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• Grammars are a model of computation and are a good place to start
(equal to, and independent of, automata).

• The details of a formal treatment of grammars may obscure their place in
the grand scheme of computation (and even their practical applications).

• We recap our overall motivation and introduction. In other words, we start
all over again.
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The big question is:
What is computation?
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What do Formal Languages and Automata have to do with it?
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Definition
A symbol is a sign or a mark that can be distinguished from any other symbols.

Definition
An alphabet is a finite set of symbols.

Definition
A string is a finite, ordered sequence of symbols from an alphabet.

Definition
A formal language is a set of strings (possibly infinite) made up of symbols
from the same alphabet.
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Definition
A formal language is a set of strings (possibly infinite) made up of symbols
from the same alphabet.

The significance is:

computational problem
=

formal language
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How does one view a computational problem as a formal language?

Computation can be reduced to accepting or rejecting strings.
1 Computational input and data can be encoded as strings.
2 Computational results are reduced to yes and no.
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Neither procedural nor data abstraction is convenient in string form.

However, the fundamental nature of computation can more easily be explored
in a simple setting.

The universality of strings is scarcely in
doubt in the digital world of 0’s and
1’s.
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(Σ∗)

The universe of formal languages

sets of strings over the alphabet Σ
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(Σ∗)

There are many different formal languages
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(Σ∗)

{a, b, aba, abba}
{a, b}

{a, aa, aaa, . . .}

Each element (dot) is a formal language (over Σ = {a, b})
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(Σ∗)

{}

Σ+ = {a, b, aa, ab, ba, bb, . . .}

Σ∗ = {ϵ, a, b, aa, ab, . . .}

Special languages: the empty language of cardinality zero, Σ∗, and Σ+
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Incidentally, it should be clear from the meaning of powerset that for formal
languages L:

L ∈ (Σ∗) is the same thing as L ⊆ Σ∗.
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Properties of formal languages give rise to sets or families of formal languages.

A = { L ∈ (Σ∗) | property P(L) holds }

Properties like:
1 languages with strings of length exactly two, e.g., L1 = {aa, bb}
2 languages with strings whose symbols are in alphabetical order, e.g.,

L2 = {c, ac, abc, ac}
3 languages with a finite number of members, e.g., L3 = {ϵ, �, ����}.
4 languages with strings consisting of only a’s, e.g., L4 = {ϵ, aa, aaaa, . . .}.
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Using mathematical properties of formal languages to define language families

A = { L ∈ (Σ∗) | property P(L) holds }

appears not to ensnare us with Russell’s paradox.

Although the formal language L ∈ (Σ∗) is a set, a property P(L) like L /∈ L is
nonsense. The types do not work out. L is a set of strings; it cannot also be a
set of formal languages (or can it?).

Nonetheless there are many reasons to reject mathematical properties as a
means of description in favor of more means that are more explicit, simple, and
algorithmic.

In the end, types do not prevent Russell’s paradox because of encodings.
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(Σ∗)

length two
{aa, ba}

{}

{ϵ, a, aa, aaa, aaa}

{aa, ab, ba, bb, aba}

{b, ab, aab, aaab}

A set of formal languages, e.g., all members have length two
Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 21 / 111



(Σ∗)

languages with ϵ

{ϵ, a, a, aa, . . .}
{ϵ, abba}

languages not containing ϵ

{a, aa, aaa, . . .}

{b, ab, aab, aaab, . . .}
{aa, ab, ba, bb}

Sets of formal languages, e.g., ϵ-free languages
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(Σ∗)

finite languages
{a, b, aba, aabba}

{ϵ, abba}

infinite languages

{ϵ, a, aa, aaa, . . .}

{b, ab, aab, aaab, . . .}

Sets of formal languages, e.g., finite languages
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The set of finite languages is far too small and exclusive a set to be a
satisfactory characterization of computabilit.

Some infinite languages, for example La = {ϵ, a, aa, aaa, . . .} seem intuitively
computable.

We can easily construct La inductively
1 the empty string ϵ ∈ La,
2 if w ∈ La, then a : w ∈ La.

