Contents

Course Calendar 11

Preface 19

0. Abstracting a computer 25

1. Arithmetic 33

2. Logic: For computation 55

3. Sets: For collections 71

4. Logic: To control 85

5. Sudoku: A case study in logic 97

6. Programming: With functions 101

7. Horner’s Rule: Polynomials & number conversions 125

8. Sequences: The sum & difference calculus 141

10. Names: By any name 171

11. Counting: How many are there? 183
12. Catalan Numbers: A case study in counting 213

13. Mathematical induction: Or is it recursion? 219

14. Recursion: Or is it mathematical induction? 233

15. Sorting Data: Permutations & Orders 261

16. Equivalences: How to partition a set 277

17. Modular arithmetic: Randomness and cryptology 291

18. Proofs by contradiction: From Euclid to Turing 313

Quizzes 323

Keys 355

Mindmaps: Discrete mathematics 419

Bibliography 429

Index 433
Figures

0 Major computing components 25
1 The memory buffer 28
2 Full-adder 59
3 Sequential control 85
4 Selection (Conditional) control 85
5 Iterative control 86
6 Differences of sample sequences 144
7 Sums of sample sequences 146
8 Pascal’s triangle 199
9 Complete Gray Code 266
10 Cyclic notation for the 3! = 6 permutations of {0, 1, 2}. 272
11 Cyclic notation for the 4! = 24 permutations of {0, 1, 2, 3}. 272
12 The halting machine 318
13 Mind map: Discrete mathematics, part 1 419
14 Mind map: Discrete mathematics, part 2 420
15 Mind map: Logic and sets 421
16 Mind map: Sequences 422
17 Mind map: Recursion and induction 423
18 Mind map: Counting 424
19 Mind map: Relations 425
20 Mind map: Functions 426
21 Mind map: Numbers and naming 427
22 Mind map: Number theory 428
Notation and Jargon

Constants

0 Zero: First natural number: $0 = 0$
1 One: First positive integer: $1 = 1$
10 Ten: Base for writing numbers in decimal; not to be confused with two = $(10)_2$
2 Two: Base for writing numbers in binary
γ Gamma: Euler’s constant $\gamma \approx 0.5772\ldots$
ϕ Phi-hat: Conjugate of the golden ratio: $\hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx -0.618\ldots$
π Pi: Circumference of circle with diameter 1; area of a circle with radius 1: $\pi \approx 3.142\ldots$
\sqrt{2} Square root of $\sqrt{2} \approx 1.414\ldots$
φ Phi: golden ratio $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618\ldots$
e e: Base for natural exponential and logarithm: $e \approx 2.718\ldots$

Functions

10^n Exponential base 10: 10 to the n^{th} power
2^n Exponential base 2: 2 to the n^{th} power
$|n|$ Absolute value of n; the magnitude of n
n$_m^n$ Falling factorial power: $n_m^n = n(n-1)(n-2)\cdots(n-m+2)(n-m+1)$
$\frac{d}{dx}f(x)$, $f’(x)$ Derivative of $f(x)$
$\int f(x)dx$ Indefinite integral of $f(x)$
[x] Ceiling of x; smallest integer greater than or equal to x
(x) Round of x, the integer closest to x
[x] Floor of x; greatest integer less than or equal to x
\lg(x) Binary logarithm: $\lg x = \log_2 x$
\(\ln(x)\) Natural logarithm: \(\ln x = \log_e x\)

\(\log(x)\) Common logarithm: \(\log x = \log_{10} x\)

\(\log_b(x)\) Logarithm base \(b\): \(\log_b x\)

\(\max(a, b)\) Maximum value of \(a\) and \(b\)

\(\min(a, b)\) Minimum value of \(a\) and \(b\)

\(\phi()\) Empty function \(\phi\)

\(\pi(n)\) Prime counting function: Number of primes less than \(n\)

\(n^n\) Rising factorial power: \(n^n = n(n+1)\cdots(n+m-1)\)

\(\sqrt{x}\) Principle square root of \(x\): \((\sqrt{x})^2 = |x|\)

\(\varphi(n)\) Euler's totient function

\(\{x\}\) Fractional part of \(x\)

\(e^n\) Natural exponential: \(e\) to the \(n\)th power

\(f(\mathbb{X})\) Range of function \(f : \mathbb{X} \rightarrow \mathbb{Y}\)

\(f(n) = O(g(n))\) \(f\) is big-\(O\) of \(g\): \(f(n)\) is of order \(g(n)\)

\(f : \mathbb{X} \rightarrow \mathbb{Y}\) Function \(f\) maps elements from \(\mathbb{X}\) into elements in \(\mathbb{Y}\)

\(f : \mathbb{X} \rightarrowtail \mathbb{Y}\) \(f\) is a one-to-one function from \(\mathbb{X}\) into \(\mathbb{Y}\)

\(f : \mathbb{X} \twoheadrightarrow \mathbb{Y}\) \(f\) is a one-to-one function from \(\mathbb{X}\) onto \(\mathbb{Y}\)

\(f : \mathbb{X} \onto \mathbb{Y}\) \(f\) is a function from \(\mathbb{X}\) onto \(\mathbb{Y}\)

\(f^{-1}\) Inverse of function \(f\)

\(O(g(n))\) Big \(O\) of \(g(n)\)

\(x^0, x^1, x^2, x^3, \ldots, x^n\) Power functions; standard basis for polynomials

Miscellaneous

\(\lambda\) Wavelength of a standing wave; also used to denote the empty string

Hz Hertz or cycles per second

Logic

\((\exists x)\) Existential quantifier: “for some \(x\)”

\((\exists x)(p(x))\) There exists an \(x\) such that \(p(x)\) is True

\((\forall x)(p(x))\) For all \(x\) \(p(x)\) is True

\((\forall x)\) Universal quantifier: “for all \(x\)”

\(\land, \&\&\), \(\cdot\) Symbols for logical AND
¬, !, — Symbols used for logical NOT

\(\lor, \|, |\) Symbols for Logical OR

\(\equiv, \iff\) Logical EQUIVALENT

False, F, \(\perp = 0\) Symbols used for False

\(\Rightarrow, \rightarrow\) Symbols for Logical IMPLICATION (If . . . Then)

\(\exists\) Such that (archaic)

\(\oplus\) Logical Exclusive Or

\(p(x)\) Predicate statement: truth depends on \(x\)

\(p\) Proposition: Either True or False

\(p, q, r\) Propositional variables

\(\therefore\) Therefore

True, T, \(\top = 1\) Symbols for True

Numbers

\((0, \infty)\) Positive real numbers

\((a_{n-1}a_{n-2} \cdots a_1a_0)_b\) Base \(b\) number, \(a_k \in \{0, 1, \ldots, b - 1\}\); Value is \(\sum_{k=0}^{n-1} a_k b^k\)

\([0, 1]\) Unit interval; real numbers satisfying \(0 \leq x \leq 1\)

\(\aleph_0\) Aleph naught — cardinality of the natural numbers

\(\aleph_1\) Aleph one — cardinality of the real numbers

\(\gcd(a, b)\) Greatest common divisor of integers \(a\) and \(b\)

\(\infty\) Infinity

\(\text{lcm}(a, b)\) Least common multiple of \(a\) and \(b\)

\(\lfloor a/b \rfloor\) or \(a \div b\) Quotient when \(a\) is divided by \(b\)

\(\mathbb{B}\) Bits: \(\{0, 1\}\)

\(\mathbb{D}\) Digits: \(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}\)

\(\mathbb{H}\) Hexadecimal numerals: \(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}\)

\(\mathbb{O}\) Octal numerals: \(\{0, 1, 2, 3, 4, 5, 6, 7\}\)

\(\sqrt{2\pi n} \left(\frac{n}{e}\right)^n\) Stirling’s approximation of \(n\) factorial

\(a \mod b\) or \(a \% b\) Remainder when \(a\) is divided by \(b\)

\(a \perp b\) \(a\) and \(b\) are relatively prime; \(\gcd(a, b) = 1\)
m and n Integer variables

\(M_n\) \textbf{Mersenne number}: \(M_n = 2^n - 1\)

p and q Variables that are \textbf{prime} numbers

\(successor(n) = n + 1\) Successor of \(n\); Natural number after \(n\)

x and y Real variables

\textbf{Counting}

\(\binom{n}{k}, C(n,k), _nC_k\) Binomial coefficient; Combinations of \(n\) objects taken \(k\) at a time.

\(a(n)\) or \(a_n\) A general term in a sequence of numbers

\(a_0, a_1, a_2, \ldots, a_{n-1}\) A permutation of elements \(a_0, a_1, a_2, \ldots, a_{n-1}\)

\textbf{Relations}

\([a]\) \textbf{Equivalence} class of element \(a\)

\([k]_m\) \textbf{Equivalence} class of integer \(k\) modulo \(m\)

\(\approx\) \textbf{Approximately equal}

\(a \equiv b \pmod{m}\) \(a\) is congruent to \(b\) modulo \(m\); \(m\) divides \(a - b\)

\(a \sim b\) \(a\) is related to \(b\) by some rule

\(d \mid a\) Integer \(d\) divides integer \(a\); there exists integer \(c\) such that \(a = dc\)

\(d \nmid a\) Integer \(d \neq 0\) does not divides integer \(a\)

\(R \subseteq A \times B\) \(R\) is a relation from \(A\) to \(B\)

\textbf{Sets}

\((a, b)\) An ordered pair

\(2^A\) \textbf{Power set} of set \(A\); set of all subsets of \(A\)

\(\neg A\) Set complement of \(A\)

\(|A|\) \textbf{Cardinality} of a set; count of elements in \(A\)

\(\emptyset\) \textbf{Empty set}\(\emptyset\); set that contains no members (elements)

\(A - B\) \textbf{Set difference}: \(x \in A - B \iff (x \in A) \land (x \notin B)\)

\(A \cap B\) \textbf{Intersection} of sets \(A\) and \(B\)

\(A \cap B = \emptyset\) Sets \(A\) and \(B\) are disjoint

\(A \cup B\) \textbf{Union} of sets \(A\) and \(B\)

\(A \oplus B\) \textbf{Symmetric difference} of set \(A\) and set \(B\)
A ⊂ B A is a proper subset of B
A ⊆ B A is a subset of B
A × B Cartesian product of A and B

N Natural numbers: \{0, 1, 2, 3, 4, 5, 6,\ldots\}

P Prime numbers: \{2, 3, 5, 7, 11, 13,\ldots\}

Q Rational numbers: \{a/b : a, b ∈ \mathbb{Z}, b \neq 0\}

Q_{fp} Floating point numbers

R Real numbers; the continuum

R − Q Irrational numbers

R^2 Two dimensional Euclidean space

R^3 Three dimensional Euclidean space

U Universal set

Z^+ Positive integers: \{1, 2, 3, 4, 5, \ldots\}

Z Integer: \{0, ±1, ±2, ±3, ±4, ±5, ±6,\ldots\}

Z_m Modular integers: \{0, 1, 2, \ldots, m − 1\}

x ∈ A \(x\) is a member (element) of set A

x ∉ A \(x\) is not a member (element) of set A

\(an + \beta\) \(n^{th}\) term in an arithmetic sequence with initial condition \(\beta\) and slope \(\alpha\)

\(\alpha \rho^n\) \(n^{th}\) term in a geometric sequence with initial condition \(\alpha\) and ratio \(\rho\)

\(\beta_n\) \(n^{th}\) term in busy beaver sequence

\(\binom{n}{k}\) Pascal number; \(n\) choose \(k\); binomial coefficient

\(\delta_n\) Number of divisors of \(n\)

\(\left[\frac{n}{k} \right]\) Stirling’s number of the first kind

\(\pi_n\) \(n^{th}\) prime number

\(\vec{A}\) Alice sequence: \(\vec{A} = \langle 1, 1, 1, 1, \ldots \rangle\)

\(\vec{F}\) Fibonacci sequence: \(\vec{F} = \langle 0, 1, 1, 2, 3, \ldots \rangle\)

\(\vec{G}\) Gauss sequence: \(\vec{G} = \langle 0, 1, 2, 3, 4, \ldots \rangle\)

\(\vec{M}\) Mersenne sequence: \(\vec{M} = \langle 0, 1, 3, 7, 15, \ldots \rangle\)

\(\vec{P}\) Prime sequence: \(\vec{P} = \langle 2, 3, 5, 7, 11, \ldots \rangle\)
\(\mathbf{T'} \)
Triangular sequence: \(\mathbf{T'} = \langle 0, 0, 1, 3, 6, \ldots \rangle \)

\(\{ \binom{n}{k} \} \)
Stirling’s number of the second kind

\(C_n \)
\(n^{th} \) **Catalan number**: \(C_n = \frac{1}{n+1} \binom{2n}{n} \)

\(H_n \)
\(n^{th} \) **Harmonic number**: \(H_n = \sum_{k=1}^{n} \frac{1}{k}, \ H_0 = 0 \)

\(R_n = 2^n + 1 \)
Fermat number

Strings and Machines

\(|w| \)
Length of string \(w \)

\(\lambda \)
Empty string \(\lambda \); String with no characters; also used for wavelength

\(\mathcal{L} \)
\(\mathcal{L} \subseteq \Sigma^* \); A language over the **alphabet** \(\Sigma \)

\(\Sigma \)
Sigma — A finite **alphabet**

\(\Sigma^* \)
Kleene closure of \(\Sigma \); Set of all strings over \(\Sigma \)

\(\Sigma^0 \)
\(\{ \lambda \} \); The language with only the **empty string** \(\lambda \)

\(\Sigma^n \)
The set of all strings of length \(n \)

\(a, b, c, \ldots \)
Symbols in an alphabet

\(M = (Q, \Sigma, \delta, q_0, F) \)
A finite automaton

\(M = (Q, \Sigma, \Gamma, \delta, q_0, B, F) \)
A Turing machine

\(s, t, u, v, w \)
String variables

\(w : v, wv \)
Concatenation of strings \(w \) and \(v \)

\(w^R \)
Reversal of string \(w \)

Summations and Differences

\(\nabla f(n) \)
Backward difference: \(\nabla f(n) = f(n) - f(n - 1) \)

\(\delta f(n) \)
Central difference: \(\delta f(n) = f(n + 1) - f(n - 1) \)

\(\triangle f(n) \)
Forward difference of \(f(n) \): \(\triangle f(n) = f(n + 1) - f(n) \)

\(\prod_{k=0}^{n-1} a_k \)
Product of factors \(a_k \) for \(k = 0 \) to \(k = (n - 1) \)

\(\sum a_k \)
Sum of terms \(a_k \) over some index set

\(\sum \)
Summation symbol

\(\sum_{0}^{-1} \)
Empty sum \(\sum_{0}^{-1} \): equal to 0

\(\sum_{k=0}^{n-1} a_k \)
Sum of terms \(a_k \) for \(k = 0 \) to \(k = (n - 1) \)

\(f[n, m] \)
Divided difference: \(f[n, m] = \frac{f(m) - f(n)}{m - n} \)

\(i, j, k \)
Index variables
Course Calendar

This course calendar is a projection of how the class is expected to unfold. It is not written in stone. Nothing is certain. Things may change. Pay attention.

Week 1: August 17 – August 21

Monday Course Overview

- The course syllabus
- Read the preface to the notes
- Prepare for the next class: Read the notes on computer organization
- Take the preliminary quiz.
- Schedule a student-teacher meeting Bring your completed preliminary quiz quiz.

