
Formal Languages
Grammar—Intro & Regular

Ryan Stansifer

Computer Sciences
Florida Institute of Technology

Melbourne, Florida USA 32901

http://www.cs.fit.edu/~ryan/

2 March 2024

Formal Languages (Grammar—Intro & Regular) © 2 March 2024 1 / 111

http://www.cs.fit.edu/~ryan/

Outline

1 Computation and Formal Languages
Examples
Universe

2 Grammar and Language
Definitions, Derivation
Different Kinds of Grammars

3 Regular Grammars
Definitions
Reflection and Conclusions

Formal Languages (Grammar—Intro & Regular) © 2 March 2024 2 / 111

• Grammars are a model of computation and are a good place to start
(equal to, and independent of, automata).

• The details of a formal treatment of grammars may obscure their place in
the grand scheme of computation (and even their practical applications).

• We recap our overall motivation and introduction. In other words, we start
all over again.

Formal Languages (Grammar—Intro & Regular) © 2 March 2024 3 / 111

The big question is:
What is computation?

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages © 2 March 2024 4 / 111

What do Formal Languages and Automata have to do with it?

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages © 2 March 2024 5 / 111

Definition
A symbol is a sign or a mark that can be distinguished from any other symbols.

Definition
An alphabet is a finite set of symbols.

Definition
A string is a finite, ordered sequence of symbols from an alphabet.

Definition
A formal language is a set of strings (possibly infinite) made up of symbols
from the same alphabet.

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages © 2 March 2024 6 / 111

Definition
A formal language is a set of strings (possibly infinite) made up of symbols
from the same alphabet.

The significance is:

computational problem
=

formal language

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages © 2 March 2024 7 / 111

Definition
A formal language is a set of strings (possibly infinite) made up of symbols
from the same alphabet.

The significance is:

computational problem
=

formal language

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages © 2 March 2024 8 / 111

How does one view a computational problem as a formal language?

Computation can be reduced to accepting or rejecting strings.
1 Computational input and data can be encoded as strings.
2 Computational results are reduced to yes and no.

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages © 2 March 2024 9 / 111

Neither procedural nor data abstraction is convenient in string form.

However, the fundamental nature of computation can more easily be explored
in a simple setting.

The universality of strings is scarcely in
doubt in the digital world of 0’s and
1’s.

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages © 2 March 2024 10 / 111

http://cs.fit.edu/~ryan/digital/

language in the language not in the language

second-to-last symbol is a
aa

bbbab
bbbbbbaaabab

a
aaaba

bbbbbbbbbbb

equal number of
a’s and b’s

ba
bbaaba

aaabbbbbaaab

a
bbbaaa

abababababa

palindromes
a

abba
abaabaabaaba

ab
bbbbaab

ababababababab

contains the pattern abba
abba

ababbabbababbba
bbbbbbbbbabbabb

abb
bbabaab

aaaaaaaaaaaaa

the number of b’s
is divisible by 3

bbb
baaaaabaaaab

bbbabbaabaabababa

bb
abababab

aaaaaaaaaaab

language in the language not in the language

second-to-last symbol is 0
00

11101
111111000101

0
00010

11111111111

equal number of
0’s and 1’s

10
110010

000111110001

0
111000

01010101010

palindromes
0

0110
010010010010

01
1111001

01010101010101

contains the pattern 0110
0110

010110110101110
111111111011011

011
1101001

0000000000000

the number of 1’s
is divisible by 3

111
100000100001

11101100100101010

11
01010101

000000000001

language in the language not in the language

second-to-last symbol is �
� �

�����
������� � ����

�
� � ���

�����������

equal number of
� ’s and �’s

��
��� ���

� � ������� � ��

�
���� � �

�����������

palindromes
�

����
��� ��� ��� ���

��
����� ��

��������������

contains the pattern
����

����
���������������
���������������

���
����� ��

� � � � � � � � � � � � �

the number of �’s
is divisible by 3

���
�� � � � ��� � � ��

������� ��� �������

��
��������

� � � � � � � � � � ��

(Σ∗)

The universe of formal languages

sets of strings over the alphabet Σ

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 14 / 111

(Σ∗)

There are many different formal languages
Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 15 / 111

(Σ∗)

{a, b, aba, abba}
{a, b}

{a, aa, aaa, . . .}

Each element (dot) is a formal language (over Σ = {a, b})
Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 16 / 111

(Σ∗)

{}

Σ+ = {a, b, aa, ab, ba, bb, . . .}

Σ∗ = {ϵ, a, b, aa, ab, . . .}

Special languages: the empty language of cardinality zero, Σ∗, and Σ+

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 17 / 111

Incidentally, it should be clear from the meaning of powerset that for formal
languages L:

L ∈ (Σ∗) is the same thing as L ⊆ Σ∗.

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 18 / 111

Properties of formal languages give rise to sets or families of formal languages.

A = { L ∈ (Σ∗) | property P(L) holds }

Properties like:
1 languages with strings of length exactly two, e.g., L1 = {aa, bb}
2 languages with strings whose symbols are in alphabetical order, e.g.,

L2 = {c, ac, abc, ac}
3 languages with a finite number of members, e.g., L3 = {ϵ, �, ����}.
4 languages with strings consisting of only a’s, e.g., L4 = {ϵ, aa, aaaa, . . .}.

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 19 / 111

Using mathematical properties of formal languages to define language families

A = { L ∈ (Σ∗) | property P(L) holds }

appears not to ensnare us with Russell’s paradox.

