
Collating Sequence

The bit patterns representing a character can be interpreted as an
unsigned integer and so the natural order of numbers can be used to
order the characters.

Collating sequence. A collating sequence of a character set is the
order of the individual characters. The order may be determined by the
underlying bit representation of the characters.

Examples of the Unicode Collating Sequence

A<a U+0041<U+0061 65 < 97
Z<a U+005A<U+0061 90 < 97
a<b U+0061<U+0062 97 < 98
e<f U+0063<U+0064 101 < 102
z<ñ U+007A<U+00F1 122 < 241
ö<ü U+00F6<U+00FC 246 < 252
ł<ŵ U+0142<U+0175 322 < 373

ξ < φ U+03BE<U+03C6 958 < 966∫
<6∼= U+222B<U+2247 8747 < 8820
6∼=<⊗ U+2247<U+2297 8820 < 8895
6∼=<� U+2247<U+2299 8820 < 8897
fi<fl U+FB01<U+FB02 64257 < 64258

For many natural languages this ordering is not the usual ordering of
the alphabet.

Collation

A default ordering for all characters in Unicode, allkeys.txt, UTS
#10.

allkeys.txt

http://www.unicode.org/reports/tr10/allkeys.txt

0061 ; [.0A15.0020.0002.0061] # LATIN SMALL LETTER A
FF41 ; [.0A15.0020.0003.FF41] # FULLWIDTH LATIN SMALL LETTER A; QQK
249C ; [*027A.0020.0004.249C][.0A15.0020.0004.249C][*027B.0020.001F.249C] # PARENTHESIZED LATIN SMALL LETTER A; QQKN
1D41A ; [.0A15.0020.0005.1D41A] # MATHEMATICAL BOLD SMALL A; QQK
1D44E ; [.0A15.0020.0005.1D44E] # MATHEMATICAL ITALIC SMALL A; QQK
1D4B6 ; [.0A15.0020.0005.1D4B6] # MATHEMATICAL SCRIPT SMALL A; QQK
1D4EA ; [.0A15.0020.0005.1D4EA] # MATHEMATICAL BOLD SCRIPT SMALL A; QQK
1D51E ; [.0A15.0020.0005.1D51E] # MATHEMATICAL FRAKTUR SMALL A; QQK
1D552 ; [.0A15.0020.0005.1D552] # MATHEMATICAL DOUBLE-STRUCK SMALL A; QQK
1D586 ; [.0A15.0020.0005.1D586] # MATHEMATICAL BOLD FRAKTUR SMALL A; QQK
1D5BA ; [.0A15.0020.0005.1D5BA] # MATHEMATICAL SANS-SERIF SMALL A; QQK
1D5EE ; [.0A15.0020.0005.1D5EE] # MATHEMATICAL SANS-SERIF BOLD SMALL A; QQK
1D622 ; [.0A15.0020.0005.1D622] # MATHEMATICAL SANS-SERIF ITALIC SMALL A; QQK
1D68A ; [.0A15.0020.0005.1D68A] # MATHEMATICAL MONOSPACE SMALL A; QQK
24D0 ; [.0A15.0020.0006.24D0] # CIRCLED LATIN SMALL LETTER A; QQK
0041 ; [.0A15.0020.0008.0041] # LATIN CAPITAL LETTER A
FF21 ; [.0A15.0020.0009.FF21] # FULLWIDTH LATIN CAPITAL LETTER A; QQK
1D400 ; [.0A15.0020.000B.1D400] # MATHEMATICAL BOLD CAPITAL A; QQK
1D434 ; [.0A15.0020.000B.1D434] # MATHEMATICAL ITALIC CAPITAL A; QQK
1D49C ; [.0A15.0020.000B.1D49C] # MATHEMATICAL SCRIPT CAPITAL A; QQK
1D504 ; [.0A15.0020.000B.1D504] # MATHEMATICAL FRAKTUR CAPITAL A; QQK
1D538 ; [.0A15.0020.000B.1D538] # MATHEMATICAL DOUBLE-STRUCK CAPITAL A; QQK
1D56C ; [.0A15.0020.000B.1D56C] # MATHEMATICAL BOLD FRAKTUR CAPITAL A; QQK
1D5A0 ; [.0A15.0020.000B.1D5A0] # MATHEMATICAL SANS-SERIF CAPITAL A; QQK
1D5D4 ; [.0A15.0020.000B.1D5D4] # MATHEMATICAL SANS-SERIF BOLD CAPITAL A; QQK
1D608 ; [.0A15.0020.000B.1D608] # MATHEMATICAL SANS-SERIF ITALIC CAPITAL A; QQK
1D670 ; [.0A15.0020.000B.1D670] # MATHEMATICAL MONOSPACE CAPITAL A; QQK
24B6 ; [.0A15.0020.000C.24B6] # CIRCLED LATIN CAPITAL LETTER A; QQK
00AA ; [.0A15.0020.0014.00AA] # FEMININE ORDINAL INDICATOR; QQK
00E1 ; [.0A15.0020.0002.0061][.0000.0032.0002.0301] # LATIN SMALL LETTER A WITH ACUTE; QQCM

The switch away from “traditional” Spanish ordering of the digraphs ch
and ll as separate letters is well advanced.
Spanish
Spanish (traditional)
Multilingual ordering of European languages is being standarized.

http://developer.mimer.com/collations/charts/spanish.htm
http://developer.mimer.com/collations/charts/spanish_traditional.htm
http://en.wikipedia.org/wiki/European_ordering_rules

For example, in Java c1<c2 is defined to be ((int)c1)<((int)c2).
In fact, the cast is a no-op in Java; the bits stay the same, only the
interpretation changes.
In Java, characters are automatically promoted to integers (no cast is
needed). Characters are not automatically promoted to short. One
can cast them to short; this is a bad idea even though no bits are
lost, because the 16-bit, twos-compliment representation of short is
incompatible with the intuitive, collating sequence of 16-bit char.

final char xc = ’A’;
final char zc = ’\ufb01’; // fi ligature
final short xs = (short)xc, zs =(short)zc;
System.out.println (xc<zc); // true
System.out.println (xs<zs); // false

There is no unsigned, 16-bit, integral type in Java. There are no
unsigned integral types in Java at all.