Wednesday Computer Organization

- Basic components in a computer
- Binary, decimal, and hexadecimal number systems
 - Size of these name spaces using n numerals
- Memory: Registers, RAM, IPvX
- Complete the quiz on computer organization
- Complete problems 1, 2, & 4 from the homework on computer organization
- Prepare for the next class: Read the notes on arithmetic

Friday Arithmetic

- Sets of numbers: Natural \(\mathbb{N} \), integers \(\mathbb{Z} \), modular integers \(\mathbb{Z}_m \), rational numbers \(\mathbb{Q} \)
- Positional notation
- Signed numbers: Sign-magnitude, complement & biased notations
- Arithmetic: Addition, subtraction (ten’s complement), multiplication, exponentiation, division (quotients & remainders)
- Recursive definition of arithmetic operations
- Complete the quiz on arithmetic
- Complete problems 2, 4, & 6 from the homework on arithmetic
- Prepare for the next class: Read the notes on logic operations

Week 2: August 24 – August 28
Monday Martin Luther King holiday

Wednesday Logic operations
- Review of previous week’s topics: Questions & answers
- Propositions: Statements that are True or False
- Boolean operations on propositions: NOT ¬, AND ∧, OR ∨, Conditional ⇒, Exclusive OR ⊕, Equivalence ≡
- Truth tables
- Complete the quizzes on logic basics
- Complete problems 4, 5, & 10 from the homework on logic operations

Friday Logic operations (continued)
- Counting truth assignments and Boolean functions (expressions)
- Half & full-adders
- Comparisons and other binary relations
- Prepare for the next classes: Read the notes on set theory

Week 3: August 31 – September 4

Monday Set theory
- Rules of inference (Boolean logic)
- Finite sets: \(B, O, D, H \)
- Countable sets: \(N, Z, Q, B^* \)
- Uncountable sets: \(R, C, \{ L : L \subseteq B^* \} \)
- Empty and universal set: \(\emptyset \cup \)
- Set operations: set-complement ¬, Intersection ∩, Union ∪
- Venn & Euler diagrams
- Complete the quizzes on sets
- Complete problems 1.1, 1.4, & 1.6 from the homework on set theory

Wednesday Set theory (continued)
- Counting set operations
- Commonality of logic and set operations
- Complete problems 2.2, 2.5, & 3 from the homework on set theory
- Prepare for the next class: Read the notes on logic control

Friday Control logic
- Boolean control: Sequential, if-then-else
- Predicates
- Quantification: For all and there exists
- Iteration
- Complete the quizzes on control logic and predicates
- Complete problems 2, 3, & 6 from the homework on control logic
- Prepare for the next class: Review all topics for an in-class exam

February

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 3 4 5</td>
<td>6 7 8</td>
<td>9 10 11 12</td>
<td>13 14 15</td>
</tr>
<tr>
<td>16 17 18 19</td>
<td>20 21 22</td>
<td>23 24 25 26</td>
<td>27 28</td>
<td></td>
</tr>
</tbody>
</table>
Week 4: September 7 – September 11

Monday Functions
 • Definition
 • Onto, one-to-one, inverse
 • Cardinality of sets
 • Complete the quizzes on functions
 • Complete problems 1, 2 & 4 from the homework on functions

Friday Functions (continued)
 • Pigeonhole principle
 • Functions by category: Polynomials, logarithms, exponentials
 • Complete problems 5 & 9 from the homework on functions

Wednesday In class exam #1
 • Prepare for the next classes: Read the notes on functions

Week 5: September 14 – September 18

Monday Functions (continued)
 • Classes of functions: Permutations, Integer functions (floor, ceiling, quotient, remainder, greatest common divisor)
 • Prepare for the next classes: Read the notes on polynomials and number system conversions
 • Schedule a student-teacher meeting Bring your homework, notes, and other test preparation material.

Wednesday Polynomials & Horner’s rule
 • Polynomial evaluation
 • Relationship between polynomials and positional number systems
 • Conversion to decimal: Horner’s rule
 • Complete the quizzes on functions
 • Complete problems 1, 2 & 3 from the homework on polynomials

Friday Polynomials & Horner’s rule (continued)
 • Conversion from decimal: Repeated remaindering
 • Example sequences: Alice, Gauss, Triangular,
 • Pascal’s triangle
 • Complete the quizzes on sequences
 • Complete problems 1 & 2 from the homework on sequences
 • Complete problems 4.2, 4.4, 4.6 & 8 from the homework on Horner’s rule
 • Prepare for the next classes: Read the notes on sequences and their sums and differences

Week 6: September 21 – September 25

Monday President’s Day

Wednesday Sequences, sums, and differences
• Example sequences: Doubling, Mersenne, Fibonacci
• Functional and recurrence equation/initial condition representation of terms
• Complete problems 3 & 4 from the homework on sequences
• Prepare for the next classes: Read the notes on machine numbers

Friday In class exam #2

Week 7: September 28 – October 2

Friday Sequences, sums, and differences (continued)
• Unsigned natural numbers, decimal, binary, hexadecimal
• Signed natural numbers, ten’s complement notation
• Two’s complement notation for signed integers
• Conversion to and from two’s complement
• Fixed-point notation

Wednesday Machine numbers
• Biased notation for signed integers
• Complete the quizzes on machine numbers
• Complete problems 1 & 2 from the homework on machine numbers

Friday Machine numbers
• Complete problems 4 & 5 from the homework on machine numbers

Week 8: February 23 – February 27

Monday Floating point numbers
• Complete problems 9 from the homework on machine numbers
• Prepare for the next classes: Read the notes on naming

Wednesday Naming systems
• Alphabets & strings (names)
• Counting names, numbering names
• Complete the quizzes on naming
• Complete problems 1, 3, 4 & 5 from the homework on names
• Prepare for the next classes: Read the notes on counting

Friday Counting
• Counting: truth assignments, Boolean expressions, functions, permutations,
• Complete the quizzes on counting
• Complete problems 3 & 8 from the homework on counting

Week 9: October 5 – October 9

Monday Counting (continued)
• Adjacency matrices and counting relations
• Counting subsets, the power set of a set

Wednesday Counting (continued)
• 2-dimensional examples: Binomial coefficients, Stirling’s numbers of the first and second kind for counting: Subsets of a given size, permutations with a given number of cycles, partitions into a given number of subsets.

• Prepare for the next classes: Read the notes on mathematical induction

Friday In class midterm exam

Week 10: October 12 – October 16

Monday Spring Break

Wednesday Spring Break

Friday Spring Break

Week 11: October 19 – October 23

Monday Induction

• Induction Template: Basis, Assumption, Conclusion
• Sum of the first n natural numbers
• Sum of the first n powers of two
• Complete the quizzes on induction
• Complete problems 3 & 4 from the homework on induction

Wednesday Inductions

• Geometric sums
• Arithmetic sums
• Additional examples
• Complete problems 5 & 7 from the homework on induction
• Prepare for the next classes: Read the notes on recursion

Friday Recursion

• Examples: Addition, factorial, binomial coefficients, strings
• Sequences: Recurrence equation and initial (boundary) conditions
• Demonstrating a function satisfies a recurrence
• Complete the quizzes on recursion
• Complete problems 2 & 9 from the homework on recursion

Week 12: October 26 – October 30

Monday Recursion

• Substituting functions into recurrence equations
• Tower of Hanoi, rabbits, Newton’s method, compound interest
• Complete problems 15 & 16 from the homework on recursion

Wednesday Recursion

• Two dimensional recurrences: Binomial coefficients, Stirling’s numbers of the first and second kind
• Complete problems 17 from the homework on recursion
• Prepare for the next classes: Read the notes on sorting and relations
Friday Relations

- Example relations: Equality, less than, divides, congruence mod \(m \), perpendicular, etc.
- Complete the quizzes on relations and orders
- Complete problems 1 from the homework on relations

Week 13: November 2 – November 6

Monday Relations: Properties

- Properties: Reflexive, antisymmetric, transitive, symmetric
- Adjacency matrices & counting relations with a property
- Complete problems 5 & 10 from the homework on order relations
- Prepare for the next classes: Read the notes on equivalences and relations
- **Schedule** a student-teacher meeting. Bring your homework, notes, and other test preparation material.

Wednesday Relations: Orders & Equivalences

(a) Sort (order): Cycle notation
(b) Partition (equivalence)
(c) Complete the quizzes on relations and equivalences
(d) Complete problems 11.3 & 11.4 from the homework on permutations

Friday In class exam #3

Week 14: November 9 – November 13

Monday Relations: Equivalences

- Arithmetic equality, Boolean equivalence, congruence mod \(m \), projective space
- Complete problems 1, 2 & 3 from the homework on equivalence relations

Wednesday Relations: Equivalences

- Complete problems 5, 6 & 8 from the homework on equivalence relations
- Prepare for the next classes: Read the notes on modular numbers and number theory

Friday Number theory

- Pseudo-random numbers — modular recurrences
- Cryptography
- Complete the quizzes on modular numbers
- Complete problems 1 & 4 from the homework on cryptology and modular numbers

Week 15: November 16 – November 20

Monday Number theory
• Modular arithmetic: addition & additive inverses, multiplication & multiplicative inverses
• Linear congruence equations

Wednesday Number theory (continued)
• Greatest common divisor & Euclidean algorithm
• Complete problems 5, 6 & 7 from the homework on cryptology and modular numbers
• Prepare for the next classes: Read the notes on proofs

Friday Number theory (continued)
• Solving linear congruence equations using the extended Euclidean algorithm

Week 16: November 23 – November 27

Monday Proofs
• Proof by contradiction
• Primes are unbounded
• $\sqrt{2}$ is not rational
• Complete the quizzes on proofs
• Complete problems 1, 3 & 6 from the homework on proofs by contradiction

Wednesday Proofs (continued)
• Cantor’s diagonalization
• Turing machines

Friday In class exam #4

Week 17: November 30 – December 4

Monday Review

Wednesday Review

Friday Study Day

Week 18: December 7

Wednesday Final examination: Monday, December 7, in Olin Engineering 118 from 1:00 p.m. to 3:00 p.m.
Preface

There should be no such thing as boring mathematics.

— Edsger Dijkstra, Introduction to his 1987 Mathematical Methods course.

So we confront a mystery. How does it happen that mathematics has remained as it were a blind spot in our culture — alien territory, in which only the elite, the initiate few have managed to entrench themselves?

It’s the same old refrain: “Stop, for heaven’s sake! I hate math.” “Pure torture from the start of school. It’s a total mystery how I ever managed to graduate.” “A nightmare for me — I have no talent for it, period!” . . . “Mathematical formulas are pure poison. They just turn me off.”

Complaints such as these are heard all the time. Thoroughly sensible, educated people express them routinely, with a remarkable blend of defiance and pride.

— Hans Magnus Enzensberger

Continuous & Discrete mathematics

Many students enter college prepared, through a series of lessons, to delve deeper into continuous mathematics: calculus, differential equations, real analysis, and onward. These notes are about another perspective: Discrete mathematics, which can provide approximate answers to questions about continuous models, but discrete mathematics can do much more than that, especially as preparation for algorithmic thinking for general computing.

My notes are a broad survey of discrete mathematics. Many topics that could be covered are not. The mind-maps, starting on page 419, illustrate what is covered.

There are several natural entry points into discrete mathematics.

- Logic because “yes” and “no” are fundamental answers.
- Numbers and arithmetic because, well, because most people understand numbers and basic arithmetic on them.
- Sets because reasoning about collections of things is useful and intimately related to logic.
- Functions because computable ones can provide solutions to problems.

You might liken the relation between continuous and discrete mathematics to the wave-particle duality of modern physics. Duality is an general concept unifying many branches of mathematics, science & engineering: Knowledge of structures in one system can infer knowledge of structures in the other.

* These notes are not very deep and they are not very rigorous either. When they are wrong, I would appreciate a note.

The decision problems: “Is some value x a member of some set X?” has a “yes” or “no” answer. The True or False answer may be easy or hard to compute: This is a question of complexity. It may be that the answer can or cannot be computed: This is a question of computability.
Turing machines are one model of computation.

I choose to start by giving a high-level overview of computer architecture. Abstract computing machines use logic to define numbers, perform numeric operations, decide problems about collections of things, and design high-level functions for all sorts of purposes.

The notes are very much a draft. You should check back often to get the latest version.

Thanks

All I’ve done is collect the ideas of many other people and put them together in a way which, I hope, first-year college students can understand. The ideas are useful in algorithmic reasoning.

I would like thank everyone who has helped me develop my notes. There are too many to count, let alone thank.

I have to start with Donald Knuth. He is the father of discrete mathematics. His series of books “The Art of Computer Programming” (Knuth, 1997a,b, 1998) provide fascinating, but intimidating, reading.

Concrete Mathematics is famous enough to have its own Wikipedia page. Knuth also created \(\TeX \) because he needed a robust document preparation system. \(\LaTeX \), created by Leslie Lamport, is the “layman’s” macro package built on top of \(\TeX \).

Barrel Part 1

“An initial design of the (Wikipedia) logo was created by Paul Stansifer, a 21-year-old Wikipedia user (and son of Dr. Ryan Stansifer), whose entry won a design competition run by the site in 2003.”

Like Pascal, Haskell Curry did not invent Haskell, but the language is named in his honor: A difference is Haskell is a given name while Pascal is a surname. There are criticisms of Wikipedia, but in my humble opinion, it is a good resource for learning some discrete mathematics.
and their solutions to mathematical expressions (functions).

Other things

My bias is: To understand discrete mathematics you must read, write, hear, watch, and speak discrete mathematics. I’d like to think you will enjoy working through my notes about discrete mathematics.¹

There are many fine textbooks on discrete mathematics. I’ve learned from them. I encourage you to look at them too. Someone else may explain a topic in a way that “clicks” with you, while my notes leave you with: Huh?

- **A Short Course in Discrete Mathematics**, by Edward Bender and Gill Williamson, Dover, 2005. [An introductory text]
- **A Logical Approach to Discrete Mathematics**, by David Gries and Fred Schneider, Springer-Verlag, 1994. [A more advanced text]

I believe most students taking this course have little experience writing mathematics.² Or, perhaps more correctly, pedantic third grade rules have been enforced in math class, and few students have experience interweaving English (or some other natural language) and mathematics. I encourage you to keep a notebook for this course.

Here’s a link to the notebook Isaac Newton used while an undergraduate at Trinity College, Cambridge. Perhaps (a few) years from now your notebook will be studied too.

My handwriting is awful. I blame my third grade teacher: Miss Be(a)vis. I write with my left hand. She knew I should use my right hand, but I, being Butt-Head, refused. My students suffer today.

Based on my handwriting and fast lecturing style, I think it would be wise for students to watch and listen to others. Discuss discrete mathematics with your fellow students and others who know or want to know about the subject. There may be good videos on the Internet on topics in discrete mathematics. There are interesting discrete mathematics courses at elite and good universities: Check them out!

¹ I do not live in a fairyland.

² I do live in the real world.
Within these notes there are many links to external sources. They are typeset in navy blue. These links provide with additional information about a topic.

There are also internal links within the notes. Internal links are typeset in cyan. Let me know if the difference between navy blue and cyan is too subtle. Links to the bibliography are typeset in (Florida Tech) crimson.

The notes contain many quizzes. They occur after a short topic has been presented. The short quizzes are not graded. You will be asked to complete these quizzes during class. Your classmates may be confused. Please ask questions for them. There are a few longer exams. They are templates for proctored, graded exams. Please complete these outside of class, as if in a test situation. Cognitive scientist report that frequent practice quizzes have high utility in learning.

Each chapter contains a set of homework questions labeled with a icon. Most often these questions require sustained thinking, and are diagnostic of True mastery of a topic. A spectrum of problems from simple to advanced to unsolved or unsolvable are provided.

Speaking mathematics improves learning. You are encouraged to use your professor’s and teaching assistant’s office hours to talk about discrete math. The “office hours” scene from The PhD Movie! may provide tips on how to prepare for these interactions.

Finally, there is a web site for the class where you will find a course syllabus and other useful resources.

Are you ready?

Modern learning theory (Fusion et al., 2005) suggests that students fail to learn mathematics (and other subjects) for three primary reasons:

1. Mistaken preconceptions — The “I can’t do math!” conjecture: If you have mistaken preconceptions, give them up.

Need or want extra respect? Point me to good videos that explain topics covered in my course.

Don’t fail in silence!, Dr. Richard Ford’s advice to new students, The Florida Tech Crimson, Fall 2011, Issue 2.

