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Silly pun on the cover of Harrison’s book
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A detour to some of the wisdom of Donald Knuth.

The point in my words: “Writing a computer program or a proof requires
understanding the solution to a problem so well you can explain it to a mindless
automaton, and yet express it so eloquently a fellow human can rapidly apprehend
the method.”
So just this once, with just this one theorem, we strive to make excellent proofs
using the pumping lemma. [Skip to his quotes.]
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Donald E. Knuth (1938–)

Introduction to Knuth’s organ composition YouTube [17 minutes]
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FL & Automata (Pumping Lemma) Knuth © 2 March 2024 8 / 79



Science is knowledge which we understand so well that we can teach it
to a computer; and if we don’t fully understand something, it is an art to
deal with it.

Knuth, Turing Award Lecture, 1974.

Science is what we understand well enough to explain to a computer.
Art is everything else we do.

Knuth, 1995, foreword to the book A = B, page xi.
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[Software] is harder than anything else I’ve ever had to do.

Knuth, Notices of the AMS, 49 (3), 2002, page 320, 2002

Let us change our traditional attitude to the construction of programs:
Instead of imagining that our main task is to instruct a computer what to
do, let us concentrate rather on explaining to human beings what we want
a computer to do.

Knuth, “Literate Programming,” The Computer Journal, volume 27, 1984.

The point in my words: “Writing a computer program or a proof requires
understanding the solution to a problem so well you can explain it to a mindless
automaton, and yet express it so eloquently a fellow human can rapidly apprehend
the method.”
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Biographies appear in:
• O’Regan, Giants of Computing: A Compendium of Select, Pivotal Pioneers,

2013
• Shasha and Lazere, Out of Their Minds: The Lives and Discoveries of 15

Great Computer Scientists, 1995
• Slater, Portraits in Silicon, 1987
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There are languages that are not regular.
Negative results are difficult to prove.

(Σ∗)

regular
languages

anbm

anbn

not regular
languages
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The Pumping Lemma

It was first proved by Rabin and Scott in 1959.

Michael Oser Rabin and Dana Stewart Scott (Apr.
1959). “Finite Automata and Their Decision
Problems”. In: IBM Journal of Research and
Development 3, pages 114–125. doi:
10.1147/rd.32.0114 . Reprinted in
E. F. Moore, editor, Sequential Machines:
Selected Papers, Addison-Wesley, 1964

FL & Automata (Pumping Lemma) Introduction © 2 March 2024 13 / 79

http://doi.org/10.1147/rd.32.0114




The Pumping Lemma (Regular Languages)

Linz 6th, section 4.3, theorem 4.8, page 118.
HMU 3rd, section 4.1.1, theorem 4.1, page 128.

Aho & Ullman, section 2.3.3, theorem 2.7, page 128.
Kozen, theorem 11.1, page 70.

Sipser 3rd, theorem 1.7, page 77.
Floyd & Beigel, section 4.9, theorem 4.47, page 293.

Hein 4th, theorem 11.4.3, page 793.
Sudkamp 3rd, section 5.6, theorem 6.6.3, page 207.

McCormick, section 9.6, claim 9.5, page 185.
Drobot, theorem 3.1, page 75.

Salomaa, theorem 3.12, page 62.
Pumping lemma for regular languages
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The pumping lemma was rediscovered by Bar-Hillel, Perles, and Shamir as as
simplification of their pumping lemma for context-free languages (HMU).

Yehoshua Bar-Hillel, Micha A. Perles, and Eliyahu Shamir (1961). “On Formal
Properties of Simple Phrase Structure Grammars”. In: Zeitschrift für Phonologie,
Sprachwissenschaft und Kommunikationsforschung 14, pages 143–172. Reprinted
in BarHillel:1964:LI and Luce:1963:RMP
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Rules of Logic
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The pumping lemma as a piece of mathematics in relatively complicated.

Mistakes can easily be made especially if one is not facile with logic.

It is especially awkward to state clearly the nature of proofs involving lternating
quantifiers and negation.
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We could get my being sloppy, but
1 math and proofs are formal languages,
2 importnat to related areas of CS: model checking, theorem proving, etc.,
3 ignorance of the rules results in mistakes and confusion.