Lexicographic Ordering

An ordering of characters gives rise to an order on strings of those
characters. Strings of characters of (possibly) different lengths are
ordered by the first difference in the strings.

Let <C be the ordering on characters, e.g., x <C y for any two
characters x and y . Let x0x1 · · ·xk−1 and y0y1 · · ·yl−1 be two strings of
length k ≥ 0 and l ≥ 0, respectively. The two strings are equal
x0x1 · · ·xk−1 = y0y1 · · ·yl−1, if k = l and xi = yi for all 0≤ i ≤ k .

Lexicographic Ordering

Now let us define lexicographic ordering <L.

Lexicographic ordering. We define x0x1 · · ·xk−1 <L y0y1 · · ·yl−1 if there
is an index 0≤ i such that i < k , i < l , xi <C yi and xj = yj for all
0≤ j < i , or if l > k and for all 0≤ j < k we have xj = yj .

alligator < crocodile
alligator < ant
aardvark < anteater
ant < armadillo
ant < anteater
anteater < antelope

Notice that the empty string (the sequence of 0 characters) is the
smallest string in lexicographic order.

Lexicographic Ordering

Now let us define lexicographic ordering <L.

Lexicographic ordering. We define x0x1 · · ·xk−1 <L y0y1 · · ·yl−1 if one
of the following hold

k = 0

k > 0andl > 0andx0 <C y0

k > 0andl > 0andx0 = y0andx1 · · ·xk−1 <L y1 · · ·yl−1

Notice:

aaaargh < aaargh
aaargh < aardvark
aardvark < arc
arc < rack

More formally we note that the set {anb | n ≥ 0} has no least element

. . . < aaab < aab < ab < b

This means lexicograph order is not a total ordering.
Since this complicated reasoning by induction, words over an alphabet
can be considered ordered another way: first by length, then
lexicographically for strings of the same length. This ordering is total.

Discrete Math

See, for example, Section 4.3.3 in Discrete Structures, Logic, and
Computability, 2nd edition, by James L. Hein.

Java Method

A recursive Java method to implement lexicographic ordering on
strings based on the Unicode collating sequence:

static boolean lexicographic (String x, String y) {
if (y.length ()==0) return false;
else if (x.length ()==0) return true;
else if (x.charAt(0) < y.charAt(0)) return true;
else if (x.charAt(0) > y.charAt(0)) return false;
else return lexicographic (

x.substring(1), y.substring (1)));
}

Dictionary Ordering

Natural languages often have numerous special rules about: ignorable
characters, capitalization, diacritics, digraphs, etc.

Ignorable characters:

dictionary: coal < concentrate < co-operate < corporation
lexicographic: co-operate < coal < concentrate < corporation

Capitalization

dictionary: abduct < Abelian < Aberdeen < abet
lexicographic: Abelian < Aberdeen < abduct < abet

Diacritics

dictionary: cote < côte < coté < côté
lexicographic: cote < coté < côte < côté

Digraphs

dictionary: casa < como < chalupa < dónde
lexicographic: casa < chalupa < como < dónde

Other, more complex rules require semantic analysis. Mc=Mac,
Mrs.=Mistress, St.=Saint, 1812=Eighteen twelve. Ignoring an initial
article, etc. See Knuth, volume 3, pages 8–9.

Time Stamp

Recording the time of an event using a time stamp is a very common
task in database and other programs. A good choice for the format of
a time stamp is one for which the timestamps when sorted in
lexicographic order are also in temporal order.

Aug 8, 2010, 10:56:32.876 am 2010-08-08T10:56:32.876Z
Dec 3, 2010, 9:04:01.327 am 2010-12-03T90:04:01.327Z
Sep 21, 2010, 2:03:11.002 pm 2010-09-21T14:03:11.002Z

Month names when sorted in lexicographic order (even when
abbreviated to three characters) are not in chronological order. Also
the string of length one "8" is not less than the string of length two
"10".
This trick obviates the need for a special timestamp function to
compare two timestamps in chronological order. Such a function can
be difficult to write correctly due to the irregular nature our society
uses in keeping time.

Dictionary Ordering

Java can compare strings in dictionary order using the class
java.text.Collator.

Collator co = Collator.getInstance (Locale.US);
co.setStrength (Collator.PRIMARY);
if (co.compare ("abc", "ABC")==0) {

System.out.println ("Equivalent.");
}

The difference between “a” and “b” is considered primary, while the
difference between “e” and “é” is secondary, and the difference
between “e” and “E” is tertiary.

An Aside

Where do objects come from?

Ultimately they are constructed, but we have just seen an example of
an important idiom or pattern.

Singleton Pattern

Late creation or frugal management of large objects is often controlled
by a static method that creates an instance of a class on behalf of the
client.
In this way the correct subclass or implementation can be created.
Also the number of these objects can be controlled so that repeated
requests for the object will be fulfilled by returning the same instance.

java.lang.Runtime.getRuntime();
java.util.Calendar.getInstance();
java.text.Collator.getInstance (Locale.US);
java.text.NumberFormat.getInstance (Locale.US);
java.security.KeyFactory.getInstance ("DSA");
java.security.MessageDigest.getInstance ("MD5");
java.awt.AlphaComposite.getInstance (

AlphaComposite.SR_OUT)