Although the formal language L ∈ (Σ∗) is a set, a property P(L) like L /∈ L is
nonsense. The types do not work out. L is a set of strings; it cannot also be a
set of formal languages (or can it?).

Nonetheless there are many reasons to reject mathematical properties as a
means of description in favor of more means that are more explicit, simple, and
algorithmic.

In the end, types do not prevent Russell’s paradox because of encodings.

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 20 / 111

(Σ∗)

length two
{aa, ba}

{}

{ϵ, a, aa, aaa, aaa}

{aa, ab, ba, bb, aba}

{b, ab, aab, aaab}

A set of formal languages, e.g., all members have length two
Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 21 / 111

(Σ∗)

languages with ϵ

{ϵ, a, a, aa, . . .}
{ϵ, abba}

languages not containing ϵ

{a, aa, aaa, . . .}

{b, ab, aab, aaab, . . .}
{aa, ab, ba, bb}

Sets of formal languages, e.g., ϵ-free languages
Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 22 / 111

(Σ∗)

finite languages
{a, b, aba, aabba}

{ϵ, abba}

infinite languages

{ϵ, a, aa, aaa, . . .}

{b, ab, aab, aaab, . . .}

Sets of formal languages, e.g., finite languages
Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 23 / 111

The set of finite languages is far too small and exclusive a set to be a
satisfactory characterization of computabilit.

Some infinite languages, for example La = {ϵ, a, aa, aaa, . . .} seem intuitively
computable.

We can easily construct La inductively
1 the empty string ϵ ∈ La,
2 if w ∈ La, then a : w ∈ La.

Thus La is not much of a computatational challenge.

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 24 / 111

La is just the same as tally notation. We can capture this formal language in so
many diferent versions in Haskell, not to mention Agda or Coq.
-- Peano Numbers , Tally notation
data Nat = Zero | Succ Nat

data La = Empty | ConsA La

La :: String
La = [] : [a:w | w <- La]
La = [] : (map (’a’:) La)
La = iterate (’a’:) La

The characteristic function for La written (recursively) in Haskell:
allA :: String -> Bool
allA [] = True
allA (c:cs) = (c == ’a’) && (allA cs)

The “real” Haskell programmer would write simply:
allA = all (== ’a’)

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 25 / 111

(Σ∗)

finite

{a3b2}

{a, b, abb}

regular

{an}
{bna}

We will study important family of languages, e.g., regular languages
Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 26 / 111

If the set of finite languages is too small and exclusive a set. Maybe all formal
languages are computable. But the family of all languages is far too large and
impossible as a characterization of computability.

There are more problems than there are programs to solve them.
There are more (true) facts than there are proofs to establish them.

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 27 / 111

(Σ∗)

Doomed from the outset by Cantor’s theorem (diagonalization)

too many formal languages
(computational problems)

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 28 / 111

Theorem (Cantor’s Theorem)
For any set X we cannot have a one-to-one correspondence between the
elements of X and the elements of (X).

Put another way ...

Theorem (Cantor’s Theorem)
A set X cannot be put into a one-to-one correspondence with (X).

In particular the cardinality of X is strictly less than that of (X).
The cardinality of any L ⊆ Σ∗ is |L| < | (L)|.

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 29 / 111

Nothing will describe all possible formal languages; not
• C++, Java, Haskell, Ada programs,
• Turing machines,
• Quantum computers, nor
• any conceivable description of computation

Because formalizable is going to entail countability, no resonable description
mechanism is going to describe all languages; no computational system is going
to solve all problems.

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 30 / 111

set of strings,
syntax

hc svnt dracones

From a theoretical perspective, everything is syntax
Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 31 / 111

semantics,
everything else

hc svnt dracones

syntax:
scanning, parsing

From an implementation perspective, a sharp disctinction
Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 32 / 111

computably
enumerable

hc svnt dracones

computable

Computably enumerable versus computable
Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 33 / 111

(Σ∗)

computation

?

Can we characterize computation?
Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 34 / 111

Four Paradigms of Formal Languages

Ad-hoc mathematical descriptions using sets and set operations.
1 An automaton M accepts or recognizes a formal language L (M).
2 An expression x denotes a formal language L JxK.
3 A grammar G generates a formal language L (G).
4 A Post system P derives a formal language L (P).

Post systems
grammars
expressions
automata

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 35 / 111

A language may be described mathematically using predicates and set
comprehension, as in L = { w ∈ Σ∗ | P(w) }. This means w ∈ L if, and only, if
P(w) is true.

The strings of a language may be accepted by an automaton M.

L (M) = {w ∈ Σ∗ | ⟨q0, w⟩ ⊢∗ ⟨qf , ϵ⟩ where qf is final state }

A language may be denoted by an expression x . We write L = L JxK.

The strings of a language may be generated by a grammar G .

L (G) = { w ∈ Σ∗ | S ⇒∗ w }

A strings of a language may be derived by a Post system.

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 36 / 111

Automata compute Expressions denote

Trees demonstrate Grammars construct

Formal Languages (Grammar—Intro & Regular) Computation and Formal Languages (Universe) © 2 March 2024 37 / 111

Grammars

Grammar

A grammar is another formalism for defining and generating a formal language
(a set of strings over an alphabet).

Grammars were developed independently of the question of computability and
have their own vocabulary. In the context of grammars it is traditional to call
the alphabet “a set of terminal symbols;” and to call a string “a sentence.”

Grammars play an important role in defining programming languages and in the
construction of compilers for programming languages.

