Equivalence of NFAs and DFAs

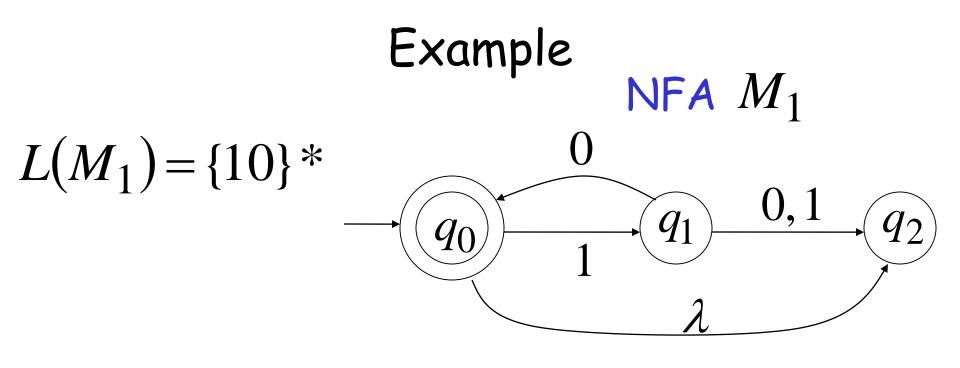
Linz: 2.3 Equivalence of Deterministic and Nondeterministic Finite Accepters, page 58

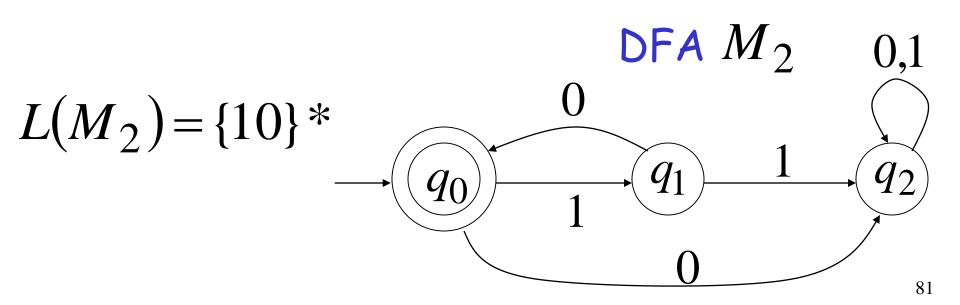
Equivalence of Machines

For DFAs or NFAs:

Machine M_1 is equivalent to machine M_2

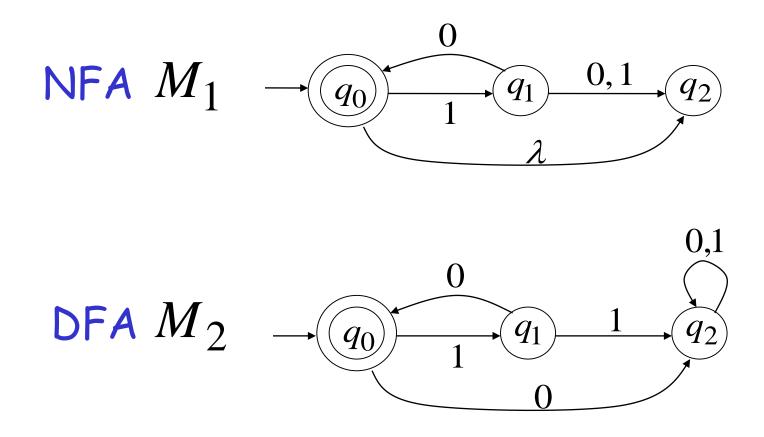
if $L(M_1) = L(M_2)$





Since $L(M_1) = L(M_2) = \{10\}^*$

machines M_1 and M_2 are equivalent



Equivalence of NFAs and DFAs

Question:

NFAs = DFAs?

Same power? Accept the same languages?