Thus La is not much of a computatational challenge.
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La is just the same as tally notation. We can capture this formal language in so
many diferent versions in Haskell, not to mention Agda or Coq.
-- Peano Numbers , Tally notation
data Nat = Zero | Succ Nat

data La = Empty | ConsA La

La :: String
La = [] : [a:w | w <- La]
La = [] : (map (’a’:) La)
La = iterate (’a’:) La

The characteristic function for La written (recursively) in Haskell:
allA :: String -> Bool
allA [] = True
allA (c:cs) = (c == ’a’) && (allA cs)

The “real” Haskell programmer would write simply:
allA = all (== ’a’)
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(Σ∗)

finite

{a3b2}

{a, b, abb}

regular

{an}
{bna}

We will study important family of languages, e.g., regular languages
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If the set of finite languages is too small and exclusive a set. Maybe all formal
languages are computable. But the family of all languages is far too large and
impossible as a characterization of computability.

There are more problems than there are programs to solve them.
There are more (true) facts than there are proofs to establish them.
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(Σ∗)

Doomed from the outset by Cantor’s theorem (diagonalization)

too many formal languages
(computational problems)
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Theorem (Cantor’s Theorem)
For any set X we cannot have a one-to-one correspondence between the
elements of X and the elements of (X ).

Put another way ...

Theorem (Cantor’s Theorem)
A set X cannot be put into a one-to-one correspondence with (X ).

In particular the cardinality of X is strictly less than that of (X ).
The cardinality of any L ⊆ Σ∗ is |L| < | (L)|.
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Nothing will describe all possible formal languages; not
• C++, Java, Haskell, Ada programs,
• Turing machines,
• Quantum computers, nor
• any conceivable description of computation

Because formalizable is going to entail countability, no resonable description
mechanism is going to describe all languages; no computational system is going
to solve all problems.
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set of strings,
syntax

hc svnt dracones

From a theoretical perspective, everything is syntax
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semantics,
everything else

hc svnt dracones

syntax:
scanning, parsing

From an implementation perspective, a sharp disctinction
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computably
enumerable

hc svnt dracones

computable

Computably enumerable versus computable
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(Σ∗)

computation

?

Can we characterize computation?
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Four Paradigms of Formal Languages

Ad-hoc mathematical descriptions using sets and set operations.
1 An automaton M accepts or recognizes a formal language L (M).
2 An expression x denotes a formal language L JxK.
3 A grammar G generates a formal language L (G).
4 A Post system P derives a formal language L (P).

Post systems
grammars
expressions
automata
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A language may be described mathematically using predicates and set
comprehension, as in L = { w ∈ Σ∗ | P(w) }. This means w ∈ L if, and only, if
P(w) is true.

The strings of a language may be accepted by an automaton M.

L (M) = {w ∈ Σ∗ | ⟨q0, w⟩ ⊢∗ ⟨qf , ϵ⟩ where qf is final state }

A language may be denoted by an expression x . We write L = L JxK.

The strings of a language may be generated by a grammar G .

L (G) = { w ∈ Σ∗ | S ⇒∗ w }

A strings of a language may be derived by a Post system.
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Automata compute Expressions denote

Trees demonstrate Grammars construct
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Grammars



Grammar

A grammar is another formalism for defining and generating a formal language
(a set of strings over an alphabet).

Grammars were developed independently of the question of computability and
have their own vocabulary. In the context of grammars it is traditional to call
the alphabet “a set of terminal symbols;” and to call a string “a sentence.”

Grammars play an important role in defining programming languages and in the
construction of compilers for programming languages.

Many different kinds of grammars have been studied.
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Definition of Grammar

A grammar is a 4-tuple ⟨T , V , P, S⟩:

• T is a finite set of terminal symbols;
• V is a finite set of nonterminal symbols, also called variables or syntactic

categories, T ∩ V = Ø;
• S ∈ V is a distinguished nonterminal symbol, called the start symbol;
• P is a finite set of productions.