Distributed practice also has high utility: Don’t cram.

It would be smart to organize exercises by type.

Are you ready?

Modern learning theory (Fusion et al., 2005) suggests that students fail to learn mathematics (and other subjects) for three primary reasons:

1. Mistaken preconceptions — The “I can’t do math!” conjecture: If you have mistaken preconceptions, give them up.
2. Failure to link concepts and processes — The *Napolean Dynamite* maxim: You need good skills. Most people must practice to develop their skills.

3. Lack of meta-cognition — The *Descartes-Schrödinger’s cat* conundrum: I don’t think, therefore I am and I am not. I hope you will think about these notes because you find them interesting and useful.

Pass a Quiz: Preliminary quiz

Take a quiz on page 323 to check your understanding. You can return to here from the quiz.
0. Abstracting a computer

People who are more than casually interested in computers should have at least some idea of what the underlying hardware is like. Otherwise the programs they write will be pretty weird.

Donald Knuth, The Art of Computer Programming, Volume 1, Fascicle 1: MMIX – A RISC Computer for the New Millennium

A Simple Computer

A computer inputs data, performs some analysis or work on it, and produces output information. Figure 0 abstracts the basic components of a computer.

![Diagram of computer components](image)

Memory is used to store input, output, and scratch work needed by the control and computation unit to transform input into output. Given a computation, an algorithm, some basic questions are:

- How many control and computation “steps” are taken (as a function of input size)?
- How often is memory read or written?
- How much memory is used?
- How much data is read in or written out?

Binary, Decimal and Hexadecimal

Arithmetic will be reviewed in the next section of notes. Here the idea is to become familiar with notations used in computing.
There are three common bases for writing numbers are decimal, binary, and hexadecimal.

- **Decimal**— The *lingua franca* for everyday discourse about numbers. Decimal numbers are written using digits from the alphabet

$$\mathbb{D} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$ \hspace{1cm} (1)

Using n digits, 10^n decimal numbers can be written. For instance,

<table>
<thead>
<tr>
<th>Digits</th>
<th>Range</th>
<th>Different names</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\langle 0, 1, \ldots, 9 \rangle$</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>$\langle 0, 1, \ldots, 99 \rangle$</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>$\langle 0, 1, \ldots, 999 \rangle$</td>
<td>1000</td>
</tr>
<tr>
<td>n</td>
<td>$\langle 0, 1, \ldots, 10^n - 1 \rangle$</td>
<td>10^n</td>
</tr>
</tbody>
</table>

- **Binary**— Physical machines that implement binary arithmetic can be (easily) built. Because of this, people study binary number systems.

Binary numbers are written using bits from the alphabet

$$\mathbb{B} = \{0, 1\}$$ \hspace{1cm} (2)

Using n bits, 2^n binary numbers can be written. For instance,

<table>
<thead>
<tr>
<th>Bits</th>
<th>Range</th>
<th>Different names</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\langle 0, 1 \rangle$</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>$\langle 0, 1, 2, 3 \rangle$</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>$\langle 0, 1, \ldots, 7 \rangle$</td>
<td>8</td>
</tr>
<tr>
<td>n</td>
<td>$\langle 0, 1, \ldots, 2^n - 1 \rangle$</td>
<td>2^n</td>
</tr>
</tbody>
</table>

Since $2^n \approx 10^{3n/10}$, binary words are about $10/3$ times longer than their decimal equivalent. For instance,

- The binary number $\langle 1100\ 1010\ 1111\ 1110 \rangle_2$ is 16 bits wide: About three and one-third times longer than its 5-digit decimal equivalent 51966.

- The 7 bits number $\langle 100\ 1001 \rangle_2$, when written as decimal 73 takes about three tenths the space: Two digits is about 0.3 of 7.
• **Hexadecimal**: To decrease the length of binary words, hexadecimal notation is used.

Hexadecimal numbers are written using hexadecimal numerals from the alphabet

\[
\mathbb{H} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}
\]

Using \(n\) hexits, \(16^n\) hexadecimal words can be written. For instance,

<table>
<thead>
<tr>
<th>Hexits</th>
<th>Range</th>
<th>Different names</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0, 1, \ldots, 15)</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>(0, 1, \ldots, 255)</td>
<td>256</td>
</tr>
<tr>
<td>3</td>
<td>(0, 1, \ldots, 4095)</td>
<td>(16^3)</td>
</tr>
<tr>
<td>(n)</td>
<td>(0, 1, \ldots, (16^n) − 1)</td>
<td>(16^n)</td>
</tr>
</tbody>
</table>

Since \(2^n = (16)^{n/4}\) binary words are about four times longer than their hexadecimal equivalent. For instance,

- \((\text{CAFE})_{16}\) is four times shorter than its binary representation: \((\text{1100 1010 1111 1110})_2\).
- The 6 bits number \((\text{10 1010})_2\) requires 2 hexadecimal numerals to write it as \((\text{2A})_{16} = 2 \cdot 16 + 10 = 42\). Two is about one-fourth of six.

Memory

Physical memory is limited: Both in *how many* things it can hold and the *size* of things that can be stored. Let’s make several assumptions about our computer’s memory.

- Pretend random access memory is organized into words that are one-byte wide. That is, a computer word \(w\) stores 8 bits: An eight-bit byte is a word \(w\): A sequence of 8 bits.

\[
\begin{array}{cccccccc}
 b_0 & b_1 & b_2 & b_3 & b_4 & b_5 & b_6 & b_7 \\
\end{array}
\]

A word

I’ve chosen to use little-endian to store bits. The least significant bit \(b_0\) is stored first, on the left, at a small address. The most significant bit \(b_7\) is stored last, on the right, at a high address.

If the word is a binary number then its value is

\[
b_0 2^0 + b_1 2^1 + b_2 2^2 + b_3 2^3 + b_4 2^4 + b_5 2^5 + b_6 2^6 + b_7 2^7
\]
Figure 1: The memory buffer

- Let’s suppose there are \(N = 2^{14} = (4000)_{16} \) words in primary memory. Each word is one byte (8 bits wide).

The computer’s hardware does not support it, but let’s assume memory is bit-addressable: That is, any bit in memory can be read or written by specifying an address \((i, j)\) where \(0 \leq i < 2^{14}\) and \(0 \leq j < 2^3\).

- Memory can be partitioned into segments: System, instruction, and data segments, but these are details for a computer organization class.

The Control and Computational Units

The central processing unit (CPU) of a computer has a control unit and a computational unit. Control of our machine is fairly simple: It repetitively performs, on clock-ticks, five basic steps.

1. Fetch an instruction (IF)
2. Decode the instruction (ID)
3. Execute the instruction (EX)
4. Access memory (AM)
5. Write back the computed data to the register file (WB)

This establishes an instruction pipeline where, once full, one instruction is completed on each clock-tick.
Of course, there are many things that can stall a pipeline.

Control Unit

The central processing unit contains a number of registers that hold control and computational information. The *control unit* contains:

- A 14-bit *program counter* (PC), allowing any word in memory to be addressed.
- A *address register* (AR) that holds the location where data will be stored or fetched. Assume the AR is 2-bytes wide. Although only 14 bits are needed to address memory, the extra two bits can be used to address input and output devices.
- A *call stack* of 8 registers that contain addresses to other active processes running on the machine.
- A 4-bit *status register*: Carry, Parity, Zero, and Sign.
 - The carry bit is set (to 1) when the result of an arithmetic operation resulted in a carry-out or borrow-in of the most significant bit.
 - The parity bit is set (to 1) when the result of the last operation has an even number of 1’s
 - The zero bit is set if the result of the last operation was 0.
 - The sign bit is set if the last operation set the most significant bit of the result.

Computational Unit

The computational unit contains other registers.

- An 8-bit *accumulator* (ACC) where the result of the instruction execution is stored.
- An 8-bit *memory-data register* (MDR) that holds data to be stored-in or fetched-from memory in the access memory stage.
- Seven general purpose registers to hold (scratch) data useful for computation and control.

Our computer is programmed by writing instructions that command it to take certain steps.

Instruction set

There are several instructions that can be used to develop programs for our computer. Here are a few:
Assembly instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLT</td>
<td>Halt the machine</td>
</tr>
<tr>
<td>IN</td>
<td>Input data from a port</td>
</tr>
<tr>
<td>OUT</td>
<td>Output data to a port</td>
</tr>
<tr>
<td>JMP</td>
<td>Unconditionally jump</td>
</tr>
<tr>
<td>JNC</td>
<td>Jump if carry = 0</td>
</tr>
<tr>
<td>JNZ</td>
<td>Jump if result ≠ 0</td>
</tr>
<tr>
<td>JZ</td>
<td>Jump if result = 0</td>
</tr>
<tr>
<td>CAL</td>
<td>Call a subroutine</td>
</tr>
<tr>
<td>RET</td>
<td>Return from a subroutine</td>
</tr>
<tr>
<td>MOV d, M</td>
<td>Load d with content of memory M</td>
</tr>
<tr>
<td>ADD s</td>
<td>Add s to ACC</td>
</tr>
<tr>
<td>ADD M</td>
<td>Add from memory M to ACC</td>
</tr>
<tr>
<td>SUB s</td>
<td>Subtract s from ACC</td>
</tr>
<tr>
<td>ANA s</td>
<td>Logical AND of s and ACC to ACC</td>
</tr>
<tr>
<td>XRA s</td>
<td>Logical XOR of s and ACC to ACC</td>
</tr>
<tr>
<td>ORA s</td>
<td>Logical OR of s and ACC to ACC</td>
</tr>
<tr>
<td>CMP s</td>
<td>Compare s with ACC, set flags</td>
</tr>
<tr>
<td>NOP</td>
<td>No operation</td>
</tr>
</tbody>
</table>

Pass a Quiz: Computer basics

Take a quiz on page 324 to check your understanding. You can return to here from the quiz.

What next?

Now that we have a naive understanding of a computer and its organization, let’s first recall what we know about arithmetic and then study how logic can be used to perform arithmetic by controlling the flow of instructions that need to be executed.

Homework Questions

Use your time outside of class to solve these problems.

1 Our simple computer, described above, has 8-bit words, a memory with 2^{14} words, a 14 bit program counter, and a 16 bit address register. These numbers are parameters that can be changed. Let

- m be the number of bits in a word
- M be the number of words of memory

But this is way too far afield from discrete mathematics. Let’s just say a computer can be built and programmed. The details are left to others.

A general idea to take away from the first three questions is: k things can be put in n places with repetition in k^n ways.
• \(p \) be the width, in bits, of the program counter
• \(a \) be the width, in bits, of the address register

1.1 How many different words of length \(m \) can be written?
1.2 How many words can be stored in memory?
1.3 How many instructions can be stored in a program?
1.4 How large must \(a \) be to address \(M \) words in memory?

2 Pretend our computer is based on \textit{decimal} notation instead of \textit{binary}. Answer the four problems from question (1) using \textit{digits} instead of \textit{bits}.

3 Pretend our computer is \textit{hexadecimal} based? How would your answers to the four problems from question (1) change?

4 You quickly realize that 8-bit words are not sufficient for most computations: One byte provides only a small range of numbers. Pretend you want to write a \textit{natural number} \(n \) using the \textit{binary alphabet}.

4.1 Use the fact that \(2^m - 1 \) is the largest natural number that can be written using \(m \)-bits to find a function that computes \(\ell \), the number of bits (word length) necessary to write \(n \) in binary notation.

4.2 Use your answer to compute the number of bits needed to write: 37, 73, and 237.

5 Next, pretend you want to write \(n \) using the \textit{hexadecimal} alphabets. How many \textit{hexadecimal numberals} are necessary for 37, 73, and 237? For a general \(n \), how many \textit{hexadecimal numberals} are necessary?

6 In \textit{Haskell}, \texttt{Int} is a numeric data type that can represent all integers from \(-2^{31} \) to \(2^{31} - 1 \). How wide, how many bits, must a computer word be to hold any given number in this range? How wide is this in \textit{hexadecimal}?

7 The Internet Protocol (IP) is used to route traffic on the Internet. IPv4 is being replaced by IPv6. One reason for this is the size of the IPv4 address space.

7.1 IPv4 uses 32-bit (4-byte) addresses. What is the size of its address space? Write your answer in binary and hexadecimal, and approximate the size in decimal. Is this address space large enough in today’s world?

7.2 IPv6 uses 128-bit (16-byte) addresses. What is the size of this address space? Write your answer in binary and hexadecimal, and approximate the size in decimal. Do you think the size of this address space will remain large enough for a reasonable long time?

8 Factorials quickly overflow a computer word: \(6! = 720 \) is already too large for an 8-bit word. What is the largest \textit{factorial} that can be stored in 16, 32, 64, and 128 bit words?

The range \([-2^{31}, 2^{31} - 1]\) is the guaranteed minimum range. An implementation of Haskell may have a larger range of type \texttt{Int}.

A useful take-away: If it takes \(k \) digits to represent a natural number \(n \), then it will take about \(10k/3 \) bits to write \(n \). To see this: If it takes \(k \) digits to represent a natural number \(n \), then

\[
10^{k-1} \leq n < 10^k
\]

Replace \(10^k \) with \((10^3)^{k/3}\) and \(10^3 \) with \(2^{10} \). Then

\[
(2^{10})^{(k-1)/3} \leq n < (2^{10})^{k/3}
\]

or

\[
2^{10(k-1)/3} \leq n < 2^{10k/3}
\].
1. Arithmetic

By arithmetic, I mean the study of the traditional operations: Addition, subtraction, multiplication, and division on some underlying set \(X \) of numbers. Changing \(X \) can change whether or not an operation can be defined at all. When an operation cannot be defined on a set, for instance “take 9 from 8 and return a natural numbers,” mathematicians enlarge the underlying set so the operation can be performed.

\[
\begin{array}{cccc}
\mathbb{N} & \text{subtraction} & \mathbb{Z} & \text{division} \\
\text{integer exponents} & \mathbb{Q} & \text{rational exponents} & \mathbb{R}
\end{array}
\]

Changing \(X \) can also change the algorithms for computing the operations.

Numerical Calculations

Let’s discuss how to control a computer to perform numerical computations: Addition, subtraction, multiplication, division (quotients and remainders), exponentiation, and other computable operations and functions.

You know about numbers found along the “number-line.”

Number line

Arithmetic will be considered on a hierarchy of numbers.

\[\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \]

- Natural numbers \(\mathbb{N} = \{0, 1, 2, 3, \ldots, n, \ldots \} \), also called unsigned, non-negative, whole numbers, form the basic building blocks for arithmetic.
- Natural numbers under the operation of addition form a monoid. They also form a monoid under multiplication. That is, these properties are True.
Basic arithmetic on the natural numbers

- The natural numbers are closed under addition and multiplication:

 If \(n, m \in \mathbb{N} \), then \(n + m \in \mathbb{N} \) and \(n \cdot m \in \mathbb{N} \).

 When you add or multiply two natural numbers the sum or product is a natural number.

- Addition and multiplication on the natural numbers obey the associative law: For every \(n, m, p \in \mathbb{N} \),

 \[
 (n + m) + p = n + (m + p) \quad \text{and} \quad (n \cdot m) \cdot p = n \cdot (m \cdot p)
 \]

 You can add or multiply in any order, provided the terms or factors remains stationary.

- There are additive and multiplicative identities: Numbers \(0 \) and \(1 \) such that.

 \[
 0 + n = n + 0 = n \quad \text{and} \quad 1 \cdot n = n \cdot 1 = n
 \]

To provide an inverse for addition, allowing an amount to decrease, the natural numbers are extended to the integers.

- Integers \(\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \ldots, \pm n, \ldots\} \), also called signed whole numbers.

 The integers form a group under addition. That is, addition is closed, associative, has an identity element, and each integer has an additive inverse. The existence of additive inverses extend these monoidal properties to form a group.