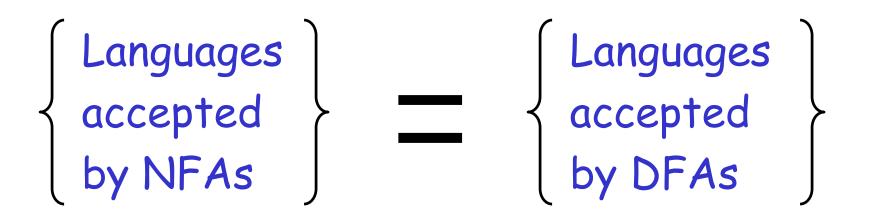
Equivalence of NFAs and DFAs

Question:

NFAs = DFAs? YES!

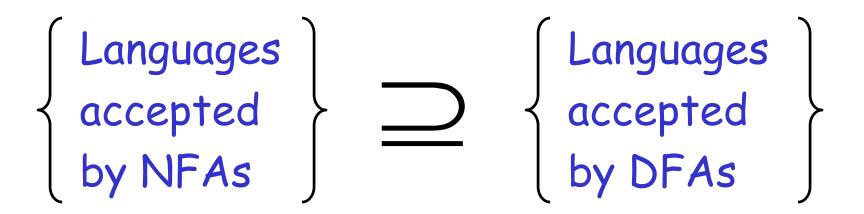
Same power? Accept the same languages?

We will prove:



NFAs and DFAs have the same computation power

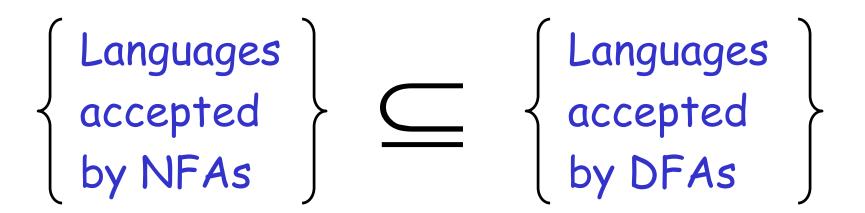
Step 1



Proof: Every DFA is trivially an NFA

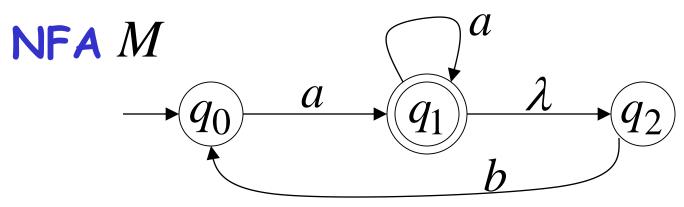
A language accepted by a DFA is also accepted by an NFA

Step 2

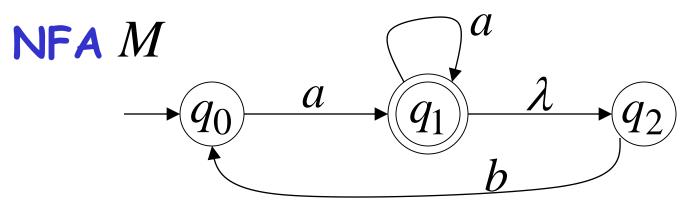


Proof: Any NFA can be converted to an equivalent DFA

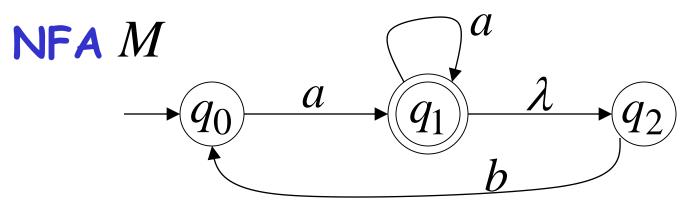
A language accepted by an NFA is also accepted by a DFA