A production has the form α → β where α and β are ordered sequences
(strings) of terminals and nonterminals symbols. (We write (T ∪ V )∗ for the
set of ordered sequences of terminal and nonterminal symbols.) The LHS α of
a production can’t be the empty sequence, but β might be.

The set of terminal symbols is exactly the same concept as the alphabet no
matter if we denote it by T or Σ.
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Example

The following five productions are for a grammar with T = {0, 1 }, V = {S},
and start symbol S.

1 S → ϵ
2 S →0
3 S →1
4 S →0S 0
5 S →1S 1
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Common Notational Conventions
To more effectively communicate and spare tedious repetition, it is convenient
to establish some notational conventions.

1 Lower-case letters near the beginning of the alphabet, a, b, and so on, are
terminal symbols. We shall also assume that non-letter symbols, like
digits, +, are terminal symbols.

2 Upper-case letters near the beginning of the alphabet, A, B, and so on, are
nonterminal symbols. Often the start symbol of a grammar is assumed to
be named S, or sometimes it is the nonterminal symbol on the left-hand
side of the first production.

3 Lower-case letters near the end of the alphabet, such as w or z , are
ordered sequences (possibly empty) of strings of terminal symbols

4 Upper-case letters near the end of the alphabet, such as X or Y , are a
single symbol, either a terminal or a nonterminal symbol.

5 Lower-case Greek letters, such as α and β, are ordered sequences
sequences (possibly empty) of terminal and nonterminal symbols.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 48 / 111



Common Notational Conventions (Recap)

To more effectively communicate and spare tedious repetition, it is convenient
to establish some notational conventions.

1 a, b, c, . . . are terminals.
2 A, B, C , . . . are nonterminals.
3 . . ., X , Y , Z are terminal or nonterminal symbols.
4 . . ., w , x , y , z are strings/sequences of terminals only.
5 α, β, γ, . . . are strings/sequences of terminals or nonterminals.
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Compact Notation
If the RHS of a production is a sequence with no symbols in it, we use ϵ to
communicate that fact clearly. So, for example, A → ϵ is a production.

Definition
A production in a grammar in which the RHS of a production is a sequence of
length zero is called an ϵ-production.

If several productions have the same LHS like these: A → α1, A → α2,
. . . ,A → αn it is convenient to write then using the following notation:

A → α1 | α2 | · · · | αn

Definition
And, all the productions with the LHS nonterminal system A are sometimes
called A-productions.
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Compact Notation

It is convenient to think of a production [in a CFG] as “belonging”
to the variable [nonterminal] of its head [LHS]. We shall often use
remarks like “the productions for A” or “A-productions” to refer to the
production whose head [LHS] is [the] variable A. We may write the
productions for a grammar by listing each variable [nonterminal] once,
and then listing all the [RHS] bodies of the productions for that variable
[nonterminal], separated by vertical bars.

HMU 3rd, §5.1, page 175.
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Derivation

A grammar G = ⟨T , V , P, S⟩ gives rise naturally to a method of constructing
strings of terminal and nonterminal symbols by application of the productions
very much like that of inductive sets.

Definition
If α, β ∈ (T ∪ V )∗, we say that α derives β in one step, or β is derivable from
α in one step and we write

α
1⇒G β

if β can be obtained from α by replacing some occurrence of the substring δ in
α with γ, where δ → γ is a production of G .
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Derivation

Perhaps we can recast the previous definition slightly more perspicuously as
follows:

Definition
If δ → γ is a production of G , then α1δα2 derives α1γα2 in one step, or α1γα2
is derivable from α1δα2 in one step. We write

α1δα2
1⇒G α1γα2

for all α1, α2 ∈ (T ∪ V )∗.
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We usually omit the the subscript G for the grammar, and write simply:

α
1⇒ β

and leave it to the reader to figure out which grammar is meant.

