.

 To prevent INCR from missing detections that OFF correctly identifies, rules
generated by both algorithms need to contain similar statistics, in addition to their similar
structure. For INCR rules generated early on, this is not an issue. For example, the last two
rules in Table 3 were generated on day 2 (of 7) and all their statistics are close to OFF. On
the other hand, the first rule was generated on the last day and consequently has a
significantly smaller ݊ value, as well as smaller ݎ and ݓ. This is caused by rules not having
access to data from days before they were generated.

In order to completely eliminate this problem, data from all days would have to
be kept around, so that all rules can be trained on all days. With an incremental
algorithm, this is not feasible. Instead, additional statistics are kept that are
representative of each ܦ௞் . INCR is augmented to carry an additional piece of information
for each day:

௞ݎ݋ݐܿܽܨ݈݃݊݅ܽܿܵ = ห஽ೖ೅หห஽ೖೄห,
where ݇ refers to a certain day of training data. By using tuples from ܦ௞ௌ and repeating
each one ݈ܵܿܽ݅݊݃ݎ݋ݐܿܽܨ௞ times, a “virtual” training set ܦ௞௏் is created (see Fig. 9), which
is used to represent the training set from that day.

16

Fig. 9: Sample Set Expansion

Then for each day ݇, all previous virtual training sets (from ܦଵ௏் to ܦ௞ିଵ௏்) are joined
together to create a “combined” virtual training set ܦ௞஼௏்: ܦ௞஼௏் = ଵ௏்ܦ ∪ ଶ௏்ܦ ∪ … ∪ ௞ିଵ௏்ܦ .

As before, new rules for day ݇ are generated on the combined sample set ܦ௞஼ௌ. However,
now ܦ௞஼௏் ∪ ௞்ܦ is used for training instead of just ܦ௞் , allowing rules to obtain
consequent values that may have only been present in previous days and enabling ݊
counts to reflect records present across all days. Note that the virtual set is purely an
abstract notion, it is not actually created. Sample sets are simply used in a manner that is
consistent with having a virtual training set. During training, when a rule matches a
record, its ݊ value is increased by ݈ܵܿܽ݅݊݃ݎ݋ݐܿܽܨ௞ instead of just 1. Consequent values
are simply appended, along with ݎ beign incremented, if they don’t yet exist in the rule.
The weight of evidence calculation for new rules is also modified to collect statistics from ܦ௞஼ௌ in addition to ܦ௞௏. Naturally, this only applies to new rules. Those from previous days
were trained on the actual training sets that ܦ௞஼௏் attempting to approximate and so are
not exposed to ܦ௞஼௏் or ܦ௞஼ௌ. This approach yielded rules with all statistics much closed to
OFF, as shown in Table 4.

Table 4: Problem rules after using ܦ௞஼் instead of ܦ௞் (6)
OFFLINE Rules ࢝ ࢔ ࢘ INCREMENTAL Rules ࢔ ࢝ ࢘
if SA3=172 then
 SA1 = 113 114 112 115

2.92 10857 4 if SA3=172 then
 SA1 = 113 114 112

2.11 10553 3

if DUR=0 F1=.S then
 DP = 113 25 80 79 22 515

2.11 19139 6 if DUR=0 F1=.S then
 DP = 113 25 80 79 22 515

1.89 16979 6

if W3=. then W2 = . 3.44 7596 1 if W3=. then W2 = . 3.39 7393 1
if W1=.^@GET then W3 =
.HTTP/1.0^M^ .align=

3.06 12867 2 if W1=.^@GET then W3 =
.HTTP/1.0^M^ .align=

3.00 12247 2

17

This approach brings ݊ values much closer to OFF than it does ݎ or ݓ values. The ݈ܵܿܽ݅݊݃ݎ݋ݐܿܽܨ value only offers an extra benefit to ݊, since it is the only value directly
affected by it.

Input: ݉ sample sets (ܦଵௌ to ܦ௠ௌ), ݉ training sets (ܦଵ் to ܦ௠்) and ݉ validation sets (ܦଵ௏ to ܦ௠௏)
Output: LERAD rule set R
For each day ݇:

1. Generate candidate rules from ܦ௞஼ௌ and evaluate them
2. Perform coverage test – select a “minimal” set of candidate rules that covers ܦ௞஼ௌ:

a. Sort candidate rules in increasing order of probability of being violated
b. Discard rules that do not cover any attribute values in ܦ௞஼ௌ

3. Discard candidate rules that were generated and saved during any previous days
4. Train remaining candidate rules on ܦ௞஼௏்
5. Validate candidate rules on ܦ௞஼ௌ
6. Combine candidate rules with all rules from days 1 to ݇ − 1
7. Train all rules on ܦ௞்
8. Validate all rules on ܦ௞௏

Fig. 10: Incremental LERAD with corrected rule statistics

The main changes from general INCR are lines 4 and 5 of Fig. 10. New rules are now
trained on data carried over from previous days before being joined with older rules. This
allows their statistics values to be close to those of OFF rules. They are then merged with
older rules and collectively trained on ܦ௞் , just as in general INCR.

While the current sample set approach yields results that parallel the OFF
algorithm, it will have to be changed to obtain optimal results with a purely incremental
implementation. Currently, the sample set grows without bound in order to match the
OFF sample set. However, in the real world, there will need to be a limiting mechanism on
its growth. One such mechanism is to not keep sample sets older than a certain number
of days.

3.4) Pruning Rules
INCR generates new rules for each training day, merging them together with rules

from previous days to arrive at the final rule set. Because new rules are generated
multiple times, when using the same dataset, INCR creates far more rules than OFF. By
design, a lot of rules are common to both INCR and OFF and share the same structure.
However, there is usually a set of extra rules unique to INCR. Some of these rules are
beneficial, causing detections that would otherwise have been missed, and some are
harmful, resulting in false alarms that drown out legitimate detections. There are two
approaches to dealing with harmful rules: either good rules can be made louder, to stand
out above the noise, or bad rules can be removed, lowering the noise level. Changing the

18

loudness of rules involves altering the calculation of their statistics, which would cause
INCR rules to be different from OFF. This conflicts with the goal of INCR, leaving just the
rule removal option.