Integers have additive inverses

Each integer \(n \) has an additive inverse \(-n \in \mathbb{Z}\) such that

\[
 n + (-n) = 0
\]

The negative of \(n \) is \(-n\):

\[
 -(n) = -n
\]

The negative of \(-n\) is \(n\):

\[
 -(-n) = n
\]

The integers do not have multiplicative inverses: For instance, to solve the linear equation \(5x = 1 \) the integers must be extended to the rational numbers. Over the rationals, you can compute \(x = 5^{-1} = 1/5 \) as the solution of the linear equation \(5x = 1 \).

- Rational numbers \(\mathbb{Q} = \{r = b/m : b, m \in \mathbb{Z}, m \neq 0\} \), also called fractions, extend the integers to provide an inverse for non-zero multiplication: Division, multiplication by fractional parts.

 Let \(m \) and \(b \) be integers, with \(m \neq 0 \). The value of \(x \) that solves the
linear equation

\[m \cdot x + b = 0 \] is the rational number \(x = m^{-1}(-b) = -\frac{b}{m} \).

Rational numbers can be written in fractional, fixed-point, or floating-point forms, for instance:

\[
\begin{align*}
\frac{7}{8} &= 0.875 & \text{fixed point} \\
\frac{7}{8} &= 8.750 \times 10^{-1} & \text{normalized floating point}
\end{align*}
\]

Rational arithmetic has many properties

Rational numbers form a field: There are two operations addition (+) and multiplication (\(\cdot \)) on the rational numbers \(\mathbb{Q} \) with these properties:

- **Closure:** If \(r \) and \(s \) are rational numbers, then
 \[r + s \in \mathbb{Q} \quad r \cdot s \in \mathbb{Q} \]

- **Associative** For all rational numbers \(r, s, \) and \(t \)
 \[
 \begin{align*}
 (r + s) + t &= r + (s + t) \\
 (r \cdot s) \cdot t &= r \cdot (s \cdot t)
 \end{align*}
 \]

- **Commutative:** For each \(r \) and \(s \) in \(\mathbb{Q} \)
 \[
 \begin{align*}
 r + s &= s + r \\
 r \cdot s &= s \cdot r
 \end{align*}
 \]

- **Identity elements:** There are rational numbers \(0 \) and \(1 \) such that for every rational number \(r \)
 \[
 \begin{align*}
 r + 0 &= r \\
 r \cdot 1 &= r
 \end{align*}
 \]

- **Inverses:** Each rational \(r \) has an additive inverse \(-r \), and every non-zero rational \(s \neq 0 \) has a multiplicative inverse \(s^{-1} \)
 \[
 \begin{align*}
 r + (-r) &= 0 \\
 s \cdot s^{-1} &= 1
 \end{align*}
 \]
- **Distributive**: Multiplication distributes over addition

\[r \cdot (s + t) = r \cdot s + r \cdot t \]

It is often better to *factor* than distribute.

\[r \cdot s + r \cdot t \rightarrow r \cdot (s + t) \]

- **Real numbers** \mathbb{R}. The structure of the real numbers is beyond the scope of this course, but some real numbers appear in several sections of these notes. The real numbers extend the rational numbers by “filling in the gaps.” That is, there are some simple equations that have no solution over the rationals. For instance, there are no rational numbers x that satisfy the equations

\[x^2 - 2 = 0 \quad \text{or} \quad x^2 - x - 1 = 0 \]

But here, we don’t care too much about this type of problem.

- **Modular integers** $\mathbb{Z}_m = \{0, 1, 2, 3, \ldots, (m-1)\}$. Some instances of sets of modular integers are given below.

 Mod 0: $\mathbb{Z}_0 = \emptyset$
 Mod 1: $\mathbb{Z}_1 = \{0\}$
 Mod 2: $\mathbb{Z}_2 = \{0, 1\}$
 Mod 3: $\mathbb{Z}_3 = \{0, 1, 2\}$
 Mod 4: $\mathbb{Z}_4 = \{0, 1, 2, 3\}$
 Mod 5: $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$

Arithmetic on modular integers is similar to, but different from, the arithmetic you learned in third grade. When the modulus $m = p$ is a prime number, the modular integers $\mathbb{Z}_p = \{0, 1, 2, 3, \ldots, (p-1)\}$ form a field. Modular arithmetic is discussed in the notes on modular numbers.

A related concept is the integers mod m. Here all of the values in $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$ are considered: Integers are collected into equivalence classes based on their remainder upon division by m.

The partitions of the integers defined by the mod 5 and mod 7 relations are listed below. The name of each equivalence class is the smallest rotation of 360°.

Rotations provide notions of modular arithmetic:

- A rotation by θ followed by a rotation by ϕ is equivalent to one rotation by $\theta + \phi$.
- A rotation by 360° returns the object to its original orientation.
- A rotation by more than 360° can be reduced to a rotation between 0 and 360°.

Rotations written in degrees is a vestige of the sexigesimal number system used by the Babylonians. Recall, a rotation by 180° is equivalent to a rotation by π, but this will never be used elsewhere in these notes.

Context often implies which numerical representation (type and notation) is being used for arithmetic. If necessary, explicit syntax can be used to disambiguate the representation. By default, all values are written in decimal, sign-magnitude notation.
non-negative integer in set: The modular integer in the tables below.

Equivalence classes mod 5

<table>
<thead>
<tr>
<th>Integers Mod 5</th>
<th>[0]_5</th>
<th>[1]_5</th>
<th>[2]_5</th>
<th>[3]_5</th>
<th>[4]_5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−10</td>
<td>−9</td>
<td>−8</td>
<td>−7</td>
<td>−6</td>
<td></td>
</tr>
<tr>
<td>−5</td>
<td>−4</td>
<td>−3</td>
<td>−2</td>
<td>−1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equivalence classes mod 7

<table>
<thead>
<tr>
<th>Integers mod 7</th>
<th>[0]_7</th>
<th>[1]_7</th>
<th>[2]_7</th>
<th>[3]_7</th>
<th>[4]_7</th>
<th>[5]_7</th>
<th>[6]_7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−14</td>
<td>−13</td>
<td>−12</td>
<td>−11</td>
<td>−10</td>
<td>−9</td>
<td>−8</td>
<td></td>
</tr>
<tr>
<td>−7</td>
<td>−6</td>
<td>−5</td>
<td>−4</td>
<td>−3</td>
<td>−2</td>
<td>−1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Congruence mod \(m \) is described in more detail in the notes on equivalence relations.

Positional notation

There are several ways to write numbers. You are familiar with decimal notation where digits, written in a sequence, describe a number in terms of powers of 10. For example,

\[
3141 = 3 \cdot 10^3 + 1 \cdot 10^2 + 4 \cdot 10^1 + 1 \cdot 10^0
\]

\[
57721 = 5 \cdot 10^4 + 7 \cdot 10^3 + 7 \cdot 10^2 + 2 \cdot 10^1 + 1 \cdot 10^0
\]
This representation of natural numbers is called positional notation. With the use of a decimal point, a little syntax, rational numbers can also be written.

\[2.72 = 2 \cdot 10^0 + 7 \cdot 10^{-1} + 2 \cdot 10^{-2} = \frac{272}{100} \]
\[14.142 = 1 \cdot 10^1 + 4 \cdot 10^0 + 1 \cdot 10^{-1} + 4 \cdot 10^{-2} + 2 \cdot 10^{-3} = \frac{14142}{1000} \]

For computing, numbers do not need to be written in decimal notation. In fact, machines that compute in binary are easier to build.

Base alphabets

Natural numbers can be written in various bases: For instance, base 2, 8, 10, and 16, called binary, octal, decimal, and hexadecimal are commonly used. Here are their alphabets.

<table>
<thead>
<tr>
<th>Base</th>
<th>Alphabet</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>{0, 1}</td>
</tr>
<tr>
<td>O</td>
<td>{0, 1, 2, 3, 4, 5, 6, 7}</td>
</tr>
<tr>
<td>D</td>
<td>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}</td>
</tr>
<tr>
<td>H</td>
<td>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}</td>
</tr>
</tbody>
</table>

You can use syntatic sugar to designate the base: Let \(n \) be a natural number. To denote the base in which \(n \) is written you could write

\[n = (n)_2 = (n)_8 = (n)_{10} = (n)_{16} \]

Base 10, decimal is the default number system: The one with which you are familiar and needs no sugar. Here are some examples of numbers written in different bases.

\[73 = (1001001)_2 = (111)_8 = (73)_{10} = (49)_{16} \]
\[37 = (0100101)_2 = (045)_8 = (37)_{10} = (25)_{16} \]

The algorithms that compute conversions between bases are described starting with converting to decimal on page 130, and then inverting decimal to another base on page 133.

Signed numbers

Signed numbers (integers, rational numbers, real numbers) can be written in sign-magnitude, complement, biased, or other notations. Sign-magnitude is how you usually write numbers. For instance, you write

\[-37, -21, +38, +73\]
The plus sign + is commonly dropped and only implied by its absence. In computing, an extra bit of information is needed to disambiguate the sign.

- In **binary sign-magnitude** and **complement** notation, a leading (left-most) 0 indicates that a number is positive (or zero). A leading 1 means the number is negative. Complement number systems are discussed in the notes on the machine representation of signed integers, starting on page 154.

- In **binary biased** notation just the opposite is True: If the leading (left-most) bit is 0 the number is negative (or zero). If the leading bit is 1 the number is positive. Biased number systems are discussed in the notes on representation of floating-point exponents, starting on page 164.

In third grade you learned to perform elementary arithmetic on small numbers using **sign-magnitude, decimal** notation. This knowledge can be used to understand how to build a computer.

Addition

Addition is straightforward, but does involve carries. Let’s add $473 + 756$ place-by-place and record the carry-ins and carry-outs.

![Addition (473 + 756)](image)

Computing right-to-left, the initial carry-in is 0, and the sum is $0 + 3 + 6 = 9$ with a carry-out of 0. Carry-outs propagate to the left becoming carry-ins in the next place.

\[c_{\text{in}_k} = 0, \text{ the first carry-in is } 0. \]
\[c_{\text{in}_k} = c_{\text{out}_{k-1}}, \quad k = 1, 2, 3, \ldots \text{ the next carry-in is the previous carry-out.} \]

Carry-outs are computed, place-by-place, using the logic

\[c_{\text{out}} = \begin{cases} 0 & \text{if } c_{\text{in}} + t_1 + t_2 < 10 \\ 1 & \text{if } c_{\text{in}} + t_1 + t_2 \geq 10 \end{cases} \]
The sum digit is computed by the familiar rules illustrated below. A carry-out digit \((1) \) is indicated when the sum is 10 or greater, called overflow.

Decimal digit \((a + b)\) addition table

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>(1)0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>(1)0</td>
<td>(1)1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>(1)0</td>
<td>(1)1</td>
<td>(1)2</td>
</tr>
<tr>
<td>(a)</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>(1)0</td>
<td>(1)1</td>
<td>(1)2</td>
<td>(1)3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>(1)0</td>
<td>(1)1</td>
<td>(1)2</td>
<td>(1)3</td>
<td>(1)4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>(1)0</td>
<td>(1)1</td>
<td>(1)2</td>
<td>(1)3</td>
<td>(1)4</td>
<td>(1)5</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>(1)0</td>
<td>(1)1</td>
<td>(1)2</td>
<td>(1)3</td>
<td>(1)4</td>
<td>(1)5</td>
<td>(1)6</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>(1)0</td>
<td>(1)1</td>
<td>(1)2</td>
<td>(1)3</td>
<td>(1)4</td>
<td>(1)5</td>
<td>(1)6</td>
<td>(1)7</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>(1)0</td>
<td>(1)1</td>
<td>(1)2</td>
<td>(1)3</td>
<td>(1)4</td>
<td>(1)5</td>
<td>(1)6</td>
<td>(1)7</td>
<td>(1)8</td>
</tr>
</tbody>
</table>

Summations

Being able to add two numbers is useful. Being able to sum a finite list of numbers is more useful. Consider the following recursive definition.

1. The sum of terms in the empty list \(\langle \rangle \) is 0.

2. The sum of terms in a non-empty list \(\langle x, \ldots \rangle \) is \(x \) plus the sum of terms in the tail \(\langle \ldots \rangle \).

In Haskell, the `sum` function adds the values in a finite list of numbers, \(\langle x_0, x_1, \ldots, x_{n-1} \rangle \).

```
sum :: Num n => [n] -> n
-- sum is a function that maps
-- a list [n] of numbers
-- to a value n.
sum [] = 0
-- the sum of no values is 0
sum (x:xs) = x + sum xs
-- add the head
-- to the sum of the tail

```

The mathematical symbol for `sum` is \(\sum \). The sum of \(n \) terms in the sequence \(\langle x_0, x_1, \ldots, x_{n-1} \rangle \) is denoted by

\[
\sum_{k=0}^{n-1} x_k = x_0 + x_1 + x_2 + \cdots + x_{n-1} \quad \text{for } n \geq 0. \tag{4}
\]

There is the famous story about Gauss in third grade. He computed \(1 + 2 + 3 + \cdots + 100 = 5050 \) is a few seconds, confounding his teacher.
It is smart to look at boundary (initial, base) conditions. When \(n = 0 \) the \textit{sum} on the left is
\[
\sum_{k=0}^{-1} x_k
\]
There are different ways to interpret this \textit{sum}. Both can be useful

- The number of terms in the \textit{sum} is \(n \). When \(n = 0 \) it means there are no terms in the \textit{sum}. The natural value for adding up nothing is 0. This is the interpretation I use in these \textit{notes}. The \textit{sum} of no terms is the \textit{empty sum} and has value 0.

- Sometimes, terms in some sequences can be sensibly be extended to negative subscripts. But, in this case, you \textit{should} write
\[
\sum_{k=-1}^{0} x_k = x_{-1} + x_0
\]

\textit{Subtraction}

\textit{Sign-magnitude} subtraction is messy. It requires a look-ahead to borrow-in a 10 when subtracting a large digit from a smaller one.

<table>
<thead>
<tr>
<th>\textbf{Subtraction (473 - 756)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 2 1 0</td>
</tr>
<tr>
<td>0 1 0 1</td>
</tr>
<tr>
<td>4 7 3</td>
</tr>
<tr>
<td>7 5 6</td>
</tr>
<tr>
<td>7 1 7</td>
</tr>
<tr>
<td>1 0 1 0</td>
</tr>
</tbody>
</table>

Oops! What happened? \(473 - 756 = -283 \), not 717. \textit{But}, 717 is the \textit{ten’s complement} representation of \(-283\). In 3-digit arithmetic, the \textit{sum} 717 + 283 is equal to 1000, which, when truncated to 3 digits, is 000 = 0.

\[
(717)_{10c} = -283 \quad \text{since} \quad (717)_{10c} + (283)_{10c} = (000)_{10c}.
\]

Notice, that
\[
756 + 717 = 1473
\]
Which when truncated to 3 digits is
\[
756 + 717 = f473
\]
Or, rearranging terms,
\[
473 - 756 = -283 = (717)_{10c}
\]
The subtraction table below shows the difference of two digits. The lower triangle shows subtraction of a small digit from a larger digit, for instance, since \(7 - 3 = 4\) there is a 4 in row 7, column 3.