Many different kinds of grammars have been studied.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 39 / 111

Definition of Grammar

A grammar is a 4-tuple ⟨T , V , P, S⟩:

• T is a finite set of terminal symbols;
• V is a finite set of nonterminal symbols, also called variables or syntactic

categories, T ∩ V = Ø;
• S ∈ V is a distinguished nonterminal symbol, called the start symbol;
• P is a finite set of productions.

A production has the form α → β where α and β are ordered sequences
(strings) of terminals and nonterminals symbols. (We write (T ∪ V)∗ for the
set of ordered sequences of terminal and nonterminal symbols.) The LHS α of
a production can’t be the empty sequence, but β might be.

The set of terminal symbols is exactly the same concept as the alphabet no
matter if we denote it by T or Σ.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 40 / 111

Definition of Grammar

A grammar is a 4-tuple ⟨T , V , P, S⟩:
• T is a finite set of terminal symbols;

• V is a finite set of nonterminal symbols, also called variables or syntactic
categories, T ∩ V = Ø;

• S ∈ V is a distinguished nonterminal symbol, called the start symbol;
• P is a finite set of productions.

A production has the form α → β where α and β are ordered sequences
(strings) of terminals and nonterminals symbols. (We write (T ∪ V)∗ for the
set of ordered sequences of terminal and nonterminal symbols.) The LHS α of
a production can’t be the empty sequence, but β might be.

The set of terminal symbols is exactly the same concept as the alphabet no
matter if we denote it by T or Σ.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 41 / 111

Definition of Grammar

A grammar is a 4-tuple ⟨T , V , P, S⟩:
• T is a finite set of terminal symbols;
• V is a finite set of nonterminal symbols, also called variables or syntactic

categories, T ∩ V = Ø;

• S ∈ V is a distinguished nonterminal symbol, called the start symbol;
• P is a finite set of productions.

A production has the form α → β where α and β are ordered sequences
(strings) of terminals and nonterminals symbols. (We write (T ∪ V)∗ for the
set of ordered sequences of terminal and nonterminal symbols.) The LHS α of
a production can’t be the empty sequence, but β might be.

The set of terminal symbols is exactly the same concept as the alphabet no
matter if we denote it by T or Σ.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 42 / 111

Definition of Grammar

A grammar is a 4-tuple ⟨T , V , P, S⟩:
• T is a finite set of terminal symbols;
• V is a finite set of nonterminal symbols, also called variables or syntactic

categories, T ∩ V = Ø;
• S ∈ V is a distinguished nonterminal symbol, called the start symbol;

• P is a finite set of productions.
A production has the form α → β where α and β are ordered sequences
(strings) of terminals and nonterminals symbols. (We write (T ∪ V)∗ for the
set of ordered sequences of terminal and nonterminal symbols.) The LHS α of
a production can’t be the empty sequence, but β might be.

The set of terminal symbols is exactly the same concept as the alphabet no
matter if we denote it by T or Σ.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 43 / 111

Definition of Grammar

A grammar is a 4-tuple ⟨T , V , P, S⟩:
• T is a finite set of terminal symbols;
• V is a finite set of nonterminal symbols, also called variables or syntactic

categories, T ∩ V = Ø;
• S ∈ V is a distinguished nonterminal symbol, called the start symbol;
• P is a finite set of productions.

A production has the form α → β where α and β are ordered sequences
(strings) of terminals and nonterminals symbols. (We write (T ∪ V)∗ for the
set of ordered sequences of terminal and nonterminal symbols.) The LHS α of
a production can’t be the empty sequence, but β might be.

The set of terminal symbols is exactly the same concept as the alphabet no
matter if we denote it by T or Σ.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 44 / 111

Definition of Grammar

A grammar is a 4-tuple ⟨T , V , P, S⟩:
• T is a finite set of terminal symbols;
• V is a finite set of nonterminal symbols, also called variables or syntactic

categories, T ∩ V = Ø;
• S ∈ V is a distinguished nonterminal symbol, called the start symbol;
• P is a finite set of productions.

A production has the form α → β where α and β are ordered sequences
(strings) of terminals and nonterminals symbols. (We write (T ∪ V)∗ for the
set of ordered sequences of terminal and nonterminal symbols.) The LHS α of
a production can’t be the empty sequence, but β might be.

The set of terminal symbols is exactly the same concept as the alphabet no
matter if we denote it by T or Σ.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 45 / 111

Definition of Grammar

A grammar is a 4-tuple ⟨T , V , P, S⟩:
• T is a finite set of terminal symbols;
• V is a finite set of nonterminal symbols, also called variables or syntactic

categories, T ∩ V = Ø;
• S ∈ V is a distinguished nonterminal symbol, called the start symbol;
• P is a finite set of productions.

A production has the form α → β where α and β are ordered sequences
(strings) of terminals and nonterminals symbols. (We write (T ∪ V)∗ for the
set of ordered sequences of terminal and nonterminal symbols.) The LHS α of
a production can’t be the empty sequence, but β might be.

The set of terminal symbols is exactly the same concept as the alphabet no
matter if we denote it by T or Σ.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 46 / 111

Example

The following five productions are for a grammar with T = {0, 1 }, V = {S},
and start symbol S.

1 S → ϵ
2 S →0
3 S →1
4 S →0S 0
5 S →1S 1

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 47 / 111

Common Notational Conventions
To more effectively communicate and spare tedious repetition, it is convenient
to establish some notational conventions.

1 Lower-case letters near the beginning of the alphabet, a, b, and so on, are
terminal symbols. We shall also assume that non-letter symbols, like
digits, +, are terminal symbols.

2 Upper-case letters near the beginning of the alphabet, A, B, and so on, are
nonterminal symbols. Often the start symbol of a grammar is assumed to
be named S, or sometimes it is the nonterminal symbol on the left-hand
side of the first production.