Rules have a number of properties that could potentially be used to predict how
good or bad they will be. However, analysis yielded the number of generations (or
birthdays) as the best predictor of bad rules. Let ܤ be the number of times a rule was
generated. Most of the rules that were present only in INCR and were only creating false
alarms had low ܤ values, which was not the case for rules that provided detections (see
Table 5).

Table 5: INCR rules responsible for detections and false alarms
INCREMENTAL Rules Type B ࢘ ࢔ ࢝
if DP=25 F1=.S F2=.AP then W1 = .^@EHLO .^@HELO DET 5 2.70 13152 2
if DP=25 F3=.AF then W1 = .^@EHLO . .^@HELO DET 7 2.84 13611 3
if SA2=016 F3=.AF then SA1 = 113 114 112 115 DET 3 2.91 10296 4
if F3=.AF W7=. then W6 = . FA 1 2.87 5080 1
if F2=.AP W3=.HTTP/1.0^M^ then W1 = .^@GET FA 2 3.01 10478 1
if F1=.S W3=.HTTP/1.0^M^ then
 W4 =.Referer: .Host: .User-Agent: .Connection:

FA 1 2.08 10837 4

The ܤ heuristic allowed for removal of unwanted rules. INCR was modified to
remove rules with ܤ values below a certain threshold from the final rule set, after all rules
have been generated. This resulted in the removal of rules that were causing false alarms,
leading to an increase in performance. For example, the LL/tcp dataset went from final
INCR rule count of 250 with no rule dropping to just 68 rules when B was set to 3,
compared to 77 rules in OFF. While the exact value of B depends on the dataset,
experiments show that ܤ = 2 tends to provide closest AUC values to OFF. B is currently
determined by performing a sensitivity analysis across all possible values. Further work is
needed to establish the ideal B value during training.
 Note that rules are removed in other areas of INCR as well. During the coverage
test, redundant rules that do not provide additional information are deleted. Rules that
acquire negative or zero weights during the validation are removed as well. This section
introduces a third point of rule removal into the algorithm, as the existing ones are not
sufficient.

19

Input: ݉ sample sets (ܦଵௌ to ܦ௠ௌ), ݉ training sets (ܦଵ் to ܦ௠்) and ݉ validation sets (ܦଵ௏ to ܦ௠௏)
Output: LERAD rule set R
For each day ݇:

1. Generate candidate rules from ܦ௞஼ௌ and evaluate them
2. Perform coverage test – select a “minimal” set of candidate rules that covers ܦ௞஼ௌ:

a. Sort candidate rules in increasing order of probability of being violated
b. Discard rules that do not cover any attribute values in ܦ௞஼ௌ

3. Delete candidate rules that were generated and saved during any previous days
(duplicates)

a. Increment B values of each old rule for each deletion caused by it
4. Train remaining candidate rules on ܦ௞஼௏்
5. Validate candidate rules on ܦ௞஼ௌ
6. Combine candidate rules with all rules from days 1 to ݇ − 1
7. Train all rules on ܦ௞்
8. Validate all rules on ܦ௞௏

Remove all rules with low ܤ values.
Fig. 11: Incremental LERAD with corrected rule statistics and rule pruning

The main change rule pruning brings to the general INCR algorithm is the last line in Fig.
11. To determine which rules will be dropped, the ܤ value is calculated on line 3-a. Note
that rules that are removed during the coverage test on line 2 do not contribute to the ܤ
value, as they would not have been generated by OFF in the first place.

Again, this approach is best suited to matching the performance of OFF. In a true
incremental algorithm, it is not acceptable for rules to grow without bound. A possible
solution is to modify INCR to drop rules that have not been re-generated in a certain
number of days.

20

4) Empirical Evaluation
 In this section, we evaluate the performance of incremental LERAD and compare
it to offline LERAD, to determine if they are similar.

4.1) Data
 Five different datasets were used for evaluation:

1. The DARPA / Lincoln Laboratory (LL TCP) contained 185 labeled instances of 58
different attacks. The full attack taxonomy is available in Kendell (1999).

2. The UNIV set comprised of over 600 hours of network traffic, collected over 10
weeks from a university departmental server (Mahoney and Chan, 2003). It
contained a total of six attacks: a port scan from inside the firewall, an external
HTTP proxy scan and DNS version probe, as well as the Nimda, Code Red II and
Scalper worms. The port scan consisted of two parts, a cgi-bin/htsearch exploit
aimed at retrieving the local passwd file, followed by scan for other vulnerabilities
on open ports.

3. The DARPA BSM set was an audit log of system calls from a Solaris host. There
were 33 attacks present, spread across 11 different applications. Dataset
evaluation performed in Lippmann et al (2000).

4. The Florida Tech and University of Tennessee at Knoxville (FIT/UTK) dataset
contained macro execution traces with 2 attacks (Mazeroff et al, 2003). One was
a distributed denial of service attack and the other provided behavior similar to
the “Love bug” worm, corrupting user files, modifying the registry and executing a
program.

5. Finally, the University of New Mexico (UNM) set included system calls from 3
applications (Forrest et al, 1996). login and ps traces came from Linux machines,
lpr originated from a SUNOS 4.1.4 host. There were a total of 8 distinct attacks
present.

 4.2) Experimental Procedures
 For all datasets, training data was entirely separate from testing. LL training data
consisted of 7 days, ~4700 records each, with almost 180,000 records in testing. With
UNIV, week 1 was split into 5 days of training data, ~2700 records each, and weeks 2
through 10 were used for testing (~143,000 records). In BSM, week 3 was separated into
7 days or ~26,000 records each, with weeks 4 and 5 used for testing (~350,000 records).
FIT/UTK had 7 days of training data, with ~13,000 records each and ~13,000 records for
testing.

