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Automata are pretty intuitive. They have just a few finite parts and can define
infinite, regular languages. They are easily programmed. Yet, they lack simple
structure. Manipulating or proving something about all automata is awkward. Lists
(strings) and trees have better structure.
What if we could find an equivalent way to characterize regular languages that was
a simple as trees are? We can: regular expressions!
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Automata Versus Expressions
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Automata Versus Expressions
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Automata Versus Expressions

• Expressions are neat and tidy (inductive sets)

• Automata are ugly and awkward like a junkyard
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Regular Expressions Versus Logic (Monadic Second Order Logic)
Define the formal language La2b2 to be the set of all strings over Σ = { a, b, c }
with a least two occurrences of a and a least two occurrences of b.

• if we were to introduce � = (a + b + c) to the language of regular expressions

(�∗a �∗ a �∗ b �∗ b�∗) + (�∗a �∗ b �∗ a �∗ b�∗) + (�∗a �∗ b �∗ b �∗ a�∗)+
(�∗b �∗ a �∗ b �∗ a�∗) + (�∗b �∗ a �∗ a �∗ b�∗) + (�∗b �∗ b �∗ a �∗ a�∗)

• if we were to introduce intersection to the language of regular expressions

(�∗a �∗ a�∗) ∩ (�∗b �∗ b�∗)

• Monadic Second Order Logic

∃p1, p2(‘a’(p1) ∧ ‘a’(p2) ∧ p1 ̸= p2) ∧ ∃p1, p2(‘b’(p1) ∧ ‘b’(p2) ∧ p1 ̸= p2)
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History

Regular expressions originated in 1951, when mathematician Stephen Cole Kleene
described regular languages using his mathematical notation called regular events.
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Regular Expressions

Regular expressions look a lot like simple arithmetic expressions. Some of the
conventions for communicating regular expressions in a linear form are taken from
arithmetic expressions.
Some of the algebraic laws are also similar. Regular expressions are an example of a
semiring.
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Table of Semirings

UU 0 1 ⊕ ⊗
{⊤, ⊥} ⊤ ⊥ ∨ ∧ boolean

R 0 1 + · arithmetic
Z 0 1 lcm gcd division

[0.0, 1.0] 0.0 1.0 max · Viterbi
R ∪ {+∞} +∞ 0 min + tropical
{−∞} ∪ R −∞ 0 max + artic
[−∞, +∞] +∞ −∞ max min bottleneck

(S) Ø S ∪ ∩ power set lattice
regex Ø ϵ + · regular expressions
(Σ∗) Ø {ϵ} ∪ • formal languages
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Syntax of Arithmetic Expressions

Arithmetic expressions (ae) over numbers can be constructed using two, binary
operators.

1 0 is an ae.
2 1 is an ae.
3 If x1 and x2 are ae, then x1 + x2 is ae.
4 If x1 and x2 are ae, then x1x2 is ae.

Formal Languages (Regular Languages) Regular Expressions (Definitions, Examples) © 3 March 2024 10 / 62



Definition: Regular Expression

Linz 6th, definition 3.1, page 74.
HMU 3rd, section 3.1, page 85.

Martin 2nd, definition 3.1, page 72.
Du & Ku, section 1.3, page 8.

Regular Expression at Wikipedia
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Definition: Regular Expression

Definition
A regular expression (re) is constructed in one of these six ways:

1 ⋆ is a re for every ⋆ ∈ Σ.
2 Ø is a re.
3 ϵ is a re.
4 If x1 and x2 are re, then x1 + x2 is a re.
5 If x1 and x2 are re, then x1 • x2 is a re.
6 If x is a re, then x∗ is a re.
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To communicate a regular expression in linear form we use parenthesis is the usual
way.

• • and + are left associative (like × and + in arithmetic).
• ∗ binds more tightly than • which binds more tightly than + (likes unary

minus, ×, + in arithmetic).