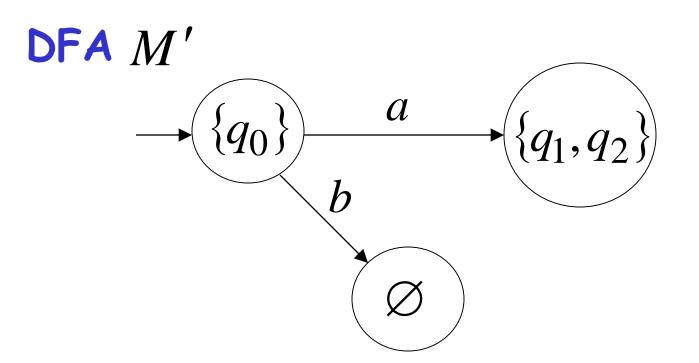


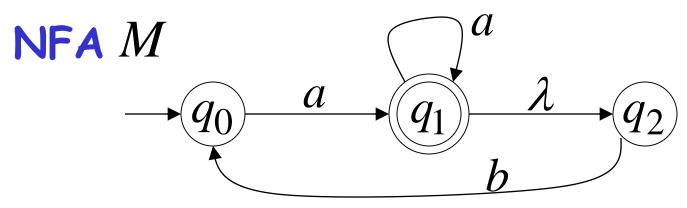
DFA M' $\rightarrow \{q_0\}$

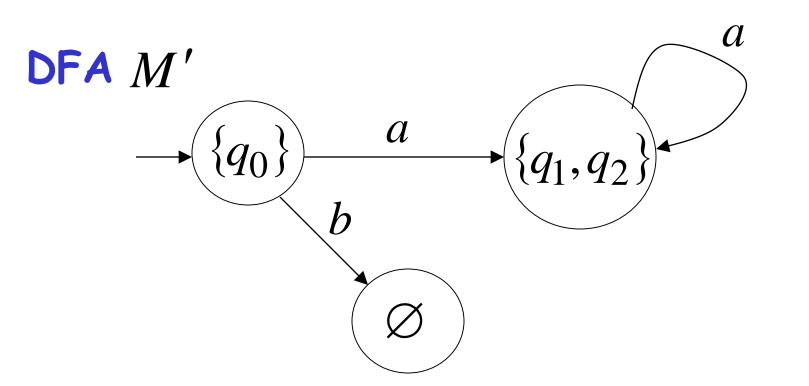


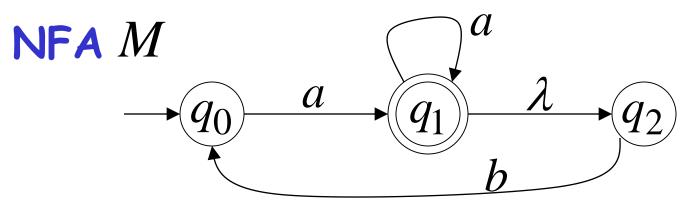
 $\mathsf{DFA}\ M'$ A $\{q_1, q_2\}$ $\{q_0\}$