3 Lower-case letters near the end of the alphabet, such as w or z , are
ordered sequences (possibly empty) of strings of terminal symbols

4 Upper-case letters near the end of the alphabet, such as X or Y , are a
single symbol, either a terminal or a nonterminal symbol.

5 Lower-case Greek letters, such as α and β, are ordered sequences
sequences (possibly empty) of terminal and nonterminal symbols.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 48 / 111

Common Notational Conventions (Recap)

To more effectively communicate and spare tedious repetition, it is convenient
to establish some notational conventions.

1 a, b, c, . . . are terminals.
2 A, B, C , . . . are nonterminals.
3 . . ., X , Y , Z are terminal or nonterminal symbols.
4 . . ., w , x , y , z are strings/sequences of terminals only.
5 α, β, γ, . . . are strings/sequences of terminals or nonterminals.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 49 / 111

Compact Notation
If the RHS of a production is a sequence with no symbols in it, we use ϵ to
communicate that fact clearly. So, for example, A → ϵ is a production.

Definition
A production in a grammar in which the RHS of a production is a sequence of
length zero is called an ϵ-production.

If several productions have the same LHS like these: A → α1, A → α2,
. . . ,A → αn it is convenient to write then using the following notation:

A → α1 | α2 | · · · | αn

Definition
And, all the productions with the LHS nonterminal system A are sometimes
called A-productions.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 50 / 111

Compact Notation

It is convenient to think of a production [in a CFG] as “belonging”
to the variable [nonterminal] of its head [LHS]. We shall often use
remarks like “the productions for A” or “A-productions” to refer to the
production whose head [LHS] is [the] variable A. We may write the
productions for a grammar by listing each variable [nonterminal] once,
and then listing all the [RHS] bodies of the productions for that variable
[nonterminal], separated by vertical bars.

HMU 3rd, §5.1, page 175.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 51 / 111

Derivation

A grammar G = ⟨T , V , P, S⟩ gives rise naturally to a method of constructing
strings of terminal and nonterminal symbols by application of the productions
very much like that of inductive sets.

Definition
If α, β ∈ (T ∪ V)∗, we say that α derives β in one step, or β is derivable from
α in one step and we write

α
1⇒G β

if β can be obtained from α by replacing some occurrence of the substring δ in
α with γ, where δ → γ is a production of G .

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 52 / 111

Derivation

Perhaps we can recast the previous definition slightly more perspicuously as
follows:

Definition
If δ → γ is a production of G , then α1δα2 derives α1γα2 in one step, or α1γα2
is derivable from α1δα2 in one step. We write

α1δα2
1⇒G α1γα2

for all α1, α2 ∈ (T ∪ V)∗.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 53 / 111

We usually omit the the subscript G for the grammar, and write simply:

α
1⇒ β

and leave it to the reader to figure out which grammar is meant.

Also, we sometimes omit the 1 above the arrow, by writing simply:

α ⇒ β

though these may lead to confusion with the relation defined next.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 54 / 111

Derivation

Definition
Let ∗⇒G be the reflexive, transitive closure of the 1⇒G relation. That is:

α
∗⇒ α for any α

α
∗⇒ β if α

∗⇒ γ and γ
1⇒ β

This relation is sometimes called the “derives in zero or more steps” relation, or
simple the “derives” relation.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 55 / 111

Derivation – Inductively Defined Relation

The transitive closure is an inductively defined set (given below in a Post
system) and so we can easily prove things about the derives relations.

δ → γ ∈ P
α1δα2

1⇒ α1γα2

α
∗⇒ α

α
∗⇒ γ γ

1⇒ β

α
∗⇒ β

α, α, α, β, δ, γ are arbitrary strings in (T ∪ V)∗

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 56 / 111

Language Generated by G

A string in (T ∪ V)∗ that is derivable from the start symbol S is called a
sentential form. A sentential form is called a sentence, if it consists only of
terminal symbols.

Definition
The language generated by G , denoted L (G), is the set of all sentences:

L (G) = { x ∈ T ∗ | S ∗⇒G x }

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 57 / 111

Example

1 S → ϵ
2 S →0
3 S →1
4 S →0S 0
5 S →1S 1

For this grammar G we have the following derivation:

S 1⇒ 0S0 1⇒ 01S10 1⇒ 01010

So, S ∗⇒ 01010, and we conclude that 01010 ∈ L (G).

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 58 / 111

There are many different kinds of grammars with slightly different restrictions
on the kinds of productions that are permitted.

Completely general grammars are rare. We see examples only briefly and only
much later.

The previous example was that of a particular kind of grammar known as a
context-free grammar.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Definitions, Derivation) © 2 March 2024 59 / 111

Grammars

context-free

linear

regular

left
linear

right
linear

S → SS
S → aSb
S → bSa
S → ϵ

S → aSb | ϵ

S → aS | ϵS → Sa | ϵ

Classification of Some Grammars (not languages)
Formal Languages (Grammar—Intro & Regular) Grammar and Language (Different Kinds of Grammars) © 2 March 2024 60 / 111

Different Kinds of Grammars

Unrestricted grammar
• Context-sensitive grammar
• Context-free grammar

• Grammar in Greibach normal form
• simple-grammar, s-grammar

• Grammar in Chomsky normal form
• Linear grammar

• Regular grammar
• right-linear grammar.
• left-linear grammar.