The upper triangle shows subtraction of a large digit from a smaller digit, for instance

\[
3 - 7 \rightarrow 13 - 7 = (9)6
\]

where \((9)\) is used to indicate the need to borrow-in 10 from the “next place.” Notice that

\[
13 - 7 = (9)6 \rightarrow 13 = (9)6 + 7
\]

captures the fact that \(6 + 7\) is 3 with a carry of 1. That is,

\[
13 = (9)6 + 7 = (9)[(1)3] = (9 + 1) + 3 = 10 + 3
\]

<table>
<thead>
<tr>
<th>(a)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(9)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>(9)</td>
<td>(9)</td>
<td>(9)</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>(9)</td>
<td>(9)</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>(9)</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Multiplication

Digit-by-digit multiplication can produce carries from 0 to 8 as shown in the multiplication table below. This makes implementing the control and

Some flag other than \((9)\) could be used to denote when a borrow is needed. But the use of \((9)\) has some nice properties.
You can divide. Division is a fundamental arithmetic operation. Let \(a \) be a
natural number. Assume the existence of \(\text{succ}(n) \), the successor function, that
computes \(\text{succ}(n) = (n + 1) \). Also assume that there is an addition function
that computes \(\text{add}(a, b) = (a + b) \) for pairs of natural numbers \(a \) and \(b \). Then
multiplication can be defined by:

- A base case: \(\text{mult}(0, a) = 0 \); zero times \(a \) is zero.
- A rule: \(\text{mult}(\text{succ}(n), a) = \text{add}(\text{mult}(n, a), a) \);

\[
(n + 1) \cdot a = a \cdot n + a
\]

For instance, you can compute:

\[
\begin{align*}
\text{mult}(0, a) &= 0 \\
\text{mult}(1, a) &= \text{add}(\text{mult}(0, a), a) = \text{add}(0, a) = a \\
\text{mult}(2, a) &= \text{add}(\text{mult}(1, a), a) = \text{add}(a, a) = 2a \\
\text{mult}(3, a) &= \text{add}(\text{mult}(2, a), a) = \text{add}(2a, a) = 3a \\
&\vdots \vdots
\end{align*}
\]

Division: Quotients and Remainders

Division is a fundamental arithmetic operation. Let \(a, m \in \mathbb{Z} \), where \(m \neq 0 \).
You can divide \(a \) by \(m \) to compute a quotient \(q \) and remainder \(r \) giving the
quotient-remainder equation

\[
a = mq + r \tag{5}
\]

The quotient is \(q = \lfloor a/m \rfloor \), the floor of \(a/m \),
the largest integer less than or equal to \(a/m \).

The remainder is \(r = a \mod m \), the
difference

\[
r = a - qm = a - m \left\lfloor \frac{a}{b} \right\rfloor
\]
When the divisor \(m = 0 \), equation (5) remains True by setting the remainder \(r \) to \(a \). So, following Knuth, et al in (Graham et al., 1989), define

\[
a \mod 0 = a
\]

When the divisor \(m = 0 \) and \(r = a \), equation (5) remains True for any value of the quotient \(q \). Rather than leave the quotient indeterminate, I believe a choice should be made. I think the correct decisions are

\[
q = \left\lfloor \frac{a}{0} \right\rfloor = \begin{cases}
1 & \text{if } a = 0 \\
0 & \text{if } a \neq 0
\end{cases}
\]

Look at the columns in the quotient table: See how quotient repeat \(n \) times in column \(n \).
Look at the columns in the remainder table: See how remainders increase by 1, then cycle back to 0.

<table>
<thead>
<tr>
<th>Decimal digit a mod m remainder table</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

Theorem 1: Quotient-remainder

Given two integers a and m, with $m \neq 0$, there exist unique integers q and r such that

$$a = mq + r \quad \text{and} \quad 0 \leq r < |m|.$$

Proof: Quotient-Remainder Theorem

Let

$$\mathcal{X} = \{ n \geq 0 : n = a - mk \quad \text{where} \quad k \in \mathbb{Z}. \}$$

The set \mathcal{X} is non-empty. To see this notice

- If $m > 0$, you can choose $k < a/m$ and then $mk < a - mk > 0$.
- If $m < 0$, you can choose $k > a/m$ and then $mk < a - mk > 0$.

The set \mathcal{X} is bounded below by 0 and therefore it has a least member: Call this least member $r = a - mq$.

Furthermore, it must be that $r < |m|$. Assuming otherwise leads to a contradiction.

- Assume $r > m > 0$, then $r > r - m > 0$ and

$$r - m = a - m(q - 1) \in \mathcal{X}$$

But this contradicts that r is the smallest value in \mathcal{X}.
Assume \(m < 0 \) and \(r > -m \), then \(r > r + m > 0 \) and

\[
 r + m = a - m(q + 1) \in \mathbb{X}
\]

And this contradicts that \(r \) is the smallest value in \(\mathbb{X} \).

The above proof is not constructive: It does not explain how to compute \(q \) and \(r \). One way to construct/compute \(q \) and \(r \) from \(a \) and \(m \) is to.

```c
(unsigned q, unsigned r) quotient(unsigned a, unsigned m)
{
    // assert 0 <= m <= a
    if (a == m) return (1, 0);
    q = 0;
    r = a;
    while (r > m) { q = q + 1; r = r - m; }
    return (q, r);
}
```

Here’s a way to construct/compute \(q \) and \(r \). In later notes on conversions among number systems it is shown that \(a \) can be written in base \(m \) notation. That is,

\[
a = \left(r_{n-1}r_{n-2}\cdots r_1r_0 \right)_m = r_{n-1}m^{n-1} + r_{n-2}m^{n-2} + \cdots + r_1m + r_0 = \sum_{k=0}^{n-1} r_km^k
\]

for coefficients \(r_{n-1}, r_{n-2}, \cdots, r_1, r_0 \) where each coefficient is a value in the base \(m \) alphabet

\[
\{0, 1, \ldots, (m - 1)\}
\]

The quotient-remainder theorem says every rational number \(a/b \) can be written as a “whole” part plus a “fractional” part, where the whole part is an integer and the fractional part non-negative and less than 1. This is called Euclidean division.

\[
 \frac{a}{b} = q + \frac{r}{|b|} \quad \text{where} \quad 0 \leq r < |b|.
\]

Consider \(\text{mod } b = 3 \). Starting at \(a = 0 \), the remainders \(r \) increase by 1 until \(a \) reaches 3, when the remainders \(r \) return to 0.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(a)</th>
<th>(q)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>(\frac{3}{3})</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{0}{3})</td>
<td>0</td>
<td>(\frac{3}{3})</td>
</tr>
<tr>
<td>3</td>
<td>(\frac{3}{3})</td>
<td>1</td>
<td>(\frac{0}{3})</td>
</tr>
<tr>
<td>4</td>
<td>(\frac{3}{3})</td>
<td>1</td>
<td>(\frac{1}{3})</td>
</tr>
<tr>
<td>5</td>
<td>(\frac{2}{3})</td>
<td>2</td>
<td>(\frac{2}{3})</td>
</tr>
<tr>
<td>6</td>
<td>(\frac{1}{3})</td>
<td>1</td>
<td>(\frac{2}{3})</td>
</tr>
<tr>
<td>7</td>
<td>(\frac{2}{3})</td>
<td>2</td>
<td>(\frac{2}{3})</td>
</tr>
<tr>
<td>8</td>
<td>(\frac{1}{3})</td>
<td>1</td>
<td>(\frac{2}{3})</td>
</tr>
</tbody>
</table>
The remainder function $\text{rem}(n, m)$ can be defined recursively:

- **A base cases:**
 - $\text{rem}(0, m) = 0$: Zero divided by m has remainder 0: $0 = m \cdot 0 + 0$.
 - $\text{rem}(n, 0) = n$: n divided by zero has remainder n: $n = 0 \cdot q + n$.
 - $\text{rem}(n, m) = 0$ if $\text{rem}(n - 1, m) = m - 1$: Remainders cycle mod m.

- **A rule**: $\text{rem}(\text{succ}(n), m) = \text{rem}(n, m) + 1$: Remainders increase by 1 from 0 to $(m - 1)$, when they cycle back to 0.

For instance, you can compute

<table>
<thead>
<tr>
<th>n</th>
<th>$\text{rem}(n, 3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Now, the quotient function can be defined using recursion.

- **A base cases**: $\text{quot}(0, 0) = 1$ and $\text{quot}(0, m) = 0$ for $m > 0$.

- **Rule 1**: $\text{quot}(\text{succ}(n), m) = \text{quot}(n, m) + 1$ if $\text{rem}(m, \text{succ}(n)) = 0$.

- **Rule 2**: $\text{quot}(\text{succ}(n), m) = \text{quot}(n, m)$ if $\text{rem}(m, \text{succ}(n)) \neq 0$.

For instance, you can compute

<table>
<thead>
<tr>
<th>n</th>
<th>$\text{quot}(n, 3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
| 3 | 1 | since $\text{rem}(3, 3) = 0$
Exponentiation

Computing exponentials is more complex: The exponentiation table below shows that the “carry” is a sequence of digits. The numbers a^b increase rapidly. However, there is a clear and computable pattern for the least significant digit. For instance, in the row labeled 3 the pattern for the last digit is $\langle 1, 3, 9, 7 \rangle$.

![Exponentiation Table](image)

The exponentiation function $\text{exp}(a, b) = a^b$ can be reduced to multiplication.

- A **base case**: $\text{exp}(a, 0) = 1$, that is, $a^0 = 1$.
- A **rule**: $\text{exp}(a, \text{succ}(n)) = \text{mult}(a, \text{exp}(a, n))$, that is, $a^{n+1} = a \cdot a^n$.

For instance, you can compute

\[
\begin{align*}
\text{exp}(a, 0) & = 1 \\
\text{exp}(a, 1) & = \text{mult}(a, \text{exp}(a, 0)) = \text{mult}(a, 1) = a \\
\text{exp}(a, 2) & = \text{mult}(a, \text{exp}(a, 1)) = \text{mult}(a, a) = a^2 \\
\text{exp}(a, 3) & = \text{mult}(a, \text{exp}(a, 2)) = \text{mult}(a, a^2) = a^3 \\
& \vdots \vdots
\end{align*}
\]

Pass a Quiz: Number basics

Take a quiz on page 324 to check your understanding. You can return to here from the quiz.
Expressions

Finally, let's jump back from arithmetic to mathematics. We need mathematical things to talk about.

An expression is a finite combination of symbols that is well-formed using the rules of some model. For example, an arithmetic expression on the natural numbers can be defined recursively.

Definition 1: Arithmetic expression

- Each natural number \(n \) is an (arithmetic) expression.
- Variables \(x, y, z \ldots \) that can stand for a natural number are (arithmetic) expressions.
- If \(e \) and \(f \) are (arithmetic) expressions, then
 - \((e) \) is an (arithmetic) expression
 - \(e + f \) is an (arithmetic) expression
 - \(e \cdot f \) is (arithmetic) an expression

Mathematicians invent additional notation to simplify writing arithmetic expressions. For instance,

\[
x^k = x \cdot x^{k-1}, \quad \text{for } k > 0 \quad \text{and} \quad x^0 = 1.
\]

\[
\sum_{k=0}^{n-1} x_k = x_0 + x_1 + \cdots + x_{n-1} \quad \text{for } n > 0 \quad \text{and} \sum_{k=0}^{-1} x_k = 0.
\]

\[
\prod_{k=0}^{n-1} x_k = x_0 \cdot x_1 \cdots x_{n-1} \quad \text{for } n > 0 \quad \text{and} \prod_{k=0}^{-1} x_k = 1.
\]

Boolean expressions are another type of expression.

Definition 2: Boolean expression

- Each bit, \(0 \) and \(1 \), is a (Boolean) expression.
- Boolean variables \(p, q, r \ldots \) are (Boolean) expressions.
- Let \(e \) and \(g \) be (Boolean) expressions. Then each of the following is a (Boolean) expressions:

\[
(e), \quad \neg e, \quad e \land g, \quad e \lor g
\]

Logicians invent additional notation to simplify writing Boolean expres-
Implications. For instance,

\[p \implies q = \neg p \lor q \]

\[p \equiv q = (\neg p \land \neg q) \lor (p \land q) \]

\[p \oplus q = (p \land \neg q) \lor (\neg p \land q) \]

\[\bigvee_{k=0}^{n-1} p_k = p_0 \lor p_1 \lor \cdots \lor p_{n-1} \]

\[\bigwedge_{k=0}^{n-1} p_k = p_0 \land p_1 \land \cdots \land p_{n-1} \]

Predicate expressions are also possible: They describe expressions over sets of objects. This type of expression involves *quantifiers*: For every \(\forall \) and for some \(\exists \). *Quantifiers* express that some predicate \(p(x) \) is True for all or for some elements \(x \) in a set \(X \).

\[(\forall x \in X)[p(x)] \quad \text{or} \quad (\exists x \in X)[p(x)]\]

Definition 3: Set expression

- The empty set \(\emptyset \) and universal set \(U \) are set expressions.
- Set variables \(X, Y, W \ldots \) are (set) expressions.
- If \(X \) and \(Y \) are (set) expressions, then each of the following is a (set) expression:
 \[(X), \quad \neg X, \quad X \land Y, \quad X \lor Y\]

Equivalences

A fundamental mathematical question is: Are two expression equivalent? **Equivalence** of expressions mean all possible values on one expression is the same as the corresponding values of the other expression.

There are several famous equivalences. One is the **Pythagorean theorem**.

Theorem 2: Pythagorean

The square of the hypotenuse in a right triangle is equal to the sum of the squares of the other two sides.

\[c^2 = a^2 + b^2 \]
If some measure other than Euclidean distance is used, the equivalence may not hold. However, the triangle inequality does hold for every metric.

\[|a + b| \leq |a| + |b| \]

Another famous equivalence is Einstein’s equation stating the equivalence of energy to mass.

\[E = mc^2 \]

There are other fundamental equivalences: Equivalences are always True.

- **False** or **True** is always True: \(\neg p \lor p = True \)
- **False** and **True** is always **False**: \(\neg p \land p = False \)
- **False** implies nothing: \((\neg p \Rightarrow True) \land (\neg p \Rightarrow False) = True \)
- If all \(x \in X \) are also in \(Y \) and \(y \) is in \(X \), then \(y \in Y \).

Oh the other hand, there expressions can be equal for only certain values: These are not equivalences but **equalities**: In logic they are called **contingencies**: Statements (predicates) that are True for some values and False for others.

- The golden polynomial \(x^2 - x = 1 \) is zero only when \(x \) is the golden ratio \(\phi \approx 1.618 \), or its conjugate \(\bar{\phi} \approx -0.618 \).
- \(7x \equiv 3 \mod 9 \) only when \(x = 3 \pm 9k \) for \(k \in \mathbb{Z} \).

The importance of equivalences is that they allow us to understand complex concepts in more simple ways.

(Difficult to understand) \(\cos^2 \theta + \sin^2 \theta = 1 \) (Easier to understand)

A basic mathematical skill is the ability to show that one expression is equivalent to or equal to another. This is somewhat analogous to writing a computer program: You want to show that a sequence of functions (instructions) produces the desired result, and nothing else. Equivalences are studied in more detail later in these notes.

And then, there is the concept of inequality, a whole new realm to study: Inequalities studies relations such as smaller–larger, inside–outside, and before–after. Placing things in order a before–after relationship is studied later too.
What next?

Now that a naive picture of a computer, its organization, and arithmetic has been presented, the next series of notes study how logic can be used to perform arithmetic and other useful operations, how to collect objects into sets, and how to reason about statements (predicates, functions) over collections to control the flow of instructions our computer is executing.

Homework Questions

Use your time outside of class to solve these problems.

1. Evaluate the following expressions.

 1.1 \(2^5\)

 1.2 \(2^5 \cdot 2^3\)

 1.3 \(\sum_{k=0}^{5} k\)

 1.4 \(\sum_{k=0}^{1} 2^k\)

2. Pretend you want to write natural number \(n\) using the decimal or hexadecimal alphabets. How many numerals are necessary in each case?

3. Pretend you need to name \(j\) different things using binary names. Pretend the names will all have the same (fixed) length \(\ell\). Use the fact that there \(2^m\) different binary strings of length \(m\) find a function that computes \(\ell\),

4. Pretend you want to name \(j\) things using (fixed-length) decimal or hexadecimal names. How many digits will be in decimal names? How long will hexadecimal names be?

5. Two and ten are useful bases. A back-of-the-envelope calculation

 \[2^{10} = 1024 \approx 1000 = 10^3\]

 shows that you can approximate \(2^{10}\) by \(10^3\), or vice versa.