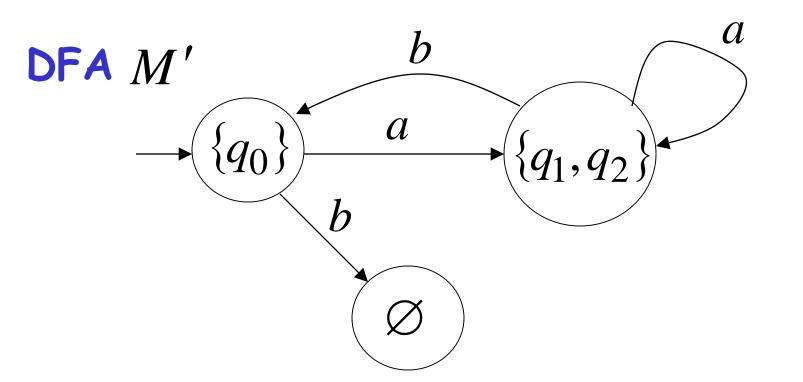


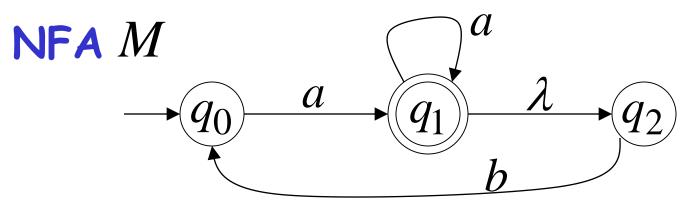


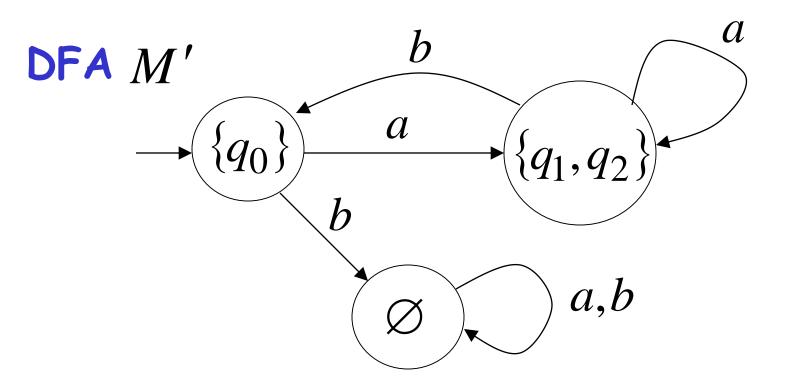


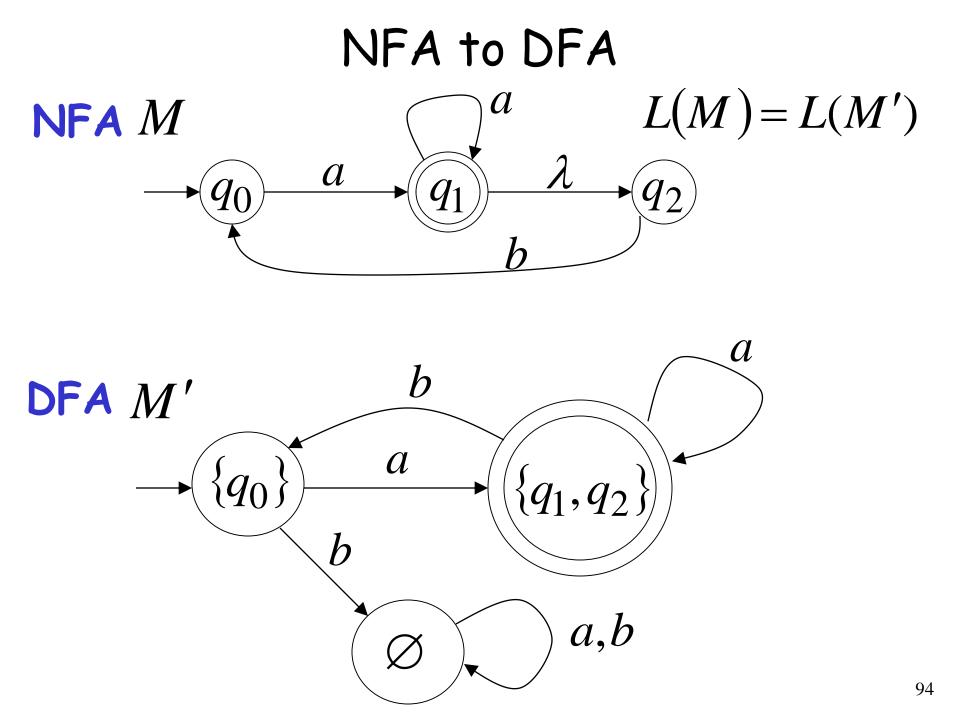












NFA to DFA: Remarks

We are given an NFA M

We want to convert it to an equivalent DFA M'

With L(M) = L(M')