• Compiler theory: LL(k), LR(k) etc.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Different Kinds of Grammars) © 2 March 2024 61 / 111

Grammars Definitions in Linz 6th

Grammar (Linz 6th, §1.2, definition 1.1, page 21).
• Context-sensitive grammar (Linz 6th, §11.4, definition 11.4, page 300).
• Context-free grammar (Linz 6th, §5.1, definition 5.1, page 130).

• Greibach normal form (Linz 6th §6.2, definition 6.5, page 174).
• simple-grammar, s-grammar (Linz 6th, §5.3, definition 5.4, page 144).

• Chomsky normal form (Linz 6th, §6.2, definition 6.4, page 171).
• Linear grammar (Linz 6th, §3.3, page 93).

• Regular grammar (Linz 6th, §3.3, definition 3.3, page 92).
• right-linear grammar (Linz 6th, §3.3, definition 3.3, page 92).
• left-linear grammar (Linz 6th, §3.3, definition 3.3, page 92).

• Compiler theory: LL(k) (Linz 6th, §7.4, definition 7.5, page 210); LR(k) [Not
defined in Linz 6th.]

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Different Kinds of Grammars) © 2 March 2024 62 / 111

Grammars Definitions in HMU 3rd

• Context-sensitive grammar [Not defined in HMU].
• Context-free grammar (HMU 3rd, §5.1.2, page 173).

• Greibach normal form (HMU 3rd, §7.1, page 277).
• simple-grammar, s-grammar [Not defined in HMU].

• Chomsky normal form (HMU 3rd, §7.1.5, page 272).
• Linear grammar [Not defined in HMU].

• Regular grammar [Not defined in HMU].
• right-linear grammar (HMU 3rd, §5.1.7, exercise 5.1.4, page 182).
• left-linear grammar.

• Compiler theory: LL(k), LR(k) etc. [Not defined in HMU].

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Different Kinds of Grammars) © 2 March 2024 63 / 111

Restrictions on Grammars

• Context-sensitive grammar. Each production α → β restricted to
len(α) ≤ len(β)

• Context-free grammar. Each production A → β where A ∈ N
• Grammar in Greibach normal form. A → aγ where a ∈ T and γ ∈ V ∗

• simple-grammar or s-grammar. Any pair ⟨A, a⟩ occurs at most once in the
productions

• Grammar in Chomsky normal form. A → BC or A → a
• Linear grammar. RHS β contains at most one nonterminal

• Regular grammar, either:
• right-linear grammar. The nonterminal (if any) occurs to the right of (or
after) any terminals
• left-linear grammar. The nonterminal (if any) occurs to the left of (or
before) any terminals

If ϵ ∈ L(G) we must allow a niggly exception S → ϵ.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Different Kinds of Grammars) © 2 March 2024 64 / 111

The s-languages are those languages recognized by a particu-
lar restricted form of deterministic pushdown automaton, called an
s-machine. They are uniquely characterized by that subset of
the standard-form grammars in which each rule has the form
Z → aY1 . . . Yn, n ≥ 0, and for which the pairs (Z , a) are distinct
among the rules. It is shown that the s-languages have the prefix prop-
erty, and that they include the regular sets with end-markers. Finally,
their closure properties and decision problems are examined, and it is
found that their equivalence problem is solvable.

Korenja, Hopcroft, Simple deterministic languages, 1968.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Different Kinds of Grammars) © 2 March 2024 65 / 111

right-linear A → xB or A → x A, B ∈ V , x ∈ T ∗

strongly right-linear A → aB or A → ϵ A, B ∈ V , a ∈ T
left-linear A → Bx or A → x A, B ∈ V , x ∈ T ∗

strongly left-linear A → Ba or A → ϵ A, B ∈ V , a ∈ T

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Different Kinds of Grammars) © 2 March 2024 66 / 111

Grammars Characterize The Chomsky Hierarchy

Like automata, grammars can be used
used to characterize the formal lan-
guages of the Chomsky Hierarchy.

regular
languages

context-free
languages

context-sensitive
languages

computably enumerable
languages

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Different Kinds of Grammars) © 2 March 2024 67 / 111

Grammars and Automata

defining other

DFAs are equivalent to regular grammars
CFGs are equivalent to PDAs
LBAs are equivalent to context-sensitive grammars
TMs are equivalent to (unrestricted) grammars

Context-free grammars (CFG) are significant because they are:
1 natural and simple,
2 expressive enough for most purposes, and
3 easily parsed.

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Different Kinds of Grammars) © 2 March 2024 68 / 111

Grammars and Automata

defining other

DFAs are equivalent to regular grammars
CFGs are equivalent to PDAs
LBAs are equivalent to context-sensitive grammars
TMs are equivalent to (unrestricted) grammars

Context-free grammars (CFG) are significant because they are:
1 natural and simple,
2 expressive enough for most purposes, and
3 easily parsed.

deterministic finite automata

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Different Kinds of Grammars) © 2 March 2024 69 / 111

Grammars and Automata

defining other

DFAs are equivalent to regular grammars
CFGs are equivalent to PDAs
LBAs are equivalent to context-sensitive grammars
TMs are equivalent to (unrestricted) grammars

Context-free grammars (CFG) are significant because they are:
1 natural and simple,
2 expressive enough for most purposes, and
3 easily parsed.

pushdown automata (PDA)

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Different Kinds of Grammars) © 2 March 2024 70 / 111

Grammars and Automata

defining other

DFAs are equivalent to regular grammars
CFGs are equivalent to PDAs
LBAs are equivalent to context-sensitive grammars
TMs are equivalent to (unrestricted) grammars

Context-free grammars (CFG) are significant because they are:
1 natural and simple,
2 expressive enough for most purposes, and
3 easily parsed. of lesser significance