21

 Several adjustable parameters were employed in the experiments. The size of ܦ௞ௌ

was set to ଵ଴଴௠ , where 100 was the sample set in offline experiments and ݉ was the

number of training days. See section 3.2 for the reasoning behind this. This still results in
extremely small sample set sizes when compared to the training set. For example, for the
LL dataset, หܦ௞ௌห = 0.3% of |ܦ௞் |, putting the sample set size at well below 1% of the
training set. Validation set ܦ௞௏ was set to 10% of training data, candidate rule set ܴ௞ᇱ was
set to 1000 and the maximum number of attributes per rule was set to 4, all to mirror
Tandon & Chan (2007) experiments. The rule-pruning parameter ܤ was set to 2, as
experiments showed this produced the closest performance curve to OFF.

 On every dataset, both incremental and offline LERAD were ran 10 times each,
with varying random seeds. For datasets with multiple applications, a separate model was
created for each application and the results averaged together, weighted by the number
of training records for that application. As applications have vastly different amounts of
training records, their results cannot be simply averaged together. Because LERAD is
looking for anomalous activity, applications with more training records, or activity, have a
higher number of alarms. Therefore they are more relevant to LERAD’s performance on
the whole dataset.

 For rule comparison, each INCR run is compared to all OFF runs and average
counts of rules involved are taken. Then all INCR runs are averaged together for each
dataset. For datasets with multiple applications, the results for each application are then
averaged together for the whole dataset.

4.3) Criteria
 In anomaly detection, the goal is to flag novel events. But because not every
novel event is necessarily a threat, false alarms are a core problem of the field. With a
sufficiently large dataset, even low alarm rates produce too many attack notifications to
be useful. Because of this, we focus on extremely low false alarm rates, specifically 0.1%.

 To show performance, the false alarm rate is varied in small increments between
0 and the maximum value (that which results in false alarm rate of 0.1%) and the
percentage of valid detections is measure for each one. This data is used to plot an ROC
(receiver operating characteristic) curve, where the X axis is false alarm rate and the Y axis
is the detection rate (see Fig. 12). Calculating the area under this curve results in a value,
called area under curve or AUC, which represents absolute performance for the
algorithm. Higher AUC values mean the ROC curve climbs faster and/or higher, indicating
better performance.

22

Fig. 12: Example ROC Curves

 We chose to set the maximum AUC value to 1.0, which occurs when there are no
false alarms and every single attack is detected at all times. In our tests, we only look at
false alarm rates up to 0.1% (from a maximum of 100%, naturally), thereby concentrating

on the first ଵଵ଴଴଴th of the ROC curve. This brings the maximum AUC value possibly

encountered to 0.001, which is the highest performance that is possible in our tests.

 To properly average together multiple applications from a single dataset, let ܥ ௔ܶ௣௣ = หܦ௔௣௣௧ ห + ௔௣௣௩ܦ| | be the count of training records for an application. Then the
average ܥܷܣ for the whole dataset is then computed as:

௔௩௚ܥܷܣ = ෍ ቆܥܷܣ௔௣௣ ܥ ௔ܶ௣௣∑ ܥ ௔ܶ௣௣ ௔௣௣ ∈ ஺௣௣௦ ቇ௔௣௣ ∈ ஺௣௣௦

Another approach would be to also include the size of the testing set when calculating ܥ ௔ܶ௣௣. However, because the testing set does not actually affect the rules generated by
LERAD, it is not included in the ܥܷܣ௔௩௚ calculation.

 For example, UNM contains 3 applications: login (5923 training records), lpr
(1351870 training records) and ps (3130 training records). Each one was treated as a
separate dataset for rule generation, with separate rules and ROC curves. After rules were
generated and evaluated, the ܥܷܣs were averaged together across 10 runs, for both INCR
and OFF, and then weighted-averaged together to form

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.0002 0.0004 0.0006 0.0008 0.001

De
te

ct
io

n
Ra

te

FA Rate

Incremental Offline

23

௎ேெ௔௩௚ܥܷܣ = ቀܥܷܣ௟௢௚௜௡௔௩௚ 0.0043 + ௟௣௥௔௩௚0.9934ܥܷܣ + ௣௦௔௩௚0.0023ቁ, which was used asܥܷܣ

UNM’s ܥܷܣ. Because lpr has so many more records than login or ps, it heavily influences
the final dataset ܥܷܣ.

4.4) Establishing the Pruning Parameter
 One of the best ways to measure performance of INCR and OFF algorithms is to
compare the areas under their ROC curves, or ܥܷܣ values. Let Δܥܷܣ be the difference in ܥܷܣ values between INCR and OFF: Δܥܷܣ = ூே஼ோܥܷܣ − ைிிܥܷܣ

Then a positive Δܥܷܣ value indicates that INCR is performing better than OFF.
Conversely, when INCR performs worse than OFF, Δܥܷܣ is negative, with lower values
indicating worse performance. The goal of INCR is to be as close as possible to OFF,
therefore Δܥܷܣ values closest to 0 are desired.

 In incremental LERAD, the pruning threshold ܤ has the largest effect on ܥܷܣ. As
described in section 3.4, ܤ is the number of times a rule was generated (or “born”) during
training. After training, rules are removed from INCR that have ܤ values less than a
certain threshold. Since there is no apparent way of picking a ܤ value, all are compared.
Most datasets did not produce any rules for values of ܤ > 5, either because they were
only split into 5 days or because no rules were generated more than 5 times in a row.
Thus the maximum ܤ value tested was set to 5. Because no rule can exist without being
generated at least once, any values of ܤ < 1 would produce the same result as ܤ = 1,
namely keeping all rules that were generated during all days.