So, we next look at some logic. But quickly and superficially because that is
another course of study.
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Implication
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Implication

A ⇒ B

• The statement A ⇒ B is logically equivalent to (¬A) or B
• The contrapositive is (¬B) ⇒ (¬A) or equivalently (¬A) or B
• The converse is B ⇒ A
• The inverse is ¬A ⇒ ¬B or equivalently (¬A) and B

The contrapositive of a statement is logically equivalent to it. The converse and
the inverse are not necessarily equivalent to the statement.
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Truth Tables

P Q P ∧ Q
⊥ ⊥ ⊥
⊥ ⊤ ⊥
⊤ ⊥ ⊥
⊤ ⊤ ⊤

P Q P ⇒ Q
⊥ ⊥ ⊤
⊥ ⊤ ⊤
⊤ ⊥ ⊥
⊤ ⊤ ⊤

The first row represents the case when both propositions P and Q are considered
false. The last row represents the case when both are true.

For two propositions there are 22 = 4 rows in the truth table. There are 222 = 16
possible distinct outcomes in the last column of the truth table.
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Quantifiers

Some politician is crooked ∃x (p(x) ∧ q(x))
No politician is crooked ∀x (p(x) ⇒ ¬q(x))
All politicians are crooked ∀x (p(x) ⇒ q(x))
Not all politicians are crooked ∃x (p(x) ∨ ¬q(x))
Every politician is crooked ∀x (p(x) ⇒ q(x))
There is an honest politician ∃x (p(x) ∧ ¬q(x))
No politician is honest ∀x (p(x) ⇒ q(x))
All politicians are honest ∀x (p(x) ⇒ ¬q(x))
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For-all, Implication

∀x(A(x) ⇒ B(x))

• Logically equivalent to ∀x((¬A(x)) or B(x))
• The contrapositive is ∀x(¬B(x)) ⇒ (¬A(x))
• The converse is ∀x(B(x) ⇒ A(x)) or ∀x(A(x) or (¬B(x)))
• The negation is ¬∀x(A(x) ⇒ B(x)) or ∃x(A(x) and (¬(B(x))))
• The negation of the converse ¬∀x(B(x) ⇒ A(x)) or ∃x((¬A(x)) and B(x))
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For-all, There-exists, Implication

∀x(A(x) ⇒ ∃y(B(x , y) and C(x , y)))
• Logically equivalent to ∀x(¬A(x) or ∃y(B(x , y) and C(x , y)))
• Negation is

¬∀x(¬A(x) or ∃y(B(x , y) and C(x , y)))

∃x ¬(¬A(x) or ∃y(B(x , y) and C(x , y)))

∃x(A(x) and ¬∃y(B(x , y) and C(x , y)))

∃x(A(x) and ∀y ¬(B(x , y) and C(x , y)))

∃x(A(x) and ∀y(¬B(x , y) or ¬C(x , y)))

∃x(A(x) and ∀y(B(x , y) ⇒ ¬C(x , y)))
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Rules “dilemma”. Logic Deamon. Fitch.
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Proof Writing Guidelines

• Keep the reader informed.

Donald Ervin Knuth, Tracy L. Larrabee, and Paul Morris Adrian Roberts (1989).
Mathematical Writing. Washington, D.C.: Mathematical Association of America

Daniel J. Velleman (2019). How to Prove It. third. Cambridge, England:
Cambridge University Press

Hamilton Guide
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Proof Writing Guidelines

• Use the first person plural or “we” when writing proofs. It avoids awkward
passive voice, the pretension of the first person “I”, or awkward construction
with the third person singular “one.”

• Be polite: always introduce your variables the first time they appear.
• In mathematics, we commonly write statements like “given x or “consider an

arbitrary x” in the context of proving universal statements. Don’t use the
word “arbitrary” in other contexts.

• In mathematics, you are allowed to assume anything you like. Make it clear
why: implication elimination, modus tollens (proof by contradiction), the
induction hypothesis.

• Avoid using abbreviations in proofs, e.g., WLOG. But I like to use iff (if, and
only if) and QED.
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The Pumping Lemma in Words

The pumping lemma states that a “long” string can be accepted by a “small” DFA
only if an infinite number of strings of a similar form are accepted as well.

An infinite regular language must accept strings of the form xy iz for all i ≥ 0 for
some x , y , z in Σ∗. The “pumping” part is that one can “pump” the string y over
and over again.