Linear Bounded Automata (LBA)

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Different Kinds of Grammars) © 2 March 2024 71 / 111

Grammars and Automata

defining other

DFAs are equivalent to regular grammars
CFGs are equivalent to PDAs
LBAs are equivalent to context-sensitive grammars
TMs are equivalent to (unrestricted) grammars

Context-free grammars (CFG) are significant because they are:
1 natural and simple,
2 expressive enough for most purposes, and
3 easily parsed.

of lesser significance

Turing machine (TM)

Formal Languages (Grammar—Intro & Regular) Grammar and Language (Different Kinds of Grammars) © 2 March 2024 72 / 111

Definition of Grammar (Recap)

A grammar is a 4-tuple ⟨T , V , P, S⟩:

• T is the finite set of terminal symbols;
• V is the finite set of nonterminal symbols, also called variables or syntactic

categories, T ∩ V = Ø;
• S ∈ V is a distinguished nonterminal symbol, called the start symbol;
• P is the finite set of productions.

A production has the form α → β where α and β are ordered sequences
(strings) of terminals and nonterminals symbols. (We write (T ∪ V)∗ for the
set of ordered sequences of terminal and nonterminal symbols.) The LHS α of
a production can’t be the empty sequence, but β might be.

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 73 / 111

Definition of Grammar (Recap)

A grammar is a 4-tuple ⟨T , V , P, S⟩:
• T is the finite set of terminal symbols;

• V is the finite set of nonterminal symbols, also called variables or syntactic
categories, T ∩ V = Ø;

• S ∈ V is a distinguished nonterminal symbol, called the start symbol;
• P is the finite set of productions.

A production has the form α → β where α and β are ordered sequences
(strings) of terminals and nonterminals symbols. (We write (T ∪ V)∗ for the
set of ordered sequences of terminal and nonterminal symbols.) The LHS α of
a production can’t be the empty sequence, but β might be.

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 74 / 111

Definition of Grammar (Recap)

A grammar is a 4-tuple ⟨T , V , P, S⟩:
• T is the finite set of terminal symbols;
• V is the finite set of nonterminal symbols, also called variables or syntactic

categories, T ∩ V = Ø;

• S ∈ V is a distinguished nonterminal symbol, called the start symbol;
• P is the finite set of productions.

A production has the form α → β where α and β are ordered sequences
(strings) of terminals and nonterminals symbols. (We write (T ∪ V)∗ for the
set of ordered sequences of terminal and nonterminal symbols.) The LHS α of
a production can’t be the empty sequence, but β might be.

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 75 / 111

Definition of Grammar (Recap)

A grammar is a 4-tuple ⟨T , V , P, S⟩:
• T is the finite set of terminal symbols;
• V is the finite set of nonterminal symbols, also called variables or syntactic

categories, T ∩ V = Ø;
• S ∈ V is a distinguished nonterminal symbol, called the start symbol;

• P is the finite set of productions.
A production has the form α → β where α and β are ordered sequences
(strings) of terminals and nonterminals symbols. (We write (T ∪ V)∗ for the
set of ordered sequences of terminal and nonterminal symbols.) The LHS α of
a production can’t be the empty sequence, but β might be.

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 76 / 111

Definition of Grammar (Recap)

A grammar is a 4-tuple ⟨T , V , P, S⟩:
• T is the finite set of terminal symbols;
• V is the finite set of nonterminal symbols, also called variables or syntactic

categories, T ∩ V = Ø;
• S ∈ V is a distinguished nonterminal symbol, called the start symbol;
• P is the finite set of productions.

A production has the form α → β where α and β are ordered sequences
(strings) of terminals and nonterminals symbols. (We write (T ∪ V)∗ for the
set of ordered sequences of terminal and nonterminal symbols.) The LHS α of
a production can’t be the empty sequence, but β might be.

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 77 / 111

Definition of Grammar (Recap)

A grammar is a 4-tuple ⟨T , V , P, S⟩:
• T is the finite set of terminal symbols;
• V is the finite set of nonterminal symbols, also called variables or syntactic

categories, T ∩ V = Ø;
• S ∈ V is a distinguished nonterminal symbol, called the start symbol;
• P is the finite set of productions.

A production has the form α → β where α and β are ordered sequences
(strings) of terminals and nonterminals symbols. (We write (T ∪ V)∗ for the
set of ordered sequences of terminal and nonterminal symbols.) The LHS α of
a production can’t be the empty sequence, but β might be.

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 78 / 111

Linear Grammars

Linear grammar. Context-free (LHS a single nonterminal); RHS β contains at
most one nonterminal (β possibly ϵ).

• Regular grammar, either:
• right-linear grammar. The nonterminal (if any) occurs to the right of (or

after) any terminals
• left-linear grammar. The nonterminal (if any) occurs to the left of (or

before) any terminals

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 79 / 111

All linear grammars can put in a form with all RHS with exactly one terminal.

A → abBcd

A → aX
X → bY
Y → Zd
Z → Bc

No epsilon productions (for L − {ϵ}) and no unit productions.

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 80 / 111

Linz 6th, Theorem 3.3 and 3.4, page 94 and 96
HMU 3rd, Exercise 5.1.4, page 182.
Du & Ko, Theorem 3.10, page 96.

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 81 / 111

Theorem (Linz 6th,Theorem 3.3, page 94)
For all right-linear grammars G, the language L(G) is regular.

Theorem (Linz 6th,Theorem 3.4, page 96)
If language L is regular, then there is a right-linear grammar G
such that L(G) = L.

So the set of all languages generated by right-linear grammars is
equal to the set of regular languages.