 The ܤ values and resulting Δܥܷܣs across all datasets are shown in Fig. 13. With
BSM, LL TCP and UNIV datasets, INCR performance is similar to OFF, resulting in Δܥܷܣ
values fairly close to zero. With UNM, there were no attacks detected by OFF below 0.1%
false alarm rate, while INCR did detect some attacks, resulting large Δܥܷܣ differences.
The opposite situation occurred with FIT/UTK, with INCR detecting no attacks.

24

Fig. 13: ∆ܥܷܣs versus Bs

Overall, there is no obvious relationship between ܤ and ∆ܥܷܣ values across all datasets.

 To determine whether ∆ܥܷܣ differences are statistically significant, and under
which ܤ values, we perform the two-sample T-test on data presented in Fig. 13.
Specifically, the ܥܷܣ values from 10 INCR runs from each dataset are compared against ܥܷܣs from 10 OFF runs. For multi-application datasets, ܥܷܣ values are averaged
together, weighted by number of training records (as discussed in 4.2). ܤ = 4 leads to
statistically insignificant ܥܷܣ differences between INCR and OFF across most datasets
(BSM, UNM, LL TCP, and UNIV, see Table 6). For FIT/UTK, there was no statistically
insignificant ܥܷܣ difference for any ܤ, due to very poor performance of INCR.

Table 6: P(T<=t) two-tail for two-sample T-test
Dataset B=1 B=2 B=3 B=4 B=5
BSM 0.27 0.18 0.02 0.66 0.01
UNM 0.00 0.00 0.01 0.17 0.17
LL TCP 0.01 0.57 0.37 0.08 0.10
FIT/UTK 0.00 0.00 0.00 0.00 0.00
UNIV 0.40 0.17 0.08 0.06 0.04

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

BSM UNM LL TCP FIT/UTK

De
lta

 A
U

C

B=1 B=2 B=3 B=4 B=5

25

Table 6 shows the absolute two-tail probabilities in Student’s t distribution (with degrees
of freedom = 9), computed from experimental data. For each dataset and ܤ value, Table 6
contains the probability that INCR and OFF are not significantly different. Because the
goal is to have similar performance, we concentrate instead on results where INCR and
OFF do not have a statistically significant performance difference. Therefore, cells with
probability over 0.05 are highlighted, to show which instances are not significantly
different. That is, they do not have a probability < 0.05 of being significantly different,
which is required in order to be at least 95% confident in their difference. Note that some
probabilities are 0.0 – this happens when ∆ܥܷܣ values are extremely large. In UNM, OFF
had extremely small ܥܷܣ values, which were very different from the ܥܷܣs that INCR
produced with low ܤ values. However, as ܤs increased and performance fell (see Fig. 13),
INCR performance became almost as poor as OFF, low enough to no longer be statistically
significant. In the FIT/UTK dataset, the situation was reversed. INCR produced low scores
across the board, never coming close to OFF.

 To conclusively determine which ܤ values result in statistically insignificant ∆ܥܷܣs across all datasets, we apply the paired T-test. For each dataset, the average ܥܷܣ
value for each ܤ was paired with the average OFF ܥܷܣ for that dataset. Again, as with
Table 6, the number in Table 7 represent the probabilities associated with Student’s T-
test. In order to be at least 95% confident that incremental and offline ܥܷܣs are
statistically different, the probability values in Table 7 need to be less than 0.05. Since
that is not the case, none of the ܤs yielded statistically different performance between
INCR and OFF. This is due mostly to the similar variations of ܥܷܣs between all datasets,
which were exhibited by both OFF and INCR. The two least different ܤ values were 2 and
3, and since ܤ = 2 had insignificant performance difference on 3 of 5 datasets (see Table
6), it was chosen as the ܤ value for all other experiments.

Table 7: P(T<=t) two-tail for paired two sample T-test
B=1 B=2 B=3 B=4 B=5

0.95 0.98 0.98 0.44 0.39

4.5) Ruleset Sizes
 After the ܤ value is picked, rules from INCR and OFF are analyzed to determine
the causes of ܥܷܣ differences. There are four different cases that are possible when
comparing an INCR rule to an OFF one. Let ߙ be the set of rules that have the same
antecedent attributes, same consequent attribute and the same consequent values. They
are then structurally exactly alike, such as rules 1 and 2 in Table 8. The set ߚ consists of
rules that have the same antecedent attributes and the same consequent attribute, but
different consequent values. How different they are is not important, as long as they are
not exactly alike. For example, rules 1 and 3 in Table 8. Then ߛ is the set of rules that have

26

the same antecedent attributes but a different consequent attribute. The values in the
consequent are irrelevant, since rules with consequent attributes cannot be compared,
such as rules 1 and 4 in Table 8. Finally, the set ߣ contains rules that have different
antecedent attributes (see rules 1 and 5 in Table 8). Again, the degree of difference is not
important, as long as at least one consequent attribute is different. When comparing INCR
rules against OFF rules, each INCR rule will belong to either ߛ ,ߚ ,ߙ or ߣ, which are
mutually exclusive and together describe all possible outcomes (see Fig. 14).

Table 8: Rule comparison example
ID Rule Alg. Cmp. ࢔ ࢝ ࢘
1 if DestIP=128.1.2.3 DP=25 then W1 = EHLO

HELO
OFF 2.40 12540 2

2 if DestIP=128.1.2.3 DP=25 then W1 = EHLO
HELO

INCR ߙ 2.06 11680 2

3 if DestIP=128.1.2.3 DP=25 then W1 = HELO INCR ߚ 1.82 10520 1
4 if DestIP=128.1.2.3 DP=25 then W3 = MAIL INCR ߛ 2.30 10840 1
5 If DP=80 W1=GET then W3 = HTTP/1.0

HTTP/1.1
INCR ߣ 2.47 12432 2

α
β

γ

λ

Same Antecedent
Different Cons. Values

Same Antecedent
Different Consequent Attribute

Different Antecedents
(No similar rule in INCR)

Offline Rules Incremental Rules

Same
Rules

Fig. 14: Possible outcomes of rule comparison

 After setting ܤ = 2 (discussed in section 4.4), the performance difference
between INCR and OFF is statistically insignificant but still present. To understand the
reason for the (insignificant) difference, we analyze the sizes of ߛ ,ߚ ,ߙ and ߣ, which are
listed in Table 9. This can be thought of as looking at the general structure of rules.