The pumping lemma is significant in that it provides a way to prove that a
language is not regular.
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Pumping Lemma in English

For all languages, if the language is regular, then there is a positive
number such that for all sufficiently long strings w in the language
there is a partition xyz of w with xy short and y ̸= ϵ such that xy iz is
in the language for all i .
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Pumping Lemma in English

For all languages, if the language is regular, then there is a positive
number such that for all sufficiently long strings w in the language
there is a partition xyz of w with xy short and y ̸= ϵ such that

xy iz is
in the language for all i .
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Pumping Lemma in English

For all languages, if the language is regular, then there is a positive
number such that for all sufficiently long strings w in the language
there is a partition xyz of w with xy short and y ̸= ϵ such that xy iz is
in the language for all i .
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The Pumping Lemma for Regular Languages

∀ L ⊆ Σ∗
(

Regular(L) ⇒

∃ m ∈ N
[

m > 0 and

∀ w ∈ Σ∗
(

[w ∈ L and |w | > m] ⇒

∃ x , y , z ∈ Σ∗ [
(w = xyz and |xy | ≤ m and |y | ≥ 1) and

∀ i ∈ N ( xy iz ∈ L )
] ) ] )
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Quiz

(1) w ∈ L and |w | > m
(2) ∃ x , y , z ∈ Σ∗

(3) xy iz ∈ L
(4) ∃ m ∈ N
(5) ∀ L ⊆ Σ∗

(6) w ∈ L ⇒ |w | > m
(7) Regular(L)
(8) m > 0
(9) ∀ w ∈ Σ∗

(10) w = xyz and |xy | ≤ m and |y | ≥ 1
(11) ∀ i ∈ N
(12) xy iz /∈ L

A
(

B ⇒

C
[

D and

E
(

F ⇒

G
[

H and

I ( J )

] ) ] )
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The Extended Pumping Lemma for Regular Languages

∀ L ⊆ Σ∗
(

Regular(L) ⇒

∃ m ∈ N
[

m > 0 and

∀ u, w , v ∈ Σ∗
(

[uwv ∈ L and |w | > m] ⇒

∃ x , y , z ∈ Σ∗ [
(w = xyz and |xy | ≤ m and |y | ≥ 1) and

∀ i ∈ N ( uxy izv ∈ L )
] ) ] )
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The Extended Pumping Lemma for Regular Languages
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While the pumping lemma states that all regular languages satisfy the conditions
described above, the converse of this statement is not true: a language that
satisfies these conditions may still be non-regular. In other words, both the original
and the extended/general version of the pumping lemma give a necessary but not
sufficient condition for a language to be regular.

Myhill-Nerode theorem provides a necessary and sufficient condition for a formal
language to be regular. Compared to the pumping lemma, it is not as easy to
prove nor to apply. We omit it here.

The pumping lemma can only be use to show that a language is not regular. It can
never be used to show that a language is regular.
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The pumping lemma says you can “pump” all sufficiently long strings in a regular
language. What it mean mean to “pump” all sufficiently long strings?

∀ w ∈ Σ∗
(

[w ∈ L and |w | > m] ⇒

∃ x , y , z ∈ Σ∗ [
(w = xyz and |xy | ≤ m and |y | ≥ 1) and

∀ i ∈ N ( xy iz ∈ L )
])]
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Negation

What does it mean to contradict the the previous statement? What does it mean
that not all sufficiently long strings can be pumped? It means: some sufficiently
long string cannot be pumped.

∃ w ∈ Σ∗
(

[w ∈ L and |w | > m] and

∀ x , y , z ∈ Σ∗ [
(w = xyz and |xy | ≤ m and |y | ≥ 1) ⇒

∃ i ∈ N ( xy iz /∈ L )
])]
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Applying or Using the Pumping Lemma

For any language L

L regular implies this property holds for L

this property does not hold implies L is not regular

L not regular implies ??

this property does hold implies ??
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Characterizing Property

We do not have here a property that characterizes regular languages.

Mathematically, logically, a property that is said to characterizes something is one
that holds if, and only if. Suppose some hypothetical property characterizes red
languages. For any language L

L is red implies the property holds for L

the property does not hold implies L is not red

L not red implies the property does not hold for L

the property does hold implies L is red
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Proof of the Pumping Lemma

MISSING [see books]
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The Pumping Lemma: ∀ L ⊆ Σ∗
(

Regular(L) ⇒ P(L)
)

A Template of a Proof Using the Pumping Lemma
• We apply the Pumping Lemma to the language L0 ⊆ Σ∗.
• We assume that the language is regular in order to obtain a contradiction.
• It follows from the assumption that all sufficiently long strings can be

“pumped.”
• We prove that, in fact, not all long sufficiently long strings can be “pumped.”
• . . .