 5.1 What is the absolute error \(|2^{10} - 10^3|\) of this approximation?

 5.2 What is the relative error \(|2^{10} - 10^3| / |2^{10}|\) in this approximation?

 5.3 Use this approximation to write \(2^x\) as a power of 10. Use your result to find an approximation of \(\log_2 10\), the log base 2 of 10.

 5.4 Is the approximation

 \[2^{20} = 1048576 \approx 1000000 = 10^6\]

 better or worse with respect to absolute and relative error?

The natural logarithm function is \(\ln x\), the logarithm base \(e\) of \(x\), where \(e \approx 2.718 \cdots\),

The common logarithm function is \(\log x\), the logarithm base 10 of \(x\).
6 Use a calculating tool to approximate \(\ln 2 \) and \(\log_2 \). Conclude that their sum \(\ln 2 + \log_2 \) is close to 1? How close is the approximation?

7 Is exponentiation associative? That is, is the equation
\[
a^{(b^c)} = (a^b)^c
\]
true for arbitrary (integer) values of \(a, b, \) and \(c \)? If exponentiation is not associative, what is the accepted precedence order for evaluation \(a^{(b^c)} \): top-down or bottom-up?

8 The xkcd comic below lists several approximations.
Approximations

For instance one light-year is about $9.460730472580 \times 10^{15}$ meters, while $99^8 = 9.227446944279201 \times 10^{15}$. The absolute error is the difference

$$(9.460730472580800 - 9.227446944279201) \times 10^{15} = 0.233283528301599 \times 10^{15}$$

While the relative error is only

$$\frac{0.233283528301599}{9.460730472580800} = 0.0246580883979 \approx \frac{1}{40}$$

The point is: Although two numbers may not be what we think of as close, they can be nearby relative to their magnitudes. Verify the other claims of accuracy in Munroe’s comic. Well! That’s too big of a request. Choose and work a few of the claims to be certain you understand the ideas.
2. **Logic: For computation**

“I couldn’t afford to learn it,” said the Mock Turtle with a sigh. “I only took the regular course.”

“What was that?” inquired Alice.

“Reeling and Writhing, of course, to begin with,” the Mock Turtle replied; “and then the different branches of Arithmetic - Ambition, Distraction, Uglification, and Derision.”

Lewis Carroll, Alice’s Adventures in Wonderland, Chapter IX (Carroll et al., 2000)

Fundamental Boolean logic

There are two Boolean values: False and True. Zero (0) is a name for False and one (1) is a name for True. $\mathbb{B} = \{0, 1\} = \{\text{False, True}\}$ is the set of bits.

A Boolean variable is a character used to stand for a Boolean value. Common names for Boolean variables are p, q, and r.

There are three fundamental operations on Boolean variables: Not, And, and Or.

1. **Not (Negation)**

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>$\neg p$</td>
<td>$\neg p$ is True only when p is False.</td>
</tr>
</tbody>
</table>

2. **And (Conjunction)**

Wikipedia has a nice list of logic symbols. For each symbol in the list, its name, an explanation, examples, and the symbol’s Unicode, HTML, and \[\text{\LaTeX}\] values are given.

The symbols \bot and \top are also symbols used for False and True. \bot is called bottom and \top is called top.

Claude Shannon popularized the bit as a contraction of “binary digit.” (Shannon, 1948). Shannon attributed John Tukey for coining the word.

And (\land) and Or (\lor) are pointy. The notes on sets discuss intersect \cap and union \cup which are round. The point is: Similar notations are used to describe similar concepts in different contexts.
The And operator: \((p, q) \mapsto (p \land q)\)

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(p \land q)</td>
</tr>
</tbody>
</table>

\(p \land q\) is True only when both \(p\) and \(q\) are True.

3. Or (Disjunction)

The Or operator: \((p, q) \mapsto (p \lor q)\)

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(p \lor q)</td>
</tr>
</tbody>
</table>

\(p \lor q\) is True except when both \(p\) and \(q\) are False.

I think it is interesting that Not, And, and Or are all you need to implement arithmetic.

There are several other important Boolean operations that are built using Not, And, and Or. Three are Conditional, Exclusive-Or, and Equivalence.

4. Cond (Conditional, implies, if ..., then ...)
2. Logic: For Computation

2.1. The Conditional Operator: \((p, q) \mapsto (p \Rightarrow q)\)

The **Conditional operator**: IF \(p\), THEN \(q\)

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(q)</td>
<td>(p \Rightarrow q)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\(p \Rightarrow q\) is True except when \(p\) is True and \(q\) is False.

![Logic Diagram](attachment:image.png)

\((p \Rightarrow q) \equiv (\neg p \lor q)\)

2.2. Xor (Exclusive-Or)

The Xor operator: \([p, q] \mapsto (p \oplus q)\)

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(q)</td>
<td>(p \oplus q)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\(p \oplus q\) is True when only one of \(p\) or \(q\) is True.

2.3. Eqv (Equivalence)

The Eqv operator: \([p, q] \mapsto (p \equiv q)\)

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(q)</td>
<td>(p \equiv q)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\(p \equiv q\) is True when \(p\) and \(q\) have the same value.
Precedence order

In arithmetic, the order in which you add, subtract, multiply, divide, exponents matters: Different orders gives different results. Order of execution also matters for Boolean operations.

For instance, when \(p = \text{False}, q = \text{True} \) and \(r = \text{True} \):

\[
(p \land q) \lor r = \text{True} \\
p \land (q \lor r) = \text{False}
\]

From first to last, the precedence of Boolean operations:

\[
\text{Not} > \text{And} > \text{Xor} > \text{Or} > \text{Cond} > \text{Eqv}
\]

For instance,

\[
p \land q \lor r \Rightarrow \neg q \land r = ((p \land q) \lor r) \Rightarrow (\neg q) \land r
\]

But it is often good to use parenthesis, even if they are not strictly necessary.

Pass a Quiz: Boolean logic basics

Take a quiz on page 325 to check your understanding. You can return to here from the quiz.

Arithmetic

Claude Shannon is often credited with pointing out that Boolean logic can be used to perform arithmetic on binary numbers. A half-adder provides a simple example of logic simulating arithmetic: \(0 + 0 = 0\), \(0 + 1 = 1\) and \(1 + 0 = 1\), or \((10)_2\) when written in binary.

\[
\begin{array}{ccc|c}
0 & 0 & 1 & 1 \\
+ & 0 & + & 1 \\
0 & 1 & 1 & 10 \\
\end{array}
\]

It is convenient to write the sums as a *truth table*.

Addition: Half-adder

<table>
<thead>
<tr>
<th>term 1 + term 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>term 1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Syntactic sugar such as \((10)_2\) can be used to clarity that 10 is a binary number, and not the decimal number 10. More correctly, the carry was 0 for the first three sums. The first three sums did not generate a carry bit, but the fourth sum \(1 + 1\) generated a sum bit \(s = 0\) and a carry bit \(c_{out} = 1\).

- carry = (term 1) \(\land\) (term 2)
- sum = (term 1) \(\oplus\) (term 2).
The carry bit is the conjunction (And) of terms 1 and 2, while the sum bit is the exclusive-Or (Xor) of the terms.

A full-adder recognizes that carries propagate when terms have more than one place, for example, in decimal.

\[
\begin{array}{c|c|c|c|c|c}
0 & 1 & 0 & 0 & \text{carry in} \\
1 & 7 & 3 & \text{term 1} \\
3 & 7 & 5 & \text{term 2} \\
5 & 4 & 8 & \text{sum} \\
0 & 1 & 0 & \text{carry out}
\end{array}
\]

Adding 173 and 375:

- Carry-in: 0
- Each carry-out becomes the carry-in in the next column.

\[
\begin{array}{c|c|c|c|c|c}
1 & 0 & 0 & 1 & \text{carry in} \\
1 & 0 & 1 & \text{term 1} \\
1 & 1 & 0 & \text{term 2} \\
1 & 0 & 1 & 1 & \text{sum} \\
1 & 0 & 0 & \text{carry out}
\end{array}
\]

\[
5 + 6 = (101)_2 + (110)_2 = (1011)_2 = 11
\]

Note the carry switches from 1 to 0 in the most significant bit. In ten’s complement arithmetic this indicates a overflow. The sum 548 is the ten’s complement way of writing −452. In ten’s complement notation, the sum 173 + 375 of the positive integers results in a negative value.

Full-adder

A full-adder must be able to add two terms (digits, bits) \(a \) and \(b \), and a carry-in bit \(c_{in} \) to compute a sum bit \(s \) and a carry-out bit \(c_{out} \).

The truth table that describes a binary full-adder is shown below. Input bits \(a \), \(b \), and \(c_{in} \) are summed to produce a sum bit \(s \) and a carry-out bit \(c_{out} \).
There are two canonical ways to represent a Boolean function: disjunctive and conjunctive normal forms. You can construct these normal forms from the input/output behavior of the function.

1. **Disjunctive normal form (sum of products)** Given a truth table: For each row with output 1,

Form an And-clause of the input variables: Use \(p \) when \(p = 1 \) and \(\neg p \) when \(p = 0 \).

For instance, referring to full-adder truth table on page 60, the sum bit \(s \) is 1 in row 2, 3, 5, and 8.

\[
\begin{array}{cccc|c}
\text{Row} & A & B & c_{in} & c_{out} \\
\hline
1 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 1 & 0 \\
3 & 0 & 1 & 0 & 0 \\
4 & 0 & 1 & 1 & 1 \\
5 & 1 & 0 & 0 & 0 \\
6 & 1 & 0 & 1 & 1 \\
7 & 1 & 1 & 0 & 1 \\
8 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\[
\text{Sum And-clauses for full-adder}
\]

\[
\begin{array}{cccc}
\text{Row} & A & B & c_{in} & \text{And-clause} \\
\hline
2 & 0 & 0 & 1 & c_2 = \neg A \land \neg B \land c_{in} \\
3 & 0 & 1 & 0 & c_3 = \neg A \land B \land \neg c_{in} \\
5 & 0 & 1 & 1 & c_5 = \neg A \land B \land c_{in} \\
8 & 1 & 1 & 1 & c_8 = A \land B \land c_{in} \\
\end{array}
\]

Now form the disjunction of these clauses.

\[
s = c_2 \lor c_3 \lor c_5 \lor c_8
\]

This expression for the sum \(s \) is true on input rows 2, 3, 5, and 8, and it is 0 on all other rows. It can be simplified by factoring and operator

\[
\text{Recognize that}
\]

\[
(\neg b \land c) \lor (b \land \neg c)
\]

is exclusive-or (Xor) \(b \oplus c \) and

\[
(\neg b \land \neg c) \lor (b \land c)
\]

is equivalence (Eqv) \(b \equiv c \), which is the negation of \(b \oplus c \).
logic: for computation

2. Conjunctive normal form creates a conjunction of disjunctions (product of sums). For each row with output 0,

Form an Or-clause of the input variables: Use \(p \) when \(p = 0 \) and \(\neg p \) when \(p = 1 \).

For example, using rows from the full-adder truth table on page 60, the rows where the carry-out bit is 0 are:

<table>
<thead>
<tr>
<th>Row</th>
<th>A</th>
<th>B</th>
<th>c_in</th>
<th>c_out</th>
<th>S</th>
<th>Or-clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(d_1 = A \lor B \lor c_{\text{in}})</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(d_2 = A \lor B \lor \neg c_{\text{in}})</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(d_4 = A \lor \neg B \lor c_{\text{in}})</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(d_5 = \neg A \lor B \lor c_{\text{in}})</td>
</tr>
</tbody>
</table>

Now form the conjunction of these clauses.

\[
c_{\text{out}} = d_1 \land d_2 \land d_3 \land d_5
\]

This expression evaluates to 0 for input rows 1, 2, 3 and 5, and is 1 on all other rows. It can be simplified by factored and operator recognition.

\[
c_{\text{out}} = (A \lor B \lor c_{\text{in}}) \land (A \lor B \lor \neg c_{\text{in}}) \land (A \lor \neg B \lor c_{\text{in}}) \land (\neg A \lor B \lor c_{\text{in}})
\]

\[
= ((A \lor B) \lor (c_{\text{in}} \land \neg c_{\text{in}})) \land (((A \lor B) \land (\neg A \lor B)) \lor c_{\text{in}})
\]

\[
= (A \lor B) \land ((A \equiv B) \lor c_{\text{in}})
\]

It is possible to chain full-adders together to compute sums of many-bit binary numbers. It should also not as a surprise that subtractions, multiplication, division, exponentiation, and other arithmetic operations can be implemented in logic as well.

Comparisons

Rather than study the implementation of more complex arithmetic, consider comparing two numbers.

There are five basic comparison relations. Each can be reduces to a comparison with 0.

- Less than: \(a < b \) if \(a - b < 0 \)
- Less than or equal: \(a \leq b \) if \(a - b \leq 0 \)
- Equal: \(a = b \) if \(a - b = 0 \)
- Greater than or equal: \(a \geq b \) if \(a - b \geq 0 \)
- Greater than: \(a > b \) if \(a - b > 0 \)
Truth tables for $a < b$ and $a \leq b$

<table>
<thead>
<tr>
<th>Less Than</th>
<th>Less Than Or Equal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Output</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$(\neg A \land B) \equiv (A \Rightarrow B)$

Truth table for $A = B$

<table>
<thead>
<tr>
<th>Equality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

$[(\neg A \land \neg B) \lor (A \land B)] \equiv (A \equiv B)$

Truth tables for $a > b$ and $a \geq b$

<table>
<thead>
<tr>
<th>Greater Than</th>
<th>Greater Than Or Equal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Output</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$A \land \neg B \equiv (A \lor \neg B) \equiv (B \Rightarrow A)$

Subtraction

In some sense, there is no subtraction operation: There is only addition of the negative (or complement) of a number.

$$b - a = b + (-a).$$

We are moving up the number hierarchy from natural numbers \mathbb{N} to integers \mathbb{Z}.
The representation of negative numbers can make addition over integers simple or hard. Three common representations of subtraction $b - a = b + (-a)$ are: Sign-magnitude, complement, and biased notations.

Sign-magnitude notation

Sign-magnitude is the system taught in elementary school and is only slightly covered here. To compute the difference $b - a$: Subtract the smaller from larger, and change the sign if necessary.

$$b - a = b + (-a) = \begin{cases} + (b - a) & \text{if } a \leq b \\ -(a - b) & \text{if } b < a \end{cases}$$

Complement notation

The comparison that occurs in sign-magnitude subtraction can be eliminated using complement notation.

Let’s learn about ten’s complement first. Pretend our computer has 3-digit words: 000 to 999. Whenever two numbers a and b add to $1000 = 10^3$, they are ten’s complement of each other.

For instance, $(273)_{10c}$ and $(727)_{10c}$ are ten’s complement. Their sum is $(273 + 727)_{10c} = (1000)_{10c} = 0$. In this case,

- $(273)_{10c}$ represents 273
- $(727)_{10c}$ represents -273.

In a like manner 1 and 999 are ten’s complement with

$$1_{10c} = 1 \quad \text{and} \quad 999_{10c} = -1$$

Three-digit ten’s complement numbers from $(0)_{10c}$ to $(499)_{10c}$ represent 0 to 499, while ten’s complement numbers from $(500)_{10c}$ to $(999)_{10c}$ represent -500 to -1. There is a simple digit-flipping rule to negate a ten’s complement number:

Copy 0’s from right-to-left up to the first non-zero digit. Change the first non-zero digit d to $10 - d$. Change the remaining digits d on the left to $9 - d$.

For instance, here are some examples showing how to negate ten’s complement numbers.

- $-300 = (700)_{10c}$ negate $\rightarrow (300)_{10c} = 300$
- $-237 = (763)_{10c}$ negate $\rightarrow (237)_{10c} = 237$
- $375 = (375)_{10c}$ negate $\rightarrow (625)_{10c} = -375$
- $73 = (073)_{10c}$ negate $\rightarrow (937)_{10c} = -73$

You can use syntactic sugar to denote that ten’s complement numbers are not your ordinary numbers. For instance, $(375)_{10c} + (625)_{10c} = 1000 = (0)_{10c}$; $(375)_{10c}$ and $(625)_{10c}$ are 10’s complements of each other.