If the NFA has states

 q_0, q_1, q_2, \dots

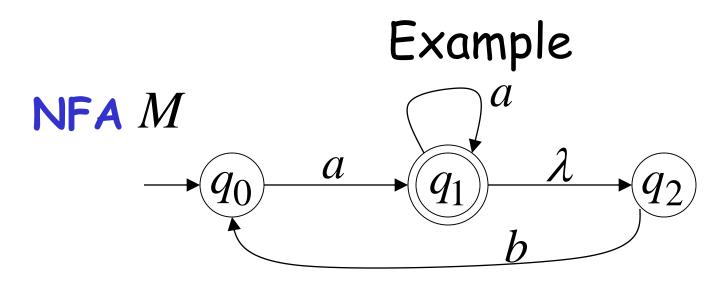
the DFA has states in the powerset

$\emptyset, \{q_0\}, \{q_1\}, \{q_1, q_2\}, \{q_3, q_4, q_7\}, \dots$

Procedure NFA to DFA

1. Initial state of NFA: q_0

Initial state of DFA: $\{q_0\}$



DFA M' $\rightarrow \{q_0\}$

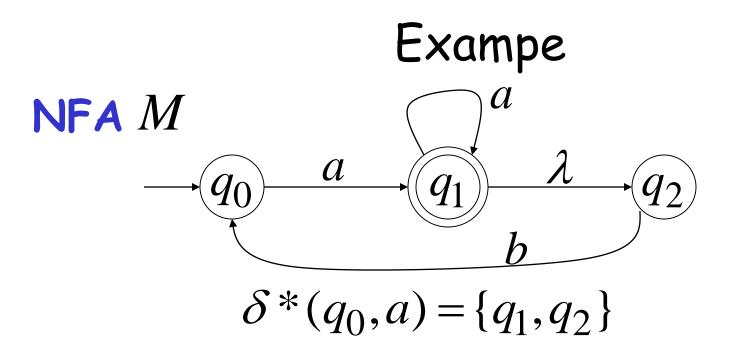
Procedure NFA to DFA 2. For every DFA's state $\{q_i, q_j, ..., q_m\}$

Compute in the NFA

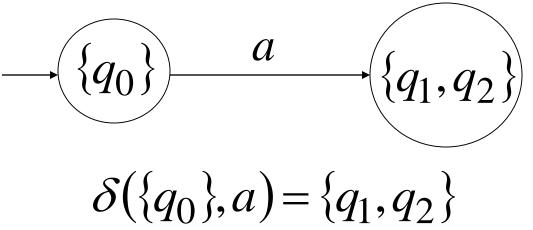
$$\delta^*(q_i, a),$$

 $\delta^*(q_j, a),$
 $= \{q'_i, q'_j, ..., q'_m\}$

Add transition to DFA $\delta(\{q_i, q_j, ..., q_m\}, a) = \{q'_i, q'_j, ..., q'_m\}$

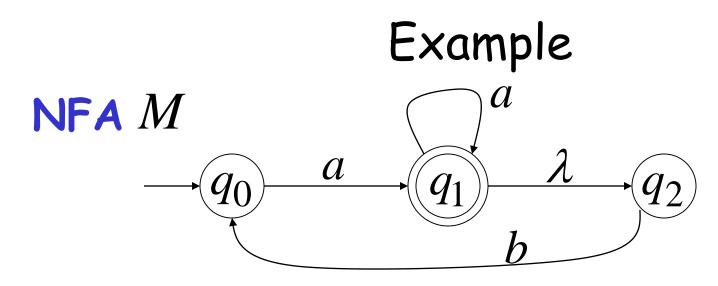


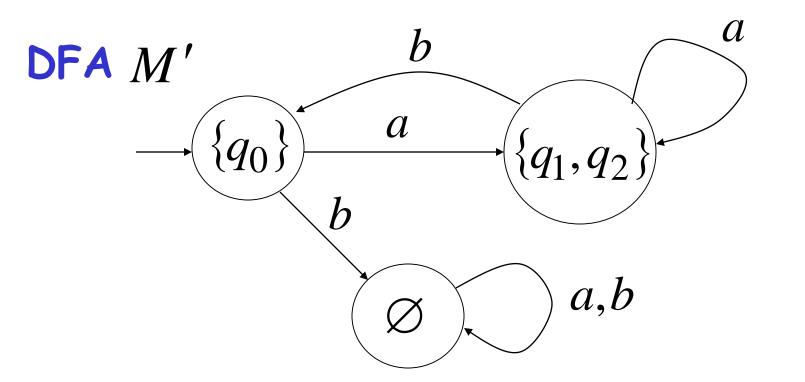
 $\mathsf{DFA}M'$



Procedure NFA to DFA

Repeat Step 2 for all letters in alphabet, until no more transitions can be added.