27

Table 9: Average rule set sizes (as percent of total number of OFF rules)
Dataset ࢻ ࢼ ࢽ ࣅ ࡯ࢁ࡭∆
UNIV 17% 5% 19% 60% -0.00002
FIT/UTK 2% 1% 3% 94% -0.00034
LL TCP 24% 5% 22% 49% 0.00001
UNM 27% 14% 21% 38% 0.00034
BSM 17% 5% 11% 66% -0.00001

As expected, datasets with high ߚ ,ߙ and ߛ values are the ones with smallest Δܥܷܣ
values. A large number of similar rules should naturally lead to similar performance,
which is indeed the case with UNIV, LL TCP and BSM. UNM also has this property, but the Δܥܷܣ value is large due to poor performance of OFF on that dataset. For FIT/UTK, the
number of similar rules is small, due largely to a small amount of INCR rules generated
overall. This results in a large difference in ܥܷܣ values.

Table 10: Average size of final rule sets
Dataset OFF Total INCR Total
UNIV 62.9 33.7
FIT/UTK 21.1 5.8
LL TCP 70.7 69.3
UNM 46.8 44.2
BSM 22.0 14.7

 Table 10 shows the total rules set size for INCR and OFF, averaged across all 10
experiment runs. Note that the total size of INCR rule set is consistently smaller than the
OFF rule set. However, as shown in the previous section, the difference in accuracy is not
statistically significant. INCR therefore allows for less overhead during detection, since
less rules have to be applied to data when looking for anomalies. While it may seem
counterintuitive that an incremental algorithm is performing better (in a sense) than an
offline one at the same task, it is a perfectly legitimate state of affairs. This happens
because INCR is doing more work and is processing better data than OFF. Information
carried over from day to day by INCR, specifically sample sets and rules, is essentially a
compressed version of what OFF is working with. Rules created from this data are better
at describing the training set than those created by OFF. Since INCR rules are better at
modeling the training set, less are needed to achieve the same detection accuracy.

4.6) How Rule Statistics Affect Performance
 Having analyzed the general structure of rules, we next look at the statistics they
carry. To determine just how close INCR rules are to OFF, their ݊, ݎ and ݓ values are
compared. However, for the comparison to be accurate, rules being compared have to be

28

of the same type. Since ݊ values are dependent only on the antecedent attributes, rules
from ߚ ,ߙ and ߛ are used. Comparing ݎ values only makes sense when looking at rules
with the same consequent attribute, hence only those from ܽ and ߚ are compared.
Finally, because ݓ values describe the effectiveness of a rule as a whole, they can only be
compared on rules from ߙ. Note that the ߣ value is not relevant in comparing rule
statistics and therefore ignored.

Because we are only analyzing subsets of rules created by INCR and OFF, a new
metric is needed to measure their performance. The ܥܷܣ is dependent on the activity of
all rules, so in cases where ߣ is large (such as UNIV and BSM datasets), the rules that we
are interested in have little influence over the ܥܷܣ. To gather better performance figures
for the rules in ߚ ,ߙ and ߛ, we look at the performance of individual rules.

During detection, ܵܿ݁ݎ݋(݀) is calculated for each record ݀ (see section 3.1): ܵܿ݁ݎ݋(݀) = ෍ ௜ݓ௜ݐ ݊௜ݎ௜௥೔∈ோ

If the score is over a certain threshold, an alarm is triggered. Alarms triggered during
attacks are known as detections, or DETs, while those triggered during normal activity are
false alarms, or FAs. For each DET or FA triggered on record ݀, the contribution of еach
rule ݎ௜ is measured by:

,݀)݊݋݅ݐݑܾ݅ݎݐ݊݋ܥ (௜ݎ = ௜ݓ௜ݐ ݊௜ݎ௜ܵܿ݁ݎ݋(݀)

Then for each rule ݎ௜, all contributions to detections across the whole dataset are added
into ܧܦ ்ܶை்஺௅, with all false alarm contributions similarly added into ்ܣܨை்஺௅. The
performance of a rule is then gauged by the number of net detections, or ܰܦܰ :ܦ = ܧܦ ்ܶை்஺௅ − ை்஺௅்ܣܨ

Having an exact number that represents how well a single rule is behaving allows us to
directly examine the effect that ݊, ݎ and ݓ have on performance. Since we are interested
in the difference in performance between INCR and OFF, the discrepancy between values
is used:

௑ݕܿ݊ܽ݌݁ݎܿݏ݅ܦ = ூܺே஼ோ − ܺைிிܺைிி

29

where ܺ is either ܰݎ ,݊ ,ܦ or ݓ. Discrepancy is normalized in order to bring the
performance of all datasets onto a level playing field. Furthermore, discrepancy of ND
values is absolute, as any values away from zero are “bad”, since we want to show error.

Fig. 15 shows the discrepancies between ܰܦ (Y axis) and ݊ (X axis) values of
comparable rules, for each dataset. For datasets with multiple applications (UNM and
BSM), the largest one was used as a representative.