• Hence, some sufficiently long strings cannot be “pumped.”
• The assumption that the language is regular has led to a contradiction.
• Therefore, the language L0 is not a regular language. QED
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The Pumping Lemma: ∀ L ⊆ Σ∗
(

Regular(L) ⇒ P(L)
)

A Template of a Proof Using the Pumping Lemma
• We apply the Pumping Lemma to the language L0 ⊆ Σ∗.
• We assume that the language is regular in order to obtain a contradiction.
• It follows from the assumption that all sufficiently long strings can be

“pumped.”
• We prove that, in fact, not all long sufficiently long strings can be “pumped.”
• . . .

• Hence, some sufficiently long strings cannot be “pumped.”
• The assumption that the language is regular has led to a contradiction.
• Therefore, the language L0 is not a regular language. QED

royal “we”
to avoid passive voice
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The Pumping Lemma: ∀ L ⊆ Σ∗
(

Regular(L) ⇒ P(L)
)

A Template of a Proof Using the Pumping Lemma
• We apply the Pumping Lemma to the language L0 ⊆ Σ∗.
• We assume that the language is regular in order to obtain a contradiction.
• It follows from the assumption that all sufficiently long strings can be

“pumped.”
• We prove that, in fact, not all long sufficiently long strings can be “pumped.”
• . . .

• Hence, some sufficiently long strings cannot be “pumped.”
• The assumption that the language is regular has led to a contradiction.
• Therefore, the language L0 is not a regular language. QED

“apply” means
∀ elimination
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The Pumping Lemma: ∀ L ⊆ Σ∗
(

Regular(L) ⇒ P(L)
)

A Template of a Proof Using the Pumping Lemma
• We apply the Pumping Lemma to the language L0 ⊆ Σ∗.
• We assume that the language is regular in order to obtain a contradiction.
• It follows from the assumption that all sufficiently long strings can be

“pumped.”
• We prove that, in fact, not all long sufficiently long strings can be “pumped.”
• . . .

• Hence, some sufficiently long strings cannot be “pumped.”
• The assumption that the language is regular has led to a contradiction.
• Therefore, the language L0 is not a regular language. QED

what specific
language

FL & Automata (Pumping Lemma) Proof of the Pumping Lemma (Applications) © 2 March 2024 60 / 79



The Pumping Lemma: ∀ L ⊆ Σ∗
(

Regular(L) ⇒ P(L)
)

A Template of a Proof Using the Pumping Lemma
• We apply the Pumping Lemma to the language L0 ⊆ Σ∗.
• We assume that the language is regular in order to obtain a contradiction.
• It follows from the assumption that all sufficiently long strings can be

“pumped.”
• We prove that, in fact, not all long sufficiently long strings can be “pumped.”
• . . .

• Hence, some sufficiently long strings cannot be “pumped.”
• The assumption that the language is regular has led to a contradiction.
• Therefore, the language L0 is not a regular language. QED

⇒ elimination
modus ponens
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The Pumping Lemma: ∀ L ⊆ Σ∗
(

Regular(L) ⇒ P(L)
)

A Template of a Proof Using the Pumping Lemma
• We apply the Pumping Lemma to the language L0 ⊆ Σ∗.
• We assume that the language is regular in order to obtain a contradiction.
• It follows from the assumption that all sufficiently long strings can be

“pumped.”
• We prove that, in fact, not all long sufficiently long strings can be “pumped.”
• . . .

• Hence, some sufficiently long strings cannot be “pumped.”
• The assumption that the language is regular has led to a contradiction.
• Therefore, the language L0 is not a regular language. QED

state what is
next to be done
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The Pumping Lemma: ∀ L ⊆ Σ∗
(

Regular(L) ⇒ P(L)
)

A Template of a Proof Using the Pumping Lemma
• We apply the Pumping Lemma to the language L0 ⊆ Σ∗.
• We assume that the language is regular in order to obtain a contradiction.
• It follows from the assumption that all sufficiently long strings can be

“pumped.”
• We prove that, in fact, not all long sufficiently long strings can be “pumped.”
• . . .