There are numerous macros and variations in the choice of symbols representing
the constructors of regular expressions.
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Next, two simple examples of recursive functions defined on the inductive set of
regular expressions. The structure of the recursive functions follows the structure
by which regular expressions are constructed.

The prepares the way for the important definition of the meaning of regular
expression. The definition relates each regular expression to the formal language
that it denotes.
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Size, A Function on Regular Expressions

s : Regex → N

s(r) =



1 if r ∈ Σ,

1 if r = Ø,

1 if r = ϵ,

1 + s(r1) + s(r2) if r = r1 + r2,

1 + s(r1) + s(r2) if r = r1 • r2,

1 + s(r1) if r = r∗
1 .
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Height, A Function on Regular Expressions

h : Regex → N

h(r) =



1 if r ∈ Σ,

1 if r = Ø,

1 if r = ϵ,

1 + max(h(r1), h(r2)) if r = r1 + r2,

1 + max(h(r1), h(r2)) if r = r1 • r2,

1 + h(r1) if r = r∗
1 .
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Language Denoted by a Regular Expression

L (r) =



{r} if r ∈ Σ,

{} if r = Ø,

{ϵ} if r = ϵ,

L (r1) ∪ L (r2) if r = r1 + r2,

L (r1) · L (r2) if r = r1 • r2,

L (r1)∗ if r = r∗
1 .

In the first case of the definition, note three different things written the same way:
r as a string on length one, r as a regular expression (on the LHS), r as a symbol
in Σ (on the far RHS).
In the last case, recall the Kleene star operation on formal languages.

L∗ =
⋃

i=0,...

Li = L0 ∪ L1 ∪ L2 · · ·
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Examples

• �∗ = (a + b)∗ – set of all strings over {a, b}
• �∗aab � ∗ – string with substring aab
• (b + ab)∗a∗ – strings without substring aab
• b?(ab)∗a? – alternating a’s and b’s
• a?(b + ba)∗ – strings without two consecutive b’s.

Where � = (a + b) and r? = (r + ϵ).
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Some other interesting functions defined on regular expressions.

Exercises from Floyd and Beigel:
1 4.2-4. A function f (r) equal to the length of the shortest string in L JrK.
2 4.2-5. A function f (r) equal to the smallest number of a’s in L JrK.
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The function empty : regexp → Boolean defined below is true for r iff L JrK = Ø,
in other words is the language denoted by r empty?

empty(r) =



true if r = Ø,

false if r = ϵ,

false if r = σ ∈ Σ,

empty(r1) ∧ empty(r2) if r = r1 + r2,

empty(r1) ∨ empty(r2) if r = r1 • r2,

false if r = r∗
1 ,
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The derivative function d : regexp × Σ → regexp is defined below.

d(r , σ) =



Ø if r = Ø,

Ø if r = ϵ,

ϵ if r ∈ Σ, and r = σ,

Ø if r ∈ Σ, but r ̸= σ,

d(r1, σ) + d(r2, σ) if r = r1 + r2,

d(r1, σ) • r2 + d(r2, σ) if r = r1 • r2 and empty(r1),
d(r1, σ) • r2 if r = r1 • r2 but not empty(r1),
d(r1, σ) • r∗

1 if r = r∗
1 ,
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Floyd and Beigel, Exercise 4.2-6, Page 224
Is the language denoted by r empty, {ϵ}, finite (but non-empty), or infinite? We
consider Ø < ϵ < F < ∞ in order to use the max function below.

f (r) =



Ø if r = Ø,

ϵ if r = ϵ,

F if r ∈ Σ,

max(f (r1), f (r2)) if r = r1 + r2,

Ø if r = r1r2 and either f (r1) or f (r2) are empty,

max(f (r1), f (r2)) if r = r1r2 otherwise,

ϵ if r = r∗
1 and either f (r) = Ø or f (r) = ϵ,

∞ if r = r∗
1 otherwise
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Proof By Induction

Proof that all regular expressions are red.
1 For all σ ∈ Σ, it is the case that the string σ is red.
2 Ø is red.
3 ϵ is red.
4 If r1 and r2 are red, then r1 + r2 is red.
5 If r1 and r2 are red, then r1r2 is red.
6 If r is red, then r∗ is red.
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Proof By Induction

Lemma
The regular expression (r1 + r2 + · · · + rn)∗ denotes the same language as
(r∗

1 r∗
2 · · · r∗

n )∗.