Also, we sometimes omit the 1 above the arrow, by writing simply:

α ⇒ β

though these may lead to confusion with the relation defined next.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 54 / 111



Derivation

Definition
Let ∗⇒G be the reflexive, transitive closure of the 1⇒G relation. That is:

α
∗⇒ α for any α

α
∗⇒ β if α

∗⇒ γ and γ
1⇒ β

This relation is sometimes called the “derives in zero or more steps” relation, or
simple the “derives” relation.
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Derivation – Inductively Defined Relation

The transitive closure is an inductively defined set (given below in a Post
system) and so we can easily prove things about the derives relations.

δ → γ ∈ P
α1δα2

1⇒ α1γα2

α
∗⇒ α

α
∗⇒ γ γ

1⇒ β

α
∗⇒ β

α, α, α, β, δ, γ are arbitrary strings in (T ∪ V )∗
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Language Generated by G

A string in (T ∪ V )∗ that is derivable from the start symbol S is called a
sentential form. A sentential form is called a sentence, if it consists only of
terminal symbols.

Definition
The language generated by G , denoted L (G), is the set of all sentences:

L (G) = { x ∈ T ∗ | S ∗⇒G x }
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Example

1 S → ϵ
2 S →0
3 S →1
4 S →0S 0
5 S →1S 1

For this grammar G we have the following derivation:

S 1⇒ 0S0 1⇒ 01S10 1⇒ 01010

So, S ∗⇒ 01010, and we conclude that 01010 ∈ L (G).
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There are many different kinds of grammars with slightly different restrictions
on the kinds of productions that are permitted.

Completely general grammars are rare. We see examples only briefly and only
much later.

The previous example was that of a particular kind of grammar known as a
context-free grammar.
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Grammars

context-free

linear

regular

left
linear

right
linear

S → SS
S → aSb
S → bSa
S → ϵ

S → aSb | ϵ

S → aS | ϵS → Sa | ϵ

Classification of Some Grammars (not languages)
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Different Kinds of Grammars

Unrestricted grammar
• Context-sensitive grammar
• Context-free grammar

• Grammar in Greibach normal form
• simple-grammar, s-grammar

• Grammar in Chomsky normal form
• Linear grammar

• Regular grammar
• right-linear grammar.
• left-linear grammar.

• Compiler theory: LL(k), LR(k) etc.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Different Kinds of Grammars) © 2 March 2024 61 / 111



Grammars Definitions in Linz 6th

Grammar (Linz 6th, §1.2, definition 1.1, page 21).
• Context-sensitive grammar (Linz 6th, §11.4, definition 11.4, page 300).
• Context-free grammar (Linz 6th, §5.1, definition 5.1, page 130).

• Greibach normal form (Linz 6th §6.2, definition 6.5, page 174).
• simple-grammar, s-grammar (Linz 6th, §5.3, definition 5.4, page 144).

• Chomsky normal form (Linz 6th, §6.2, definition 6.4, page 171).
• Linear grammar (Linz 6th, §3.3, page 93).

• Regular grammar (Linz 6th, §3.3, definition 3.3, page 92).
• right-linear grammar (Linz 6th, §3.3, definition 3.3, page 92).
• left-linear grammar (Linz 6th, §3.3, definition 3.3, page 92).

• Compiler theory: LL(k) (Linz 6th, §7.4, definition 7.5, page 210); LR(k) [Not
defined in Linz 6th.]
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Grammars Definitions in HMU 3rd

• Context-sensitive grammar [Not defined in HMU].
• Context-free grammar (HMU 3rd, §5.1.2, page 173).

• Greibach normal form (HMU 3rd, §7.1, page 277).
• simple-grammar, s-grammar [Not defined in HMU].

• Chomsky normal form (HMU 3rd, §7.1.5, page 272).
• Linear grammar [Not defined in HMU].

• Regular grammar [Not defined in HMU].
• right-linear grammar (HMU 3rd, §5.1.7, exercise 5.1.4, page 182).
• left-linear grammar.