$(375)_{10c} = 375$, it’s normal interpretation. But $(625)_{10c} = -375$. These numbers can be extended to more digits (wider words) by appending 0’s or 9’s.

$375 = (375)_{10c} = 0375 = 00375$

$-375 = (625)_{10c} = 9625 = 99625$

Note

$[11111111]_2 = 255$

and

$[100000000]_2 = 256$.
Next, pretend our computer computes with binary numbers and words are 8-bit long: 0000 0000 to 1111 1111. Whenever two numbers \(a\) and \(b\) add to \((10000000)_2 = 256 = 2^8\), they are two’s complements of each other.

For instance, \((0110 1000)_2\) and \((1001 1000)_2\) are two’s complements. There sum is
\[
(0110 1000 + 1001 1000)_2 = (10000 0000)_2 = 0
\]
The number \((0110 1000)_2\) has it’s normal interpretation: 104 in decimal. But, \((1001 1000)_2\) represents \(-104\). The unsigned representation \((1001 1000)_2\) is 152 in decimal, and \(104 + 152 = 256 = 2^8\). For hand computation there is a simple bit-flipping rule to negate a two’s complement number.

Copy the bits from right-to-left up to and including the first 1. Flip the remaining bits on the left.

For instance, here are some examples showing how to negate two’s complement numbers.

\[
\begin{align*}
-30 &= (1110 0010)_2
\xrightarrow{\text{negate}} (0001 1110)_2 = 30 \\
-105 &= (1001 0111)_2
\xrightarrow{\text{negate}} (0110 1001)_2 = 105 \\
88 &= (0101 1000)_2
\xrightarrow{\text{negate}} (1010 1000)_2 = -88 \\
73 &= (0100 1001)_2
\xrightarrow{\text{negate}} (1011 0111)_2 = -73
\end{align*}
\]

In general, two \(n\)-bit numbers \(a\) and \(b\) are two’s complements of each other if they sum to \(a + b = 2^n\). The width, \(n\), of a two’s complement number can be widen by prepending 0 to positive and 1 to negative numbers. You’ll learn more about how computers represents numbers in the notes on machine numbers.

Tautology, Contradiction & Contingency

Boolean expressions can be partitioned into three categories, as shown in the diagram below.

You know, from algebra, that an equation can be:

- **Identities**: True for every assignment of its variables, for instance \(n(n - 1)\) can be partitioned,
 \[
 \frac{n(n - 1)}{2} = \frac{(n - 1)(n - 2)}{2} + (n - 1)
 \]
- **Inconsistent**: False for every assignment of its variables, for instance \(x = x + 1\)
- **Conditional**: True for some and False for assignments of its variables, for instance
 \[
 x^2 - x - 1 = 0
 \]
A Boolean expression $B(\cdot)$ can be a:

- **Tautology**: True for every possible input. An expression of this type is said to be valid. Valid statements can be freely used in proofs. When used in proofs, they are called inference rules.

Here are a few tautologies:

- True (truth)
- $p \lor \neg p$ (law of the excluded middle)
- $(p \land (p \Rightarrow q)) \Rightarrow q$ (*Modus ponens*)
- $(\neg q \land (p \Rightarrow q)) \Rightarrow \neg p$ (*Modus tollens*)
- $\neg(p \lor q) \equiv \neg p \land \neg q$ (*DeMorgan's law*)
- $\neg(p \land q) \equiv \neg p \lor \neg q$ (*DeMorgan's dual law*)

- **Contradiction**: False for every possible input. An expression of this type is said to be unsatisfiable.

When You negate a contradiction you get a tautology. For example, from above:

- False (falsity)
- $\neg p \land p$ (law of non-contradiction)
- $(\neg(p \lor q) \land (p \lor q)$ (I need a name)
- $(\neg q \land (p \Rightarrow q)) \Rightarrow \neg p$ (*I need a name*)

Tautologies are satisfiable too.

- **Contingency**: True for some assignments and False for others. An expression of this type is called a contingency. A contingency is said to be satisfiable. The question for contingencies is: When it it True (or False)?

Negating a valid Boolean expression produces a contradiction, and vice versa. Negating contingency expression produces another contingency.
Boolean algebra

The Boolean operations (¬, ∨ & ∧) form an algebra where these operations play roles similar to negation, addition, and multiplication from arithmetic. The Boolean operations obey laws analogous to those listed on page 35 in the notes on arithmetic. The major difference is that now there are two distributive laws.

<table>
<thead>
<tr>
<th>Boolean algebra properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Closure: If p and q are Boolean expressions, then</td>
</tr>
<tr>
<td>¬p is a Boolean expression</td>
</tr>
<tr>
<td>p ∨ q is a Boolean expression</td>
</tr>
<tr>
<td>p ∧ q is a Boolean expression</td>
</tr>
<tr>
<td>• Associative For all Boolean expressions p, q, and r</td>
</tr>
<tr>
<td>(p ∧ q) ∧ r = p ∧ (q ∧ r)</td>
</tr>
<tr>
<td>(p ∨ q) ∨ r = p ∨ (q ∨ r)</td>
</tr>
<tr>
<td>• Commutative: For each Boolean expression p and q</td>
</tr>
<tr>
<td>p ∧ q = q ∧ p</td>
</tr>
<tr>
<td>p ∨ q = q ∨ p</td>
</tr>
<tr>
<td>• Identity elements: There are Boolean expressions False and True such that for every Boolean expression p</td>
</tr>
<tr>
<td>p ∨ False = p</td>
</tr>
<tr>
<td>p ∧ True = p</td>
</tr>
<tr>
<td>• Inverses: Every Boolean expression p has an negation ¬p such that</td>
</tr>
<tr>
<td>p ∨ ¬p = True</td>
</tr>
<tr>
<td>p ∧ ¬p = False</td>
</tr>
<tr>
<td>• Distributive:</td>
</tr>
<tr>
<td>1. Or distributes over And</td>
</tr>
<tr>
<td>2. And distributes over Or</td>
</tr>
<tr>
<td>p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)</td>
</tr>
<tr>
<td>p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r)</td>
</tr>
</tbody>
</table>
Pass a Quiz: Boolean functions

Take a quiz on page 325 to check your understanding. You can return to here from the quiz.

Homework Questions

 hài Use your time outside of class to solve these problems.

1 Fill in the chart below.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>¬P</th>
<th>P ∧ Q</th>
<th>P ∨ Q</th>
<th>P ⇒ Q</th>
<th>P ⊕ Q</th>
<th>P ≡ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

2 Write \(p \oplus q \) using **And**, **Or**, and **Not**.

3 Write \(p \equiv q \) using **And**, **Or**, and **Not**.

4 The Boolean expression \(p \Rightarrow q \) is the **conditional** statement.

4.1 The **converse** of \(p \Rightarrow q \) is \(q \Rightarrow p \). Construct a **truth table** for the converse.

4.2 The **inverse** of \(p \Rightarrow q \) is \(\neg p \Rightarrow \neg q \). Construct a **truth table** for the inverse.

4.3 The **contrapositive** of \(p \Rightarrow q \) is \(\neg q \Rightarrow \neg p \). Construct a **truth table** for the contrapositive.

4.4 The **negation** of \(p \Rightarrow q \) is \(\neg (p \Rightarrow q) \). Construct a **truth table** for the negation.

4.5 Which, if any, of the converse, inverse, contrapositive, or negation is equivalent to the conditional \(p \Rightarrow q \)?

5 It is useful to know the number of different ways in which you can assign truth values (True or False) to Boolean variables. In how many ways can you do this for \(n \) variables? If you don’t just know, ask yourself what is the answer for small values of \(n \) and generalize.

6 What are the 16 **Boolean functions** on 2 variable. Give each a name.

7 Use the ideas outlined in the notes on the full-adder to show that the carry-out bit \(c_{\text{out}} \) can be represented by the expression

\[
c_{\text{out}} = (\neg A \land B \land c_{\text{in}}) \lor (A \land \neg B \land c_{\text{in}}) \lor (A \land B \land \neg c_{\text{in}}) \lor (A \land B \land c_{\text{in}})
\]

8 Show that you can write the carry-out function as

\[
c_{\text{out}} = (A \land B) \lor (c_{\text{in}} \land (A \oplus B))
\]

using its disjunctive normal form.
9 A half-subtractor computes the difference of two terms. It can require a borrow-in bit \(b_{in} \). The differences \(0 - 0 \) and \(1 - 1 \) are both 0, with no borrows. The difference \(1 - 0 \) is 1, with no borrow. And, the difference \(0 - 1 \) is 1, with a borrow-in of 1.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>term 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>term 2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>difference</td>
</tr>
</tbody>
</table>

Construct a truth table for the half-subtractor. What Boolean expressions compute the borrow-in and difference functions?

10 There are many useful Boolean expressions. Inference rules are always applied discrete mathematics

10.1 De Morgan’s first law: If not both \(p \) and \(q \) are True, then one of them is False, and vice versa.

\[
\neg(p \land q) \equiv \neg p \lor \neg q
\]

10.2 De Morgan’s second law: If \(p \) or \(q \) is not True, then one of \(\neg p \) or \(\neg q \) is False, and vice versa.

\[
\neg(p \lor q) \equiv \neg p \land \neg q
\]

10.3 Modus ponens: If \(p \) is True and \(p \) implies \(q \), then \(q \) is True.

\[
(p \land (p \Rightarrow q)) \Rightarrow q
\]

10.4 Modus tollens: If \(q \) is not True and \(p \) implies \(q \) is True, then \(p \) is not True.

\[
(\neg q \land (p \Rightarrow q)) \Rightarrow \neg p
\]

10.5 Contradiction: If \(\neg p \) implies \(q \) and \(\neg q \), then \(p \) is True.

\[
(\neg p \Rightarrow q) \land (\neg p \Rightarrow \neg q) \equiv p
\]

10.6 Currying: If \(p \) and \(q \) imply \(r \), then \(p \) implies that \(q \) implies \(r \), and vice versa.

\[
((p \land q) \Rightarrow r) \equiv (p \Rightarrow (q \Rightarrow r))
\]

11 I got this one from Click & Clack, the Tappit Brothers: There are three boxes, exactly one of which contains a prize. Each box has a label with a visible statement on it, and exactly one of the statements is True.
Gold box label: “The prize is in this box.”
Lead box label: “The prize is not in the gold box.”
Silver box label: “The prize is not in this box.”

Which box contains the prize?

12 Three logicians walk into a bar. The barkeep asks: Would each of you like a beer? The first logician says “I don’t know.” The second logician also says “I don’t know.” The third logician says “Yes, we would.” How did the third logician know how to answer the question?

13 Complex computer circuits can be build from three basic gate types, called And, Or, and Not, and drawn as illustrated below.

\[
P \land Q \quad \text{And Gate}
\]
\[
P \lor Q \quad \text{Or Gate}
\]
\[
\neg P \quad \text{Not Gate}
\]

The inputs \(p \) and \(q \) are high (1) or low (0) voltages. Computer engineers are expected to understand how these simple gates can be combined to create complex functions.

13.1 Draw a half-adder gate diagram.
13.2 Draw a full-adder gate diagram.
13.3 Draw a gate diagram for the conditional statement.

14 This problem comes from To Mock a Mockingbird (Smullyan, 1985).
Let’s play a game. I have two prizes \(A \) and \(B \). If you tell me a True statement I will give you one of the prizes, but I won’t say which one. If you tell me a False statement I won’t give you either prize.

What statement can you make that guarantees I will give you prize \(A \)?

15 To explain Gödel’s incompleteness theorem, Smullyan develops many puzzles set on the Island of Knights and Knaves, where everyone is either a knight or a knave. Knights only make True statements, while knaves always lie.

Here’s a basic puzzle:

The setup: There are two clubs on the island: Provable and Unprovable. A knight may belong to either club. A knight can say True things than can be proven or the knight can say True things that have no proof. Knaves cannot be members of either club.

The puzzle: When you visit the island you meet a random islander whose greeting statement allows you to deduce she is a member of Provable. What statement could she have made?

16 When you die some of you will be confronted by a riddle and your fate will determine on your answer: You will either go to Heaven or Hell.
Saint Peter guard’s Heaven’s gates and Cerberus guards Hell, but you won’t know who is who because they will be in disguise. Saint Peter always tells the truth and Cerberus always lies.

You can ask them one question and their answer should help you decide which gate leads to Heaven and which is the gateway to Hell. What question do you ask?
3. *Sets: For collections*

In other words, general set theory is pretty trivial stuff really, but, if you want to be a mathematician, you need some and here it is; read it, absorb it, and forget it.

Paul Halmos

Later mathematicians will regard set theory as a disease from which one has recovered.

Henri Poincaré

Naive Set Theory

A set is an unordered collection of distinct objects. The objects in a set X are called elements or members of X. No element is duplicated in a set; a member of a set is listed once and only once. The order in which the elements are listed does not matter.

A finite set can be described by listing its members in a comma separated list enclosed in curly braces $. For instance,

- The bits $\mathbb{B} = \{0, 1\}$
- The octits $\mathbb{O} = \{0, 1, 2, 3, 4, 5, 6, 7\}$
- The digits $\mathbb{D} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- The hexits $\mathbb{H} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$
- The modular integers $\mathbb{Z}_m = \{0, 1, 2, \ldots, (m - 1)\}$

Simple infinite sets can be described by a clear recurring pattern. For instance,

- The natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$
- The integers $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$

A set X can be described by set comprehension. For instance,

$\mathbb{B} = \{b : b \text{ is a bit}\}$ or $\text{EVEN} = \{2n : n \in \mathbb{Z}\}$
That is, X can be comprehended by a predicate:

$$X = \{ x : p(x) \text{ is True} \}$$

where $p(x)$ is a predicate about variable x. More generally, X can be comprehended by a function where a predicate is satisfied.

$$X = \{ f(x) : p(x) \text{ is True} \}$$

There are two special sets:

1. The empty set \emptyset: The set with no elements, also written $\{\}$.
2. The universal set U: When context demands, the set of all possible things, called the universal set, can be described and named. It is also useful for the universal set to be computable. That is, it is good to have an algorithm that decides if a given thing x is or is not in the universal set U. But, for instance, the set of real numbers in not computable.

Venn & Euler diagrams

Sets can be visualized by Venn and Euler diagrams. For instance, the universal set U can be drawn as a shaded square. The empty set \emptyset is then an empty square.

Draw a single circle as set X inside a square to separate the universal set U into two region: Inside and outside of X. Shade inside the circle to indicate X. Shade outside the circle to indicate the set complement of X.

Two sets X and Y can be drawn in several relationships: Euler diagrams illustrate these.

The unit interval

$$[0, 1] = \{ x : 0 \leq x \leq 1 \}$$

The unit circle

$$\{(x, y) : x^2 + y^2 = 1 \}$$

In computing practice, set comprehension requires the function $f(x)$ and predicate $p(x)$ to be computable. That is, there must be an algorithm that computes $f(x)$ and another algorithm that returns True only when $p(x)$ is True.

The most common universal set in these notes is \mathbb{N}, the set of natural numbers

$$U = \mathbb{N} = \{ 0, 1, 2, 3, 4, 5 \ldots \}$$

See the Google doodle celebrating John Venn’s 180th birthday.
The characteristic function

It is useful to have a function that correctly answers the question: Is \(x \) an element of \(A \)?