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 82 / 111

Proof Sketch
There is a two-way construction (with some niggly details) inking a right-linear
grammar and a DFA. We equate (pretty much) the set of nonterminal symbols
in the grammar with the states in the DFA.

Let G = ⟨Σ, Q, S, P⟩ be a right-linear grammar. Let
M = ⟨Σ, Q ∪ {qf }, δ, S, {qf }⟩ be a NFA. Without loss of generality assume the
productions in G have at most one terminal in them and M has a unique final
state qf reachable only by ϵ moves. We equate the set of grammar terminals
with the alphabet; and the set of grammar nonterminals with the set of states
of the automata. We associate the production A → aB with the transition
A a→ B. And we associate the production A → a with the transition A a→ qf for
a final state qf .

The key insight is
S ∗⇒ wA iff δ∗(S, w) = A

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 83 / 111

S → abA | aaB | bb
A → aB | bC | aa
B → aA | bB
C → abS

S ∗⇒ abA ∗⇒ abaB ∗⇒ abaaA ∗⇒ abaabC ∗⇒ abaababS ∗⇒ abaababbb

S ab−→ A a−→ B a−→ A b→ C ab−→ S bb−→ f

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 84 / 111

Right Linear Grammars

q0

q1

q2

q3

q4

⊥

a

b a

b

b

a b
a

a, b

a, b
q0 → aq1 | b⊥
q1 → a⊥ | bq2 | b
q2 → aq3 | b⊥
q3 → a⊥ | bq4 | b
q4 → a⊥ | b⊥
⊥ → a⊥ | b⊥

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 85 / 111

Left-linear Grammars?

What about left-linear grammars?

The set of languages they generate is also the set of regular languages.

We prove it indirectly via reversal, using that fact that reversing a left-linear
grammar is a right-linear grammar and vice versa.

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 86 / 111

Reversing an NFA
Theorem
If language L is regular, then LR is regular.

Proof.
Given an NFA M for L, we construct an NFA M ′ by reversing the
transitions. L(M ′) = LR .

Theorem
If LR is regular, then L is regular.

Proof.
Since by the previous theorem (LR)R is regular and (LR)R = L, we
have L is regular.

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 87 / 111

Reversing Example
+

•

a ∗

b

•

ab

+

•

a∗

b

•

ba

q0

q1 q2

q3 q4

a

b

ϵ

a

ϵ

b

q0

q1 q2

q3 q4

a

b

ϵ

a

ϵ

b

L = L Jab∗ + baK and LR = L Jab + b∗aK

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 88 / 111

Reversing a Linear Grammar

Theorem
For all right-linear grammars G, there is a left-linear grammar G◁

such that L(G◁) = L(G)R

Proof.
Reversing the RHSs of the productions in G constructs a left-linear
grammar G◁. Since S ∗⇒G α iff S ∗⇒G◁ αR , we have
L(G) = L(G◁)R .

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 89 / 111

Reversing a Linear Grammar

Theorem
For all left-linear grammars G, there is a right-linear grammar G▷

such that L(G▷) = L(G)R

Proof.
Reversing the RHSs of the productions in G constructs a left-linear
grammar G▷. Since S ∗⇒G α iff S ∗⇒G▷ αR , we have
L(G) = L(G◁)R .