• Compiler theory: LL(k), LR(k) etc. [Not defined in HMU].
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Restrictions on Grammars

• Context-sensitive grammar. Each production α → β restricted to
len(α) ≤ len(β)

• Context-free grammar. Each production A → β where A ∈ N
• Grammar in Greibach normal form. A → aγ where a ∈ T and γ ∈ V ∗

• simple-grammar or s-grammar. Any pair ⟨A, a⟩ occurs at most once in the
productions

• Grammar in Chomsky normal form. A → BC or A → a
• Linear grammar. RHS β contains at most one nonterminal

• Regular grammar, either:
• right-linear grammar. The nonterminal (if any) occurs to the right of (or
after) any terminals
• left-linear grammar. The nonterminal (if any) occurs to the left of (or
before) any terminals

If ϵ ∈ L(G) we must allow a niggly exception S → ϵ.
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The s-languages are those languages recognized by a particu-
lar restricted form of deterministic pushdown automaton, called an
s-machine. They are uniquely characterized by that subset of
the standard-form grammars in which each rule has the form
Z → aY1 . . . Yn, n ≥ 0, and for which the pairs (Z , a) are distinct
among the rules. It is shown that the s-languages have the prefix prop-
erty, and that they include the regular sets with end-markers. Finally,
their closure properties and decision problems are examined, and it is
found that their equivalence problem is solvable.

Korenja, Hopcroft, Simple deterministic languages, 1968.
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right-linear A → xB or A → x A, B ∈ V , x ∈ T ∗

strongly right-linear A → aB or A → ϵ A, B ∈ V , a ∈ T
left-linear A → Bx or A → x A, B ∈ V , x ∈ T ∗

strongly left-linear A → Ba or A → ϵ A, B ∈ V , a ∈ T
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Grammars Characterize The Chomsky Hierarchy

Like automata, grammars can be used
used to characterize the formal lan-
guages of the Chomsky Hierarchy.

regular
languages

context-free
languages

context-sensitive
languages

computably enumerable
languages
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Grammars and Automata

defining other

DFAs are equivalent to regular grammars
CFGs are equivalent to PDAs
LBAs are equivalent to context-sensitive grammars
TMs are equivalent to (unrestricted) grammars

Context-free grammars (CFG) are significant because they are:
1 natural and simple,
2 expressive enough for most purposes, and
3 easily parsed.
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Grammars and Automata

defining other

DFAs are equivalent to regular grammars
CFGs are equivalent to PDAs
LBAs are equivalent to context-sensitive grammars
TMs are equivalent to (unrestricted) grammars

Context-free grammars (CFG) are significant because they are:
1 natural and simple,
2 expressive enough for most purposes, and
3 easily parsed.

deterministic finite automata
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Grammars and Automata

defining other

DFAs are equivalent to regular grammars
CFGs are equivalent to PDAs
LBAs are equivalent to context-sensitive grammars
TMs are equivalent to (unrestricted) grammars

Context-free grammars (CFG) are significant because they are:
1 natural and simple,
2 expressive enough for most purposes, and
3 easily parsed.

pushdown automata (PDA)

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Different Kinds of Grammars) © 2 March 2024 70 / 111



Grammars and Automata

defining other

DFAs are equivalent to regular grammars
CFGs are equivalent to PDAs
LBAs are equivalent to context-sensitive grammars
TMs are equivalent to (unrestricted) grammars

Context-free grammars (CFG) are significant because they are:
1 natural and simple,
2 expressive enough for most purposes, and
3 easily parsed. of lesser significance

Linear Bounded Automata (LBA)
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Grammars and Automata

defining other

DFAs are equivalent to regular grammars
CFGs are equivalent to PDAs
LBAs are equivalent to context-sensitive grammars
TMs are equivalent to (unrestricted) grammars

Context-free grammars (CFG) are significant because they are:
1 natural and simple,
2 expressive enough for most purposes, and
3 easily parsed.

of lesser significance

Turing machine (TM)
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Definition of Grammar (Recap)

A grammar is a 4-tuple ⟨T , V , P, S⟩:

• T is the finite set of terminal symbols;
• V is the finite set of nonterminal symbols, also called variables or syntactic

categories, T ∩ V = Ø;
• S ∈ V is a distinguished nonterminal symbol, called the start symbol;
• P is the finite set of productions.