See Du&Ko, §1.1, exercise 5b, page 7.

Theorem
Disjunctive Normal Form All regular exressions can be put in disjunctive normal
form, that is in the form r1 + r2 + · · · + rn where each ri does not contain the +
operator.

See Du&Ko, §1.2, example 1.22, page 14–15.
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Algorithm: Thompson’s Construction
Converting Regular Expressions to NFAs

Linz 6th, theorem 3.1, page 80
Linz 7th, theorem 3.1, page 85

[recursion on NFAs with single final state]
HMU 3rd, Section 3.2.3 Convert Regular Expressions to Automata, page 102

[recursion on NFAs with single final state]
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Algorithm: Thompson’s Construction
Converting Regular Expressions to NFAs (Continued)

McCormick, section 9.4, page 178 [no details]
Appel, 2nd

[recursion on NFA with “tails”]
Martin 2nd, theorem 4.4 [Kleene’s Theorem, Part I], page 117
Martin 4th, theorem 3.25 [Kleene’s Theorem, Part I], page 111

[recursion on arbitrary ϵ-NFA, multiple final states]
Hein 4th, 11.2.3, page 754

[state introduction]
Du & Ko, section 1.3, page 16

[state introduction]
Drobot, section 3.3, page 81
[recursion on “straight” NFA]

Thompson’s construction at Wikipedia
[unique start state with 0-in-degree, distinct final state with 0-out-degree]
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NB: It is convenient to label the important algorithms though they may be buried
inside of theorem proofs. [Proofs are algorithms!] Different authors differ
considerably in the details.

Linz too many states
Appel economical, but tricky recursion

Martin most economical, also tricky with multiple final states
Hein most practical, but a new state for every concatenation
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Linz 6th



Apple 2nd
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Martin 4th
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Convert a Regular Expression to an NFA

toNFA : Regex × Σ × Σ → NFA

toNFA(r , s, t) =



add s a→ t if r = a ∈ Σ,

do not add transition if r = Ø,

add s ϵ→ r if r = ϵ,

do toNFA(r1, s, t), toNFA(r2, s, t) if r = r1 + r2,

do toNFA(r1, s, x), toNFA(r2, x , t) if r = r1 • r2,

do toNFA(r1, x , x), add s ϵ→ x , x ϵ→ t, if r = r∗
1 ,

Where x is a new state added to the NFA.
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Start by placing the regular expression r between the start state and the final state:

q pr

Then build the NFA by recursively applying the following six transformations:

1 q pσ goes to q pσ

2 q pϵ goes to q pϵ

3 q pØ goes to q p
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4 q pr1 + r2 goes to q p

r1

r2

5 q pr1 · r2 goes to q pr1 r2

6 q pr∗
goes to q pϵ

r

ϵ
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Hein 4th
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Du & Ko

Formal Languages (Regular Languages) Regular Expressions (Regular Expressions to NFAs) © 3 March 2024 48 / 62



Formal Languages (Regular Languages) Regular Expressions (Regular Expressions to NFAs) © 3 March 2024 49 / 62



NFAs to Regular Expressions

See separate PDF chapter.
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Regular Grammars

elsewhere
as part of grammars
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Simple Closure Properties

Union, intersection, Kleene star
Bush’s notes.
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Homomorphisms (Omit)

Monoid homomorphisms are functions from the string monoid Σ∗
1 to the string

monoid Σ∗
2 that preserve concatenation. That is,

h(ϵ) = ϵ, h(x · y) = h(x) · h(y)

for all x , y ∈ Σ1.

It follows that h is determined on any string by its values on the single symbols
h(a) for a ∈ Σ1.