• Hence, some sufficiently long strings cannot be “pumped.”
• The assumption that the language is regular has led to a contradiction.
• Therefore, the language L0 is not a regular language. QED

complete the proof
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The Pumping Lemma: ∀ L ⊆ Σ∗
(

Regular(L) ⇒ P(L)
)

A Template of a Proof Using the Pumping Lemma
• We apply the Pumping Lemma to the language L0 ⊆ Σ∗.
• We assume that the language is regular in order to obtain a contradiction.
• It follows from the assumption that all sufficiently long strings can be

“pumped.”
• We prove that, in fact, not all long sufficiently long strings can be “pumped.”
• . . .

• Hence, some sufficiently long strings cannot be “pumped.”
• The assumption that the language is regular has led to a contradiction.
• Therefore, the language L0 is not a regular language. QED

recap what
was proved
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The Pumping Lemma: ∀ L ⊆ Σ∗
(

Regular(L) ⇒ P(L)
)

A Template of a Proof Using the Pumping Lemma
• We apply the Pumping Lemma to the language L0 ⊆ Σ∗.
• We assume that the language is regular in order to obtain a contradiction.
• It follows from the assumption that all sufficiently long strings can be

“pumped.”
• We prove that, in fact, not all long sufficiently long strings can be “pumped.”
• . . .

• Hence, some sufficiently long strings cannot be “pumped.”
• The assumption that the language is regular has led to a contradiction.
• Therefore, the language L0 is not a regular language. QED

proof by contradiction
modus tollens
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The Pumping Lemma: ∀ L ⊆ Σ∗
(

Regular(L) ⇒ P(L)
)

A Template of a Proof Using the Pumping Lemma
• We apply the Pumping Lemma to the language L0 ⊆ Σ∗.
• We assume that the language is regular in order to obtain a contradiction.
• It follows from the assumption that all sufficiently long strings can be

“pumped.”
• We prove that, in fact, not all long sufficiently long strings can be “pumped.”
• . . .

• Hence, some sufficiently long strings cannot be “pumped.”
• The assumption that the language is regular has led to a contradiction.
• Therefore, the language L0 is not a regular language. QED

the proof is complete
Quod Erat Demonstrandum
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The Pumping Lemma: ∀ L ⊆ Σ∗
(

Regular(L) ⇒ P(L)
)

A Template of a Proof Using the Pumping Lemma
1 We apply the Pumping Lemma to the language L0 ⊆ Σ∗.
2 We assume that L0 is a regular language for purposes of obtaining a

contradiction.
3 From the assumption it follows that all long strings in L0 can be “pumped.”
4 We prove that, in fact, not all long strings in L0 can be “pumped.”
5 . . .

6 Hence, some long strings in L0 cannot be “pumped.”
7 The assumption that the language is regular has led to a contradiction.
8 Therefore, the language L0 is not a regular language. QED
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Proving a Language is Not Regular

• (∀ intro.) Let m be an arbitrary integer such that m > 0.
• (∃ intro.) We pick a string wm. We show wm ∈ L and len(wm) ≥ m.
• (∀ intro.) Let x , y , z be arbitrary strings such that xyz = wm, len(xy) ≤ m,

and 0 < len(y).
• (∃ intro.) We pick a number i0. We show that xy i0z is not in L0.

A key to understanding how one meets one’s proof obligations is to think of
arbitrary values (for-all introduction) as having been designed by a malevolent
opponent to make it as difficult as possible to complete the proof.
It may be necessary to break into cases to cover all the arbitrary choices.
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Proving a Language is Not Regular

• (∀ intro.) Let m be an arbitrary integer such that m > 0.
• (∃ intro.) We pick a string wm. We show wm ∈ L and len(wm) ≥ m.
• (∀ intro.) Let x , y , z be arbitrary strings such that xyz = wm, len(xy) ≤ m,

and 0 < len(y).
• (∃ intro.) We pick a number i0. We show that xy i0z is not in L0.

A key to understanding how one meets one’s proof obligations is to think of
arbitrary values (for-all introduction) as having been designed by a malevolent
opponent to make it as difficult as possible to complete the proof.
It may be necessary to break into cases to cover all the arbitrary choices.
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In any application of the pumping lemma there is a complicated shell or boilerplate
which is always the same.

Though we often tire of the boilerplate, students are not allowed to omit or modify
the boilerplate in homework and exams.

An example proof using the pumping lemma.
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Theorem. The language L0 = { anbn | 0 ≤ n } is not regular.

Proof. We apply the pumping lemma to the language L0 ⊆ Σ∗. We assume
that L0 is a regular language for purposes of obtaining a contradiction.
From this assumption it follows that all sufficiently long strings in L0 can be
“pumped.” We will prove that, in fact, some sufficiently long strings in L0
cannot be “pumped.”