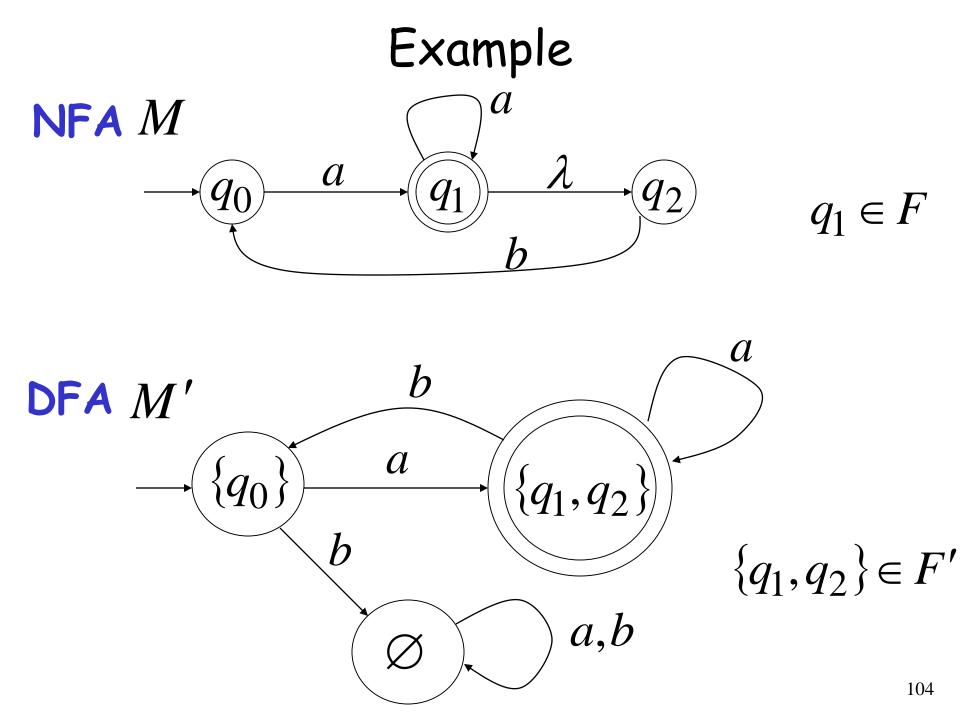


Procedure NFA to DFA **3.** For any DFA state $\{q_i, q_j, ..., q_m\}$

If some q_j is a final state in the NFA

Then, $\{q_i, q_j, ..., q_m\}$ is a final state in the DFA 4. If the NFA accepts the empty string, then the vertex {q0} is also made a final vertex.

Linz 6th, Theorem 2.2, page 62.



Theorem Take NFA M

Apply procedure to obtain DFA M'

Then M and M' are equivalent:

$$L(M) = L(M')$$

Finally

We have proven

{ Languages accepted by NFAs

We have proven

{ Languages accepted by NFAs { Languages
 accepted
 by DFAs

Regular Languages

We have proven

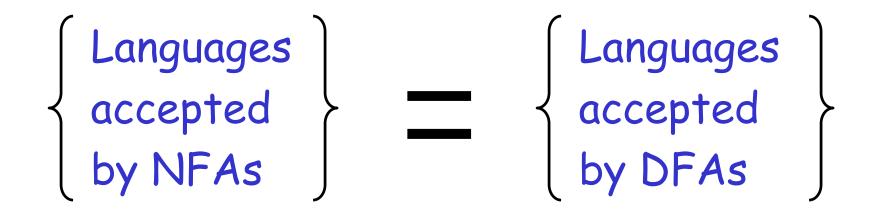
{ Languages
accepted
by NFAs

{ Languages
 accepted
 by DFAs

Regular Languages

Regular Languages

We have proven



Regular Languages Regular Languages

Thus, NFAs accept the regular languages