They can be extended to languages L ⊂ Σ∗
1, called the homomorphic image

h(L) = {h(w) | w ∈ L} ⊂ Σ∗
2
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Special homomorphisms include
• non-deleting ones h(w) ̸= ϵ for all w ∈ Σ1
• endomorphisms where Σ1 = Σ2, and
• those where for all a1 ∈ Σ1 it is the case that h(a1) = a2 for some a2 ∈ Σ2
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Closed under Homomorphisms

For example h(0) = ab; h(1) = ϵ.

For L ⊆ Σ∗
1

ĥ(L) = {h(w) ∈ Σ∗
2 | w ∈ L }

For L ⊆ Σ∗
2

ĥ−1(L) = {w ∈ Σ∗
1 | h(w) ∈ L }

Note that ĥ−1(ĥ(L))) is not necessarily L. But that ĥ(ĥ−1(L))) is necessarily L [??].
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Closed under Homomorphisms

Theorem. Regular languages are closed under homomorphisms
If L is a regular language, then ĥ(L) is also a regular language.
Proof. Let r be a regular expression for L. Apply the homomorphism to the regular
expression in the obvious way. h̄(ϵ) = ϵ h̄(Ø) = Ø . . .. By induction on regular
expressions we have L = DJrK and DJh̄(r)K = h(L). So L is regular.
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Closed under Homomorphism

Theorem. Regular languages are closed under inverse homomorphism
IF L is a regular language, then ĥ−1(L) is also a regular language.
δM′(q, a) is defined to be the same state as δ∗

M(q, h(a))
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(Σ∗
1)

regular

(Σ∗
2)

regular

ĥ

ĥ−1

ĥ(L) = {h(w) ∈ Σ∗
2 | w ∈ L }

ĥ−1(L) = {w ∈ Σ∗
1 | h(w) ∈ L }

Formal Languages (Regular Languages) Closure Properties of Regular Languages © 3 March 2024 58 / 62



How Languages are defined

The language accepted by DFA M is denoted L(M) and is defined as follows:

L (M) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}

The language accepted by NFA M is denoted L(M) and is defined as follows:

L (M) = {w ∈ Σ∗ | ⟨q0, w⟩ ⊢∗ ⟨qf , ϵ⟩ for any qf ∈ F}

The language denoted by regular expression x is denoted by by L JxK and defined
by a recursive function.

The language generated by a grammar G is denoted by L(G) and is defined as
follows:

L (G) = {w ∈ Σ∗ | S ⇒∗ w}
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Equivalences of Regular Mechanisms

Definition. The languages accepted by DFAs are called regular.

Theorem (Subset construction). For all NFAs M, the language accepted by M is
regular.

Theorem (Thomson construction). For all regular expressions r , the language
denoted by x is regular.

Theorem. For all right-linear grammars G , the language generated by G is regular.

Theorem. For all left-linear grammars G , the language generated by G is regular.

Theorem. For all regular languages, there exists an NFA that accepts it (DFAs are
NFAs), there exists a regular expression that denotes it (Kleene’s algorithm), there
exists a right-linear grammar that generates it, and there exists a left-linear
grammar that generates it.
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(Σ∗)

regular languages

accepted by DFAs
accepted by NFAs

denoted by regular exprs
generated by right-linear gram

generated by left-linear gr

other languages
{ab, aabb, aaabbb, . . .}

Regular languages are characterized by different mechanisms
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(Σ∗)

regular
languages

anbn

Ex 4.7

wwR

Ex 4.8

#a(w) < #b(w)
Ex 4.9

(ab)nak

Ex 4.10
an2

Ex 4.11

anbkcn + k
Ex 4.12

anbk , n ̸= k
Ex 4.13

Applications of the pumping lemma in Linz, 6th
Formal Languages (Regular Languages) Summary © 3 March 2024 62 / 62


	Regular Expressions
	Definitions, Examples
	Regular Expressions to NFAs
	NFAs to Regular Expressions

	Regular Grammars
	Closure Properties of Regular Languages
	Summary