Fig. 15: B=2, discrepancy in ݊ versus discrepancy in ܰܦ

 The UNM dataset has a large discrepancy due to the fact that OFF did not
produce any detections with 0.01% false alarm rate. There were still a number of similar
rules that could be compared (see Table 9), but only INCR ones had detection scores,
resulting in very high performance differences. While the opposite was true with the
FIT/UTK dataset, there were far less rules generated this time. Because there were not

0

5

10

15

20

25

30

35

40

-0.6 -0.1 0.4

Di
sc

re
pa

nc
y

in
 N
D

Descrepancy in n

UNM/LPR

0

1

2

3

4

5

6

-0.6 -0.1 0.4

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in n

BSM/TCSH

0

0.2

0.4

0.6

0.8

1

1.2

-0.6 -0.1 0.4

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in n

UNIV

0

0.2

0.4

0.6

0.8

1

1.2

-0.6 -0.1 0.4

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in n

LL TCP

0

0.2

0.4

0.6

0.8

1

1.2

-0.6 -0.1 0.4

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in n

FIT/UTK

30

even a handful of similar rules between runs (see Table 9), the scatter plot is far less
dense than the other four.

 In general, values that are on the negative X axis indicate under-estimation, while
those on the positive X axis show over-estimation. The closer X values are to zero, the
more similar INCR is to OFF. Fig. 15 shows that ݊ is equally under and over estimated,
which is expected, since ݊ is the value most helped by introducing ݈ܵܿܽ݅݊݃ݎ݋ݐܿܽܨ (see
section 3.3).

 Fig. 16 presents discrepancies between ݎ (X axis) and ܰܦ (Y axis) values of
comparable rules, for each dataset. As before, one application was picked from UNM and
BSM to represent the entire dataset.

Fig. 16: B=2, discrepancy in ݎ versus discrepancy in ܰܦ

0

5

10

15

20

25

30

35

40

-1 -0.5 0

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in r

UNM/LPR

0

1

2

3

4

5

6

-1 -0.5 0

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in r

BSM/TCSH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-1 -0.8 -0.6 -0.4 -0.2 0

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in r

UNIV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-1 -0.8 -0.6 -0.4 -0.2 0

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in r

LL TCP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-1 -0.5 0

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in r

FIT/UTK

31

This time, there are no points on the positive X axis, indicating that ݎ values are
never overestimated. This makes sense, since the ݎ values are not “helped” in any way in
INCR. Being exposed to the same (or less) training data, they cannot be overestimated.

Fig. 17 displays discrepancies between ݓ (X axis) and ܰܦ (Y axis) values of
comparable rules, for each dataset. Again, UNM and BSM are represented by a single
application each.

Fig. 17: B=2, discrepancy in ݎ versus discrepancy in ܰܦ

 In this case, points are on the negative X axis most of the time (UNIV, LL TCP,
FIT/UTK), but sometimes on the positive side (UNM, BSM). This indicates that ݓ is mostly
underestimated, but can be overestimated at times. Or, put another way, our approach is
not the most effective at keeping ݓ statistics. This is not surprising, since ݈ܵܿܽ݅݊݃ݎ݋ݐܿܽܨ
in section 3.3 helps mostly ݊ values, and only affects ݓ values somewhat.

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in w

UNM/LPR

0

0.5

1

1.5

2

2.5

3

3.5

-1 -0.5 0 0.5 1

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in w

BSM TCSH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-1 0 1

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in w

UNIV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-1 0 1

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in w

LL TCP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-1 0 1

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in w

FIT/UTK

32

The problem with scatter plots is that they do not good at showing distributions.
When many points are clustered over one another, the blob on the chart looks the same
whether there are 100 or 1000 points in it. To help visualize the distribution of error, the
points from previous figures were averaged together in “buckets”. There are 10 buckets
between -0.38 and -0.04, one bucket between -0.04 and 0.04, and 10 buckets between
0.04 and 0.38. For each chart, all points that fall into a certain bucket are averaged
together and that value is plotted in bar form on the next three charts. Then each bar
represents the average value of all points in that area.

In Fig. 18, the average values of ݊ versus ܰܦ are presented.

Fig. 18: B=2, average discrepancy in ݊ versus average discrepancy in ܰܦ

 While a few datasets have fairly well-defined trends (LL TCP, UNM), the trends are
weak for the most part. However, the height of bars can also be used to determine
relationship between statistics and ܰܦ. The higher a bar is, the more error is

0

0.5

1

1.5

2

2.5

-0
.3

8
-0

.3
4

-0
.3

0
-0

.2
7

-0
.2

3
-0

.1
9

-0
.1

5
-0

.1
1

-0
.0

8
-0

.0
4

0.
00

0.
04

0.
08

0.
11

0.
15

0.
19

0.
23

0.
27

0.
30

0.
34

0.
38

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in n

UNM

0

0.05

0.1

0.15

0.2

0.25

0.3

-0
.3

8
-0

.3
4

-0
.3

0
-0

.2
7

-0
.2

3
-0

.1
9

-0
.1

5
-0

.1
1

-0
.0

8
-0

.0
4

0.
00

0.
04

0.
08

0.
11

0.
15

0.
19

0.
23

0.
27

0.
30

0.
34

0.
38

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in n

FIT/UTK

0

0.05

0.1

0.15

0.2

0.25

0.3

-0
.3

8
-0

.3
0

-0
.2

3
-0

.1
5

-0
.0

8
0.

00
0.

08
0.

15
0.

23
0.

30
0.

38

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in n

UNIV

0

0.05

0.1

0.15

0.2

0.25

0.3

-0
.3

8
-0

.3
0

-0
.2

3
-0

.1
5

-0
.0

8
0.

00
0.

08
0.

15
0.

23
0.

30
0.

38

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in n

LL TCP

0

0.05

0.1

0.15

0.2

0.25

0.3

-0
.3

8
-0

.3
0

-0
.2

3
-0

.1
5

-0
.0

8
0.

00
0.

08
0.

15
0.

23
0.

30
0.

38

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in n

BSM TCSH

33

concentrated in that area. Overall, ݊ produces error bars that are generally under 0.3 for
most datasets.