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 90 / 111

Reversing Example
S → bA
S → aB
A → aC
B → bB
B → F
C → F
F → ϵ

S → Ab
S → Ba
A → Ca
B → Bb
B → F
C → F
F → ϵ

L = {abn | 0 ≤ n} ∪ {ba} and LR = {ab} ∪ {bna | 0 ≤ n}

S

1⇒ aB

1⇒ abB

1⇒ abbB

1⇒ abbF

1⇒ abb

S

1⇒ Ba

1⇒ Bba

1⇒ Bbba

1⇒ Fbba

1⇒ bba

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 91 / 111

Reversing Example
S → bA
S → aB
A → aC
B → bB
B → F
C → F
F → ϵ

S → Ab
S → Ba
A → Ca
B → Bb
B → F
C → F
F → ϵ

L = {abn | 0 ≤ n} ∪ {ba} and LR = {ab} ∪ {bna | 0 ≤ n}

S

1⇒ aB

1⇒ abB

1⇒ abbB

1⇒ abbF

1⇒ abb

S

1⇒ Ba

1⇒ Bba

1⇒ Bbba

1⇒ Fbba

1⇒ bba

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 92 / 111

Reversing Example
S → bA
S → aB
A → aC
B → bB
B → F
C → F
F → ϵ

S → Ab
S → Ba
A → Ca
B → Bb
B → F
C → F
F → ϵ

L = {abn | 0 ≤ n} ∪ {ba} and LR = {ab} ∪ {bna | 0 ≤ n}

S 1⇒ aB

1⇒ abB

1⇒ abbB

1⇒ abbF

1⇒ abb

S 1⇒ Ba

1⇒ Bba

1⇒ Bbba

1⇒ Fbba

1⇒ bba

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 93 / 111

Reversing Example
S → bA
S → aB
A → aC
B → bB
B → F
C → F
F → ϵ

S → Ab
S → Ba
A → Ca
B → Bb
B → F
C → F
F → ϵ

L = {abn | 0 ≤ n} ∪ {ba} and LR = {ab} ∪ {bna | 0 ≤ n}

S 1⇒ aB 1⇒ abB

1⇒ abbB

1⇒ abbF

1⇒ abb

S 1⇒ Ba 1⇒ Bba

1⇒ Bbba

1⇒ Fbba

1⇒ bba

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 94 / 111

Reversing Example
S → bA
S → aB
A → aC
B → bB
B → F
C → F
F → ϵ

S → Ab
S → Ba
A → Ca
B → Bb
B → F
C → F
F → ϵ

L = {abn | 0 ≤ n} ∪ {ba} and LR = {ab} ∪ {bna | 0 ≤ n}

S 1⇒ aB 1⇒ abB 1⇒ abbB

1⇒ abbF

1⇒ abb

S 1⇒ Ba 1⇒ Bba 1⇒ Bbba

1⇒ Fbba

1⇒ bba

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 95 / 111

Reversing Example
S → bA
S → aB
A → aC
B → bB
B → F
C → F
F → ϵ

S → Ab
S → Ba
A → Ca
B → Bb
B → F
C → F
F → ϵ

L = {abn | 0 ≤ n} ∪ {ba} and LR = {ab} ∪ {bna | 0 ≤ n}

S 1⇒ aB 1⇒ abB 1⇒ abbB 1⇒ abbF

1⇒ abb

S 1⇒ Ba 1⇒ Bba 1⇒ Bbba 1⇒ Fbba

1⇒ bba

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 96 / 111

Reversing Example
S → bA
S → aB
A → aC
B → bB
B → F
C → F
F → ϵ

S → Ab
S → Ba
A → Ca
B → Bb
B → F
C → F
F → ϵ

L = {abn | 0 ≤ n} ∪ {ba} and LR = {ab} ∪ {bna | 0 ≤ n}

S 1⇒ aB 1⇒ abB 1⇒ abbB 1⇒ abbF 1⇒ abb

S 1⇒ Ba 1⇒ Bba 1⇒ Bbba 1⇒ Fbba 1⇒ bba

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 97 / 111

Reversing Example
S → bA
S → aB
A → aC
B → bB
B → F
C → F
F → ϵ

S → Ab
S → Ba
A → Ca
B → Bb
B → F
C → F
F → ϵ

L = {abn | 0 ≤ n} ∪ {ba} and LR = {ab} ∪ {bna | 0 ≤ n}

S 1⇒ aB 1⇒ abB 1⇒ abbB 1⇒ abbF 1⇒ abb

S 1⇒ Ba 1⇒ Bba 1⇒ Bbba 1⇒ Fbba 1⇒ bba

So aab ∈ L, bba ∈ LR , and (abb)R = bba.
Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 98 / 111

Theorem
A language L generated by a left-linear grammar is regular.

Proof.
• Given a left-linear grammar for L we can construct a right-linear grammar

generating LR .
• Since LR is generated by a right-linear grammar, it is regular (Thm 3.3),
• Therefore L is also regular.

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 99 / 111

Theorem
If a language L is regular, then there is a left-linear grammar for it.

Proof.
• Since L is regular, then LR is regular.
• Since LR is regular, then there is a right-linear grammar for it (Thm 3.4)
• Then there is a left-linear grammar for (LR)R = L.

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 100 / 111

Theorem
If a language L is regular, then there is a regular grammar for it.

Theorem
A language L generated by a regular grammar is regular.

Theorem
A language L is regular iff it is generated by a regular grammar.

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 101 / 111

Theorem
If a language L is regular, then there is a regular grammar for it.

Theorem
A language L generated by a regular grammar is regular.

Theorem
A language L is regular iff it is generated by a regular grammar.

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 102 / 111

A language L is regular if, and only if,
• there is a DFA for it (by definition)
• there is an NFA for it
• there is a regular expression for it
• there is a right-linear grammar for it
• there is a left-linear grammar for it
• there is a regular grammar for it

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Definitions) © 2 March 2024 103 / 111

(Σ∗)

{a, b, aba, abba}

The universe of formal languages
Formal Languages (Grammar—Intro & Regular) Regular Grammars (Reflection and Conclusions) © 2 March 2024 104 / 111

(Σ∗)

{a, b, aba, abba}
{a, b}

{a, aa, aaa, . . .}

Each element (dot) is a formal language (over Σ = {a, b})
Formal Languages (Grammar—Intro & Regular) Regular Grammars (Reflection and Conclusions) © 2 March 2024 105 / 111

(Σ∗)

computation

?

Can we characterize computation?
Formal Languages (Grammar—Intro & Regular) Regular Grammars (Reflection and Conclusions) © 2 March 2024 106 / 111

Many different models: automata, expression, grammars, and so on.

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Reflection and Conclusions) © 2 March 2024 107 / 111

Models of computation might have little relationship to each other.

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Reflection and Conclusions) © 2 March 2024 108 / 111

(Σ∗)

?
{a3b2}

{a, b, abb}

regular

{an}
{bna}

Regular languages seem important
Formal Languages (Grammar—Intro & Regular) Regular Grammars (Reflection and Conclusions) © 2 March 2024 109 / 111

(Σ∗)

regular languages

{a, aba}
{anb}

other languages
{anbn | 0 ≤ n}

Need to keep exploring
Formal Languages (Grammar—Intro & Regular) Regular Grammars (Reflection and Conclusions) © 2 March 2024 110 / 111

Elsewhere

• Closure Properties of Regular Languages
• Decision Procedures for Regular Languages
• Pumping Lemma for Regular Languages

Formal Languages (Grammar—Intro & Regular) Regular Grammars (Reflection and Conclusions) © 2 March 2024 111 / 111

	Computation and Formal Languages
	Examples
	Universe

	Grammar and Language
	Definitions, Derivation
	Different Kinds of Grammars

	Regular Grammars
	Definitions
	Reflection and Conclusions