Definition 4: Characteristic Function

The characteristic function of \(A \) is denoted \(\chi(x, A) \) and computed by the conditional statement

\[
\chi(x, A) = \begin{cases}
\text{False} & \text{if } x \notin A \\
\text{True} & \text{if } x \in A
\end{cases}
\]

When \(X \) and \(Y \) **intersect**, some element \(x \) is in both \(X \) and \(Y \),

\[
(\exists x)(\chi(x, X) \land \chi(x, Y) = \text{True})
\]

Definition 5: Intersecting sets

Let \(X \) and \(Y \) be sets. \(X \) and \(Y \) **intersect** if some element \(x \) is in both \(X \) and \(Y \).

\[
(\exists x \in U)((x \in X) \land (x \in Y))
\]

When \(X \) and \(Y \) are **disjoint**, the values \(\chi(x, X) \) and \(\chi(x, Y) \) cannot both be True simultaneously. That is,

\[
(\forall x)(\chi(x, X) \land \chi(x, Y) = \text{False})
\]

Definition 6: Disjoint sets

Let \(X \) and \(Y \) be sets. \(X \) and \(Y \) are **disjoint** if no element \(x \) is in both \(X \) and \(Y \).

\[
(\forall x \in U)((x \in X) \land (x \in Y) = \text{False})
\]

And, when \(X \) is a **subset** of \(Y \), every element in \(X \) also belongs to \(Y \). That is,

\[
(\forall x)((\chi(x, X) = \text{True}) \Rightarrow (\chi(x, Y) = \text{True}))
\]

Or, rewriting the conditional as a disjunction

\[
(\forall x)((\chi(x, X) = \text{False}) \lor (\chi(x, Y) = \text{True}))
\]
Definition 7: Subset

Let X and Y be sets. X is a subset of Y if every element in X is also in Y.

\[(\forall x \in X)((x \in X) \Rightarrow (x \in Y))\]

Pass a Quiz: Basics set concepts

Take a quiz on page 326 to check your understanding. You can return to here from the quiz.

Set operations

There are three fundamental operations that can be applied to sets. They are: set complement, intersection and union. They map sets to other sets. These operations can be defined in terms of the Boolean predicate $x \in X$ which is either True or False.

1. **Set complement** (similar to Boolean NOT)

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \in X$</td>
<td>$x \in \neg X$</td>
<td></td>
</tr>
</tbody>
</table>

| 0 | 0 |
| 1 | 1 |

\[
\neg X = U - X
\]

2. **Intersection** (similar to Boolean AND)

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \in X$</td>
<td>$x \in Y$</td>
<td>$x \in X \cap Y$</td>
</tr>
</tbody>
</table>

| 0 | 0 |
| 1 | 1 |

\[
x \in X \cap Y \text{ is True only when } x \in X \text{ and } x \in Y \text{ are both True.}
\]

3. **Union** (similar to Boolean OR)
3. **Sets**: For Collections

Set Union \((X, Y) \mapsto (X \cup Y)\)

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \in X \quad x \in Y)</td>
<td>(x \in X \cup Y)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\[x \in X \cup Y \text{ when } x \in X \text{ or } x \in Y. \]

The set operations \((-\text{, } \cup \text{, } \& \text{, } \cap\) form an algebra where these operations obey exactly the same rules as \(\text{Not, And, and Or}\) in Boolean logic. The set operation laws are the same to those listed on page 66 in the notes on logic operations.

Boolean algebra properties for sets

- **Closure**: If \(X\) and \(Y\) are sets, then

 - \(-X\) is a set
 - \(X \cap Y\) is a set
 - \(X \cup Y\) is a set

- **Associative**: For all sets \(X\), \(Y\), and \(V\)

 \[(X \cap Y) \cap V = X \cap (Y \cap V)\]
 \[(X \cup Y) \cup V = X \cup (Y \cup V)\]

- **Commutative**: For each set \(X\) and \(Y\)

 \[X \cap Y = Y \cap X\]
 \[X \cup Y = Y \cup X\]

- **Identity elements**: There are sets \(\emptyset\) and \(U\) such that for every set \(X\)

 \[X \cup \emptyset = X\]
 \[X \cap U = X\]

- **Inverses**: Every set \(X\) has an set complement \(-X\) such that

 \[X \cup -X = U\]
 \[X \cap -X = \emptyset\]
• Distributive:
 1. Union distributes over Intersect
 2. Intersect distributes over Union

\[
X \cup (Y \cap V) = (X \cup Y) \cap (X \cup V) \\
X \cap (Y \cup V) = (X \cap Y) \cup (X \cap V)
\]

Pass a Quiz: Set operations

Take a quiz on page 327 to check your understanding. You can return to here from the quiz.

Counting set expressions

Counting set expressions is similar to counting Boolean expressions.

<table>
<thead>
<tr>
<th>Counting Boolean and set expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean variables</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Draw two intersecting subsets, call them \(X \) and \(Y \), as circles inside the universal set \(U \). There are 4 regions that can be identified. Name the four regions in a Venn diagram: \(a \), \(b \), \(c \) and \(d \). These regions can be expressed as intersections of \(X \) and \(Y \) or their complements.

Partition: \{a, b, c, d\}

<table>
<thead>
<tr>
<th>Region</th>
<th>Set expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(\neg X \cap \neg Y)</td>
</tr>
<tr>
<td>(b)</td>
<td>(\neg X \cap Y)</td>
</tr>
<tr>
<td>(c)</td>
<td>(X \cap \neg Y)</td>
</tr>
<tr>
<td>(d)</td>
<td>(X \cap Y)</td>
</tr>
</tbody>
</table>

There are \(16 = 2^4 = 2^2 \) ways to shade or not shade these regions.
• Choose to shade none of them; representing the empty set ∅.

• Choose to shade only one of them: There are four to do this.

• Choose to shade exactly two of them: There are six ways to do this.

• Choose to shade exactly three of them: This is equivalent to choosing one not to shade, so there are four ways to choose three from four.

• Choose to shade all of them; representing the universal set \(U \).

These cases are diagrammed below. Notice the four basic regions (expressions)

\[-X \cap \neg Y, \quad \neg X \cap Y, \quad X \cap \neg Y, \quad X \cap Y\]

are used when shading, or not shade, the diagrams.
The numbers 1, 4, 6, 4, 1 are binomial coefficients from row 4 in Pascal’s triangle

\[\langle 1, 4, 6, 4, 1 \rangle = \binom{4}{0}, \binom{4}{1}, \binom{4}{2}, \binom{4}{3}, \binom{4}{4} \]
Theorem 3: Counting Set expressions

Given \(n \) sets there are \(2^{2^n} \) different set expressions can be formed.

Proof: Counting Set expressions (sketch)

For 1 set: The two basic expressions \(X \) and \(\neg X \) partition the universal set \(U \).

For 2 sets: The 4 basic expressions

\[\{ \neg X \cap \neg Y, \neg X \cap Y, X \cap \neg Y, X \cap Y \} \]

partition the universal set \(U \)

Introduce a new set \(V \). There will be 8 basic expressions that partition the universal set \(U \): Four when \(V \) intersects \(X \) and \(Y \)'s basis expressions, plus four when \(\neg V \) does.

Create complex expressions by taking unions of the basic expressions. For the three set case, there are 8 basic expressions. To make a complex expression you can choose none of them, just 1, or 2, or 3, all the way up to all 8 of them.

Let the symbols

\[\binom{8}{0}, \binom{8}{1}, \binom{8}{2}, \binom{8}{3}, \binom{8}{4}, \binom{8}{5}, \binom{8}{6}, \binom{8}{7}, \binom{8}{8} \]

Stand for the numbers of ways to choose none, 1, 2, 3, \ldots 8 basic expressions from the set of 8 basic expressions over \(X, Y, \) and \(V \). The sum of these (binomial coefficients) numbers is the total number of set expressions over 3 sets.

In the notes on counting subsets you will set that

\[\binom{8}{0} + \binom{8}{1} + \binom{8}{2} + \binom{8}{3} + \binom{8}{4} + \binom{8}{5} + \binom{8}{6} + \binom{8}{7} + \binom{8}{8} = 2^8 = 2^{2^3} \]

To complete the proof, you’d note that every time a new variable is introduced, the number of basic expressions doubles. At stage \(n \) there are \(2^n \) basic expressions. To create a complex expression, you can union any combination of the basic expressions.

To count the total number of set expressions, you need to know

\[\sum_{k=0}^{2^n} \binom{2^n}{k} = \binom{2^n}{0} + \binom{2^n}{1} + \cdots + \binom{2^n}{2^n} = 2^{2^n} \]

And that link will be made in the notes on counting subsets.
Pass a Quiz: Venn diagrams

Take a quiz on page 328 to check your understanding. You can return to here from the quiz.

Homework Questions

Use your time outside of class to solve these problems.

1 Which of the following propositions are True and which are False.

1.1 \(0 \in \mathbb{D} \)

1.2 \((0 \in \mathbb{B}) \land (0 \in \mathbb{D}) \)

1.3 \(2 \in \mathbb{B} \)

1.4 \(-7 < \mathbb{Z} \)

1.5 \(e \notin \mathbb{Q}, \text{ Euler's number} \approx 2.718 \cdots \)

1.6 \(\pi \in \mathbb{R}, \text{ pi} \approx 3.1415 \cdots \)

1.7 \(\pi \in \mathbb{D} \)

1.8 \(\gamma \in \mathbb{Q}, \text{ Euler's constant} \gamma \approx 0.5772 \cdots \)

2 Let \(\text{EVEN} = \{0, 2, 4, 6, 8\}, \text{ODD} = \{1, 3, 5, 7, 9\} \) and \(\text{PRIME} = \{2, 3, 5, 7\} \) be the even, odd and prime digits. Compute the following set operations over the universe of digits \(\mathbb{U} = \mathbb{D} = \{0, 1, \ldots, 8, 9\} \).

2.1 \(\neg \text{EVEN} \)

2.2 \(\neg \text{ODD} \)

2.3 \(\neg \text{PRIME} \)

2.4 \(\text{ODD} \cup \text{PRIME} \)

2.5 \(\text{EVEN} \cup \text{PRIME} \)

2.6 \(\text{EVEN} \cup \text{ODD} \)

2.7 \(\text{ODD} \cap \text{PRIME} \)

2.8 \(\text{EVEN} \cap \text{PRIME} \)

2.9 \(\text{EVEN} \cap \text{ODD} \)

2.10 \(\text{ODD} \cap \neg \text{PRIME} \)

3 How many different set expressions can be formed from three sets \(X, Y, \) and \(V \) by using union, intersection, and set complement operations?

4 How many different set expressions can be formed from four sets \(X, Y, V, \) and \(W \) by using union, intersection, and set complement operations?

5 Answer the following True or False questions. Explain your answers.

5.1 \(\emptyset = \{\emptyset\} \)

5.2 \(\emptyset \in \{\emptyset\} \)

5.3 \(\emptyset \subseteq \emptyset \)

5.4 \(X \notin (X \cup Y) \)

5.5 \(X \cap Y \subseteq X \)

6 Prime, odd, and triangular numbers are interesting subsets of the natural numbers \(\mathbb{N} \).

- Prime numbers have exactly two divisors. The prime digits are \(\mathbb{P} = \{2, 3, 5, 7\} \).
• **Odd** numbers have the form $2n + 1$ for $n \in \mathbb{N}$. The odd digits are
 \[O = \{1, 3, 5, 7, 9\}. \]

• **Triangular** numbers have the form $n(n-1)/2$ for $n \in \mathbb{N}$. The triangular digits are
 \[T = \{0, 1, 3, 6\}. \]

6.1 Fill in the Venn diagram below using the elements P, O and T.

7 Shade the region $(P \cap O) \cup T$.

8 Composite, even, and Fibonacci numbers are interesting subsets of the natural numbers \mathbb{N}.

• **Composite** numbers are greater than 0 and have more than two divisors. The composite digits are
 \[C = \{4, 6, 8, 9\}. \]
- Even numbers have the form $2n$ for $n \in \mathbb{N}$. The even digits are
 \[E = \{0, 2, 4, 6, 8\}. \]

- Fibonacci numbers are a little more difficult to explain, but the Fibonacci digits are
 \[F = \{0, 1, 2, 3, 5, 8\}. \]

8.1 Fill in the Venn diagram below using the elements C, E and F.

![Venn diagram with elements C, E, and F]

8.2 Shade the region $(C \cup E) \cap F$.

![Shaded region $(C \cup E) \cap F$]

9 This problem comes from a logic puzzle attributed to Lewis Carroll.

- Let the universal set U be the set of all my children.
- Let F be my fat children and let T be my thin children.
- Let D be my daughters and let S be my sons.
- Let H be my healthy children, let E be my children who exercise, and let G be my children who are gluttons.
Using these sets and set notation (\subseteq, \neg, \cap, \cup, \emptyset, ...) draw diagrams to express Carroll’s statements.

9.1 “All my sons are slim (thin)”.
9.2 “No child of mine is healthy who takes no exercise.”
9.3 “All gluttons, who are children of mine, are fat.”
9.4 “No daughter of mine takes any exercise.”
4. Logic: To control

Control structures

The Böhm-Jacopini theorem states only three fundamental control structures are necessary to implement any Turing algorithm. They are: sequence, selection and iteration.

Sequence

Execute instructions sequentially one after another as shown in figure 3. A sequence of instructions needs little control: Simply add 1 to the program counter and execute the instruction found at the new address.

Selection

Select one of two instructions to execute. The decision is based on the value of a Boolean variable as in figure 4.

If-then is a simple selection statement: It selects to execute an instruction or it simply responds True. If-then can be expressed using Boolean logic.

\[\text{If } p, \text{ then } q \quad \text{is equivalent to} \quad \neg p \lor q \]

- When \(p = \text{True} \), statement \(q \) will be evaluated. In this case, the value of \(q \) is the value of the implication if \(p, \text{ then } q \).

\[\text{If True, then } q \quad \text{is equivalent to} \quad q \]

- When \(p = \text{False} \), statement \(q \) need not be evaluated. In this case, the value of if \(p, \text{ then } q \) is simply True.

\[\text{If False, then } q \quad \text{is equivalent to} \quad \text{True} \]

If-then-else is a complete selection statement. It describes what statement to execute when \(p \) is True and what alternative statement to execute when \(p \) is False.

\[\text{If } p, \text{ then } q, \text{ else } r \quad \text{is equivalent to} \quad (p \land q) \lor (\neg p \land r) \]
If-then-else can be implemented using the logic shown in The truth table below

<table>
<thead>
<tr>
<th>Row</th>
<th>p</th>
<th>q</th>
<th>r</th>
<th>(p \Rightarrow q) \land (\neg p \Rightarrow r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\((\neg p \lor q) \land (p \lor r)\)

Predicates

Predicates are expressions that return True or False when evaluated. The returned value is predicated on the value(s) of the input variable(s). Some instances of predicates are:

- \((n = 0)\) is True or False depending on the value of \(n\).
- \((n < m)\) is True or False depending on the values of \(n\) and \(m\).
- \((\text{isPrime}(n))\) is True or False depending on whether or not \(n\) is a prime number.

Predicates are defined over a universal set \(U\). In applications, the universe of values may be very complex, but here we can assume the values over which the predicate is tested are stored in a computable list \(\vec{A}\) or computable set \(A\).

Iteration

Iteration loops through a sequence of instructions until some Boolean value changes as shown in figure 5. Iteration steps (loops) through predicate evaluations until one becomes False (or True). Two common programming control structures that implement iteration are for and while loops.

Pass a Quiz: Basic predicate logic

Take a quiz on page 328 to check your understanding. You can return to here from the quiz.

It is useful to recognize when you do not have sufficient information to determine whether or not a predicate is True. For instance, the predicate (equation) \(p(x, y) \equiv x^2 + y^2 = 1\) remains undecidable until you bind values to \(x\) and \(y\). Once given values, you can compute if \((x, y)\) is on the unit circle or not. On the other hand, there are some easy to understand predicates that just cannot be decided. And some where we cannot decide if we can decide.
Summation

A **for** loop could be used to sum the values stored in an array

\[a[k], \ k = 0, 1, \ldots, (n-1), \quad A = (a_0, a_1, \ldots, a_{n-1}) \]

A `sum()` function that totals the values in a list, when implemented in C might look like this:

```c
int sum(int a[], int n) {
    int total = 0;
    for (int k = 0; k < n