Let m be an arbitrary integer such that m > 0. We pick the string
wm = ambm. We have wm = ambm ∈ L0 because 0 ≤ m, and
len(ambm) = 2m > m.
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Let x , y , z be arbitrary strings such that wm = xyz, len(xy) ≤ m, and
0 < len(y). We pick the integer i0 = 0 and we will prove xy i0z /∈ L0.
Let the length of x be called h and the length of y be called j . We can write the
string wm this way: wm = ahajam−(h+j)bm.

wm =
m︷ ︸︸ ︷

a · · · a︸ ︷︷ ︸
h

a · · · a︸ ︷︷ ︸
j

a · · · a
m︷ ︸︸ ︷

b · · · b ∈ L0

We know h + j ≤ m and 0 < j . So xy0z is equal to aham−(h+j)bm.

xy i0z =
m−j︷ ︸︸ ︷

a · · · a︸ ︷︷ ︸
h

a · · · a
m︷ ︸︸ ︷

b · · · b /∈ L0

The number of initial a’s is h + m − (h + j) = m − j < m. But m − j is not equal
to m. So, xy i0z /∈ L0. Hence, some long strings cannot be “pumped” in L0.
The assumption has led to a contradiction.
Therefore, the language L0 is not a regular language. QED
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Theorem [Linz 6th, Section 4.3, Example 4.8]. The language
L0 = { wwR | w ∈ Σ∗ } is not regular.

Proof. We apply the pumping lemma to the language L0 ⊆ Σ∗. We assume
that L0 is a regular language for purposes of obtaining a contradiction.
From this assumption it follows that all sufficiently long strings in L0 can be
“pumped.” We will prove that, in fact, some sufficiently long strings in L0
cannot be “pumped.”

Let m be an arbitrary integer such that m > 0. We pick the string
wm = ambmbmam. We have wm = ambmbmam ∈ L0 because it is the same
forwards and backwards, and len(wm) = 4m > m.
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Let x , y , z be arbitrary strings such that wm = xyz, len(xy) ≤ m, and
0 < len(y). We pick the integer i0 = 0 and we will prove xy i0z /∈ L0.
But it is obvious that one or more fewer a’s in the first m characters will result in a
string which in not a palindrome. (The first b from the left does not match the
corresponding character from the right as the last m characters are a’s.)

Hence, some sufficiently long strings cannot all be “pumped” in L0. The
assumption has led to a contradiction.

Therefore, the language L0 is not a regular language. QED
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Theorem [Linz 6th, Section 4.3, Example 4.12]. The language
L0 = { anblcn+k | 0 ≤ n, k } is not regular.
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Theorem [Linz 6th, Section 4.3, Exercise 5b]. The language
L0 = { anblak | n + l ≥ k } is not regular.

Proof. We apply the pumping lemma to the language L0 ⊆ Σ∗. We assume
that L0 is a regular language for purposes of obtaining a contradiction.
From this assumption it follows that all long strings can be “pumped” in L0.
We will prove that, in fact, some long strings cannot be “pumped” in L0.

Let m be an arbitrary integer such that m > 0. We pick the string
wm = ambam+1. We have wm ∈ L0 because m + 1 ≥ m + 1, and
len(ambam+1) = 2m + 2 > m.
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Let x , y , z be arbitrary strings such that wm = xyz, len(xy) ≤ m, and
0 < len(y). We pick the integer i0 = 0 and we will prove xy i0z /∈ L0.
Let the length of x be called h and the length of y be called j . We can write the
string wm this way: wm = ahajam−(h+j)bam+1.

wm =
m︷ ︸︸ ︷

a · · · a︸ ︷︷ ︸
h

a · · · a︸ ︷︷ ︸
j

a · · · a b
m+1︷ ︸︸ ︷

a · · · a ∈ L0

We know h + j ≤ m and 0 < j . So xy0z is equal to aham−(h+j)bam+1.

xy i0z =
m−j︷ ︸︸ ︷

a · · · a︸ ︷︷ ︸
h

a · · · a b
m+1︷ ︸︸ ︷

a · · · a /∈ L0

The number of initial a’s is h + m − (h + j) = m − j < m. But m − j + 1 is not
greater than or equal to m + 1. So, xy i0z /∈ L0. Hence, long strings cannot be
“pumped” in L0. The assumption has led to a contradiction.
Therefore, the language L0 is not a regular language. QED
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