A production has the form α → β where α and β are ordered sequences
(strings) of terminals and nonterminals symbols. (We write (T ∪ V )∗ for the
set of ordered sequences of terminal and nonterminal symbols.) The LHS α of
a production can’t be the empty sequence, but β might be.
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Definition of Grammar (Recap)

A grammar is a 4-tuple ⟨T , V , P, S⟩:
• T is the finite set of terminal symbols;
• V is the finite set of nonterminal symbols, also called variables or syntactic

categories, T ∩ V = Ø;
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• P is the finite set of productions.

A production has the form α → β where α and β are ordered sequences
(strings) of terminals and nonterminals symbols. (We write (T ∪ V )∗ for the
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Linear Grammars

Linear grammar. Context-free (LHS a single nonterminal); RHS β contains at
most one nonterminal (β possibly ϵ).

• Regular grammar, either:
• right-linear grammar. The nonterminal (if any) occurs to the right of (or

after) any terminals
• left-linear grammar. The nonterminal (if any) occurs to the left of (or

before) any terminals
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All linear grammars can put in a form with all RHS with exactly one terminal.

A → abBcd

A → aX
X → bY
Y → Zd
Z → Bc

No epsilon productions (for L − {ϵ}) and no unit productions.
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Linz 6th, Theorem 3.3 and 3.4, page 94 and 96
HMU 3rd, Exercise 5.1.4, page 182.
Du & Ko, Theorem 3.10, page 96.
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Theorem (Linz 6th,Theorem 3.3, page 94)
For all right-linear grammars G, the language L(G) is regular.

Theorem (Linz 6th,Theorem 3.4, page 96)
If language L is regular, then there is a right-linear grammar G
such that L(G) = L.

So the set of all languages generated by right-linear grammars is
equal to the set of regular languages.

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 82 / 111



Proof Sketch
There is a two-way construction (with some niggly details) inking a right-linear
grammar and a DFA. We equate (pretty much) the set of nonterminal symbols
in the grammar with the states in the DFA.

Let G = ⟨Σ, Q, S, P⟩ be a right-linear grammar. Let
M = ⟨Σ, Q ∪ {qf }, δ, S, {qf }⟩ be a NFA. Without loss of generality assume the
productions in G have at most one terminal in them and M has a unique final
state qf reachable only by ϵ moves. We equate the set of grammar terminals
with the alphabet; and the set of grammar nonterminals with the set of states
of the automata. We associate the production A → aB with the transition
A a→ B. And we associate the production A → a with the transition A a→ qf for
a final state qf .

The key insight is
S ∗⇒ wA iff δ∗(S, w) = A
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S → abA | aaB | bb
A → aB | bC | aa
B → aA | bB
C → abS

S ∗⇒ abA ∗⇒ abaB ∗⇒ abaaA ∗⇒ abaabC ∗⇒ abaababS ∗⇒ abaababbb

S ab−→ A a−→ B a−→ A b→ C ab−→ S bb−→ f
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Right Linear Grammars

q0

q1

q2

q3

q4

⊥

a

b a

b

b

a b
a

a, b

a, b
q0 → aq1 | b⊥
q1 → a⊥ | bq2 | b
q2 → aq3 | b⊥
q3 → a⊥ | bq4 | b
q4 → a⊥ | b⊥
⊥ → a⊥ | b⊥
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Left-linear Grammars?

What about left-linear grammars?

The set of languages they generate is also the set of regular languages.

We prove it indirectly via reversal, using that fact that reversing a left-linear
grammar is a right-linear grammar and vice versa.
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Reversing an NFA
Theorem
If language L is regular, then LR is regular.

Proof.
Given an NFA M for L, we construct an NFA M ′ by reversing the
transitions. L(M ′) = LR .

Theorem
If LR is regular, then L is regular.