 Fig. 19 contains average values of ݎ versus ܰܦ.

Fig. 19: B=2, average discrepancy in ݎ versus average discrepancy in ܰܦ

 In this case, UNIV and FIT/UTK show an upward trend from zero that would be
expected if ݎ values directly influenced ܰܦ values. In general, the error bars are usually
below 0.2, which is lower than in Fig. 18. Lower bars indicate that error is less
concentrated in any particular area, meaning ݎ values are less responsible for ܰܦs. Note
that because the buckets are fixed, some points lay outside of the graph and are not
included.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-0
.3

8
-0

.3
4

-0
.3

0
-0

.2
7

-0
.2

3
-0

.1
9

-0
.1

5
-0

.1
1

-0
.0

8
-0

.0
4

0.
00

0.
04

0.
08

0.
11

0.
15

0.
19

0.
23

0.
27

0.
30

0.
34

0.
38

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in r

UNM

0

0.05

0.1

0.15

0.2

-0
.3

8
-0

.3
4

-0
.3

0
-0

.2
7

-0
.2

3
-0

.1
9

-0
.1

5
-0

.1
1

-0
.0

8
-0

.0
4

0.
00

0.
04

0.
08

0.
11

0.
15

0.
19

0.
23

0.
27

0.
30

0.
34

0.
38

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in r

FIT/UTK

0

0.05

0.1

0.15

0.2

-0
.3

8
-0

.3
0

-0
.2

3
-0

.1
5

-0
.0

8
0.

00
0.

08
0.

15
0.

23
0.

30
0.

38

Di
sc

re
pa

nc
y

in
 iN

D

Discrepancy in r

UNIV

0

0.05

0.1

0.15

0.2

-0
.3

8
-0

.3
0

-0
.2

3
-0

.1
5

-0
.0

8
0.

00
0.

08
0.

15
0.

23
0.

30
0.

38

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in r

LL TCP

0

0.05

0.1

0.15

0.2

-0
.3

8
-0

.3
0

-0
.2

3
-0

.1
5

-0
.0

8
0.

00
0.

08
0.

15
0.

23
0.

30
0.

38
Di

sc
re

pa
nc

y
in

 N
D

Discrepancy in r

BSM TCSH

34

 Finally, Fig. 20 shows the average discrepancy in ݓ compared with the average
discrepancy in ܰܦ.

Fig. 20: B=2, average discrepancy in ݓ versus average discrepancy in ܰܦ

 Because all points in UNM lay outside of thes fixed buckets, they do not show up
in Fig. 20 at all. With the other datasets, most points are located between -0.4 and 0.4,
and therefore are displayed. Once again, trends that would suggest a correlation between ݓ and ܰܦ are not clearly present. However, since most bars are below 0.08, we can
conclude that ݓ has the least effect on ܰܦ.

The previous three charts showed that ݊ is most responsible for the error
between INCR and OFF, followed by ݎ and finally ݓ. This supports our choice of ݈ܵܿܽ݅݊݃ݎ݋ݐܿܽܨ to help statistics in section 3.3, since it mostly helped the ݊ values.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
-0

.3
8

-0
.3

4
-0

.3
0

-0
.2

7
-0

.2
3

-0
.1

9
-0

.1
5

-0
.1

1
-0

.0
8

-0
.0

4
0.

00
0.

04
0.

08
0.

11
0.

15
0.

19
0.

23
0.

27
0.

30
0.

34
0.

38

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in w

UNM

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-0
.3

8
-0

.3
4

-0
.3

0
-0

.2
7

-0
.2

3
-0

.1
9

-0
.1

5
-0

.1
1

-0
.0

8
-0

.0
4

0.
00

0.
04

0.
08

0.
11

0.
15

0.
19

0.
23

0.
27

0.
30

0.
34

0.
38

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in w

FIT/UTK

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-0
.3

8
-0

.3
0

-0
.2

3
-0

.1
5

-0
.0

8
0.

00
0.

08
0.

15
0.

23
0.

30
0.

38

Di
sc

re
pa

nc
y

in
 iN

D

Discrepancy in w

UNIV

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-0
.3

8
-0

.3
0

-0
.2

3
-0

.1
5

-0
.0

8
0.

00
0.

08
0.

15
0.

23
0.

30
0.

38
Di

sc
re

pa
nc

y
in

 iN
D

Discrepancy in w

LL TCP

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-0
.3

8
-0

.3
0

-0
.2

3
-0

.1
5

-0
.0

8
0.

00
0.

08
0.

15
0.

23
0.

30
0.

38

Di
sc

re
pa

nc
y

in
 N
D

Discrepancy in w

BSM

35

5) Conclusions

5.1) Summary of Findings
 We introduced an incremental version of the LERAD algorithm, which generates
rules before all of training data is available, improving them as more data is analyzed.
Because rules are generated and updated incrementally, we can perform anomaly
detection with an updated model more often, for example every day.

 The incremental nature of our algorithm does not affect performance.
Experiments show that after processing the same amount of data, the difference between
the accuracy of incremental and offline algorithms is statistically insignificant.

 Furthermore, although the incremental algorithm has similar accuracy to offline,
it generates fewer rules (see Table 10). This leads to lower detection overhead, since
fewer rules have to be applied to the same data to produce the same accuracy.

 Experiments showed that the initial version had some rules similar to OFF, but
their statistics were different and performance overall was worse than OFF. The total
number of rules was also much larger, leading to a higher level of noise, which drowned
out some legitimate detections. Improvements were made to INCR to reduce the
differences in generated rules and performance.

To enable the incremental version to have the same performance as offline,
several improvements had to be implemented. Because rules generated on later days are
only exposed to the sample sets from previous days, their statistics about previous data
were skewed. To combat this, the structure of sample sets was changed to include how
many training records each sample set tuple represents. Then after they are first
generated, rules are trained on virtual sets that roughly represent the training sets of
previous days. This approach improved the quality of rule statistics and brought them
much closer to the offline version, with experiments showing an increase in accuracy. The
performance boost is expected, since improved statistics decreased ∆݊ and ∆ݓ values,
both of which were shown to have an effect on performance difference (see Section 4.6).