Proof.
Since by the previous theorem (LR)R is regular and (LR)R = L, we
have L is regular.
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Reversing Example
+

•

a ∗

b

•

ab

+

•

a∗

b

•

ba

q0

q1 q2

q3 q4

a

b

ϵ

a

ϵ

b

q0

q1 q2

q3 q4

a

b

ϵ

a

ϵ

b

L = L Jab∗ + baK and LR = L Jab + b∗aK
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Reversing a Linear Grammar

Theorem
For all right-linear grammars G, there is a left-linear grammar G◁

such that L(G◁) = L(G)R

Proof.
Reversing the RHSs of the productions in G constructs a left-linear
grammar G◁. Since S ∗⇒G α iff S ∗⇒G◁ αR , we have
L(G) = L(G◁)R .
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Reversing a Linear Grammar

Theorem
For all left-linear grammars G, there is a right-linear grammar G▷

such that L(G▷) = L(G)R

Proof.
Reversing the RHSs of the productions in G constructs a left-linear
grammar G▷. Since S ∗⇒G α iff S ∗⇒G▷ αR , we have
L(G) = L(G◁)R .
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Reversing Example
S → bA
S → aB
A → aC
B → bB
B → F
C → F
F → ϵ

S → Ab
S → Ba
A → Ca
B → Bb
B → F
C → F
F → ϵ

L = {abn | 0 ≤ n} ∪ {ba} and LR = {ab} ∪ {bna | 0 ≤ n}

S

1⇒ aB

1⇒ abB

1⇒ abbB

1⇒ abbF

1⇒ abb

S

1⇒ Ba

1⇒ Bba

1⇒ Bbba

1⇒ Fbba

1⇒ bba
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Reversing Example
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Reversing Example
S → bA
S → aB
A → aC
B → bB
B → F
C → F
F → ϵ

S → Ab
S → Ba
A → Ca
B → Bb
B → F
C → F
F → ϵ

L = {abn | 0 ≤ n} ∪ {ba} and LR = {ab} ∪ {bna | 0 ≤ n}

S 1⇒ aB 1⇒ abB 1⇒ abbB 1⇒ abbF 1⇒ abb

S 1⇒ Ba 1⇒ Bba 1⇒ Bbba 1⇒ Fbba 1⇒ bba

So aab ∈ L, bba ∈ LR , and (abb)R = bba.
Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 98 / 111



Theorem
A language L generated by a left-linear grammar is regular.

Proof.
• Given a left-linear grammar for L we can construct a right-linear grammar

generating LR .
• Since LR is generated by a right-linear grammar, it is regular (Thm 3.3),
• Therefore L is also regular.
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Theorem
If a language L is regular, then there is a left-linear grammar for it.

Proof.
• Since L is regular, then LR is regular.
• Since LR is regular, then there is a right-linear grammar for it (Thm 3.4)
• Then there is a left-linear grammar for (LR)R = L.
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Theorem
If a language L is regular, then there is a regular grammar for it.

Theorem
A language L generated by a regular grammar is regular.

Theorem
A language L is regular iff it is generated by a regular grammar.
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Theorem
If a language L is regular, then there is a regular grammar for it.

Theorem
A language L generated by a regular grammar is regular.

Theorem
A language L is regular iff it is generated by a regular grammar.
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A language L is regular if, and only if,
• there is a DFA for it (by definition)
• there is an NFA for it
• there is a regular expression for it
• there is a right-linear grammar for it
• there is a left-linear grammar for it
• there is a regular grammar for it
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(Σ∗)

{a, b, aba, abba}

The universe of formal languages
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(Σ∗)

{a, b, aba, abba}
{a, b}

{a, aa, aaa, . . .}

Each element (dot) is a formal language (over Σ = {a, b})
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(Σ∗)

computation

?

Can we characterize computation?
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Many different models: automata, expression, grammars, and so on.
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Models of computation might have little relationship to each other.
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(Σ∗)

?
{a3b2}

{a, b, abb}

regular

{an}
{bna}

Regular languages seem important
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(Σ∗)

regular languages

{a, aba}
{anb}

other languages
{anbn | 0 ≤ n}

Need to keep exploring
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Elsewhere

• Closure Properties of Regular Languages
• Decision Procedures for Regular Languages
• Pumping Lemma for Regular Languages
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