Due to the fact that INCR has ݉ chances to generate rules when processing ݉
training days, it consistently generated far more rules than OFF. This was a problem
because a larger number of rules was creating much more noise during scoring, drowning
out legitimate detections. To fix it, we introduced a method to prune rules after all
training data is processed, based on the number of times said rules were generated (or
“born”). Since there was not obvious way of picking the pruning threshold ܤ, experiments
had to be performed on all values, to pick the one that resulted in the lowest ∆ܥܷܣ.

36

Experimental results showed this approach yielded performance differences from offline
that were small enough to be statistically insignificant.

5.2) Limitations and Possible Improvements
 The current approach to calculating statistics from previous days is beneficial to ݊, somewhat beneficial to ݓ and not at all relevant to the ݎ value. The distribution of
consequent values would have to be modeled somehow to help ݎ values, and to a lesser
degree, ݓs. Furthermore, rare records that make it into the sample set have the same
weight on rule statistics are those that occur frequently. This can be remedied by
recording the probability of encountering each row in the training set prior to adding it to
the sample set. Finally, the pruning threshold value ܤ is currently picked by performing a
sensitivity analysis. Further analysis is needed to deduce the proper value directly from
training data.

 Because the focus was on accuracy, incremental LERAD is geared towards
producing the same results as offline LERAD. Some changes need to be made before it can
be used in an online fashion. First, sample sets are currently carried over for all days,
regardless of the actual day count. This approach is well suited for producing the same
results as offline after processing the same amount of data, but it will be problematic
when used in the real world. The growth of the sample set needs to be constrained at
some point, before it grows larger than the available memory. One approach to resolving
this issue is to only keep a certain number of sample sets around, removing (or
“forgetting”) those that get too old. For example, after processing data from chunk k, all
sample sets gathered from chunks 1 to k-7 can be removed, resulting in the last 7 sample
sets being used at any given time. This would fix unconstrained sample set growth.
However, this issue affects more than just the sample sets. Rules themselves also have
this problem, since they are only pruned after the last day. A more useful approach would
be to apply rule pruning after some set number of days. For example, pruning can be
evoked each time 7 chunks of data are processed. Naturally, these suggestions are not
ideal and further work is needed to determine the best solution.

37

References
Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proc. 20th
Int. Conf. very Large Data Bases, (VLDB), 487-499.

Chandola, V., Banerjee, A., & Kumar, V. (2008, to appear). Anomaly detection: A survey.
ACM Computing Surveys.

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3(4), 261-
283.

Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the Twelfth
International Conference on Machine Learning, 115-123.

Das, K., & Schneider, J. (2007). Detecting anomalous records in categorical datasets. In
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 220-229.

Feng, H., Kolesnikov, O., Fogla, P., Lee, W., & Gong, W. (2003). Anomaly detection using
call stack information. In Proceedings of Symposium on Security and Privacy. 62-75.

Forrest, S., Hofmeyr, S., Somayaji, A., & Longstaff, T. (1996). A sense of self for unix
processes. In Proceedings of 1996 IEEE Symposium on Security and Privacy. 120-128.

Gates, C., Taylor, C. (2006). Challenging the Anomaly Detection Paradigm - A provocative
discussion. In Proceedings of the 2006 workshop on New security paradigms, 2006. 21-29.

Kruegel, C., Mutz, D., Valeur, F., & Vigna, G. (2003). On the detection of anomalous
system call arguments. Proceedings of RAID, Lecture Notes in Computer Science, 2808,
326-344.

Kruegel, C., & Vigna, G. (2003). Anomaly detection of web-based attacks. In Proceedings
of the 10th ACM Conference on Computer and Communications Security, 251-261.

Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., & Srivastava, J. (2003). A comparative study
of anomaly detection schemes in network intrusion detection. In Proceedings of the Third
SIAM International Conference on Data Mining, 25-36.

Lippmann, R., Haines, J. W., Fried, D. J., Korba, J., & Das, K. (2000). The 1999 DARPA off-
line intrusion detection evaluation. Computer Networks, 34(4), 579-595.

Mahoney, M. V., & Chan, P. K. (2003). Learning rules for anomaly detection of hostile
network traffic. In Proc. of International Conference on Data Mining (ICDM), 601-604.

38

Mazeroff, G., De Cerqueira, V., Gregor, J., & Thomason, M. G. (2003). Probabilistic trees
and automata for application behavior modeling. Paper presented at the 41st ACM
Southeast Regional Conference Proceedings, 435-440.

Robertson, W., Vigna, G., Kruegel, C., & Kemmerer, R. A. (2006). Using generalization and
characterization techniques in the anomaly-based detection of web attacks. In
Proceedings of the 13thSymposium on Network and Distributed System Security (NDSS)

Shavlik, J. & Shavlik, M. (2004). Selection, combination, and evaluation of effective
software sensors for detecting abnormal computer usage. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 276-
285.

Tandon, G. & Chan, P. (2007). Weighting versus Pruning in Rule Validation for Detecting
Network and Host Anomalies. In Proc. ACM Intl. Conf. on Knowledge Discovery and Data
Mining (KDD). 697-706.

Wang, K., Cretu, G., & Stolfo, S. J. (2005). Anomalous payload-based worm detection and
signature generation. In Proceedings of RAID, Lecture Notes in Computer Science, 3858,
227-246.

Wong, W. K., Moore, A., Cooper, G., & Wagner, M. (2005). What's strange about recent
events (WSARE): An algorithm for the early detection of disease outbreaks. Journal of
Machine Learning Research, Vol 6, 1961-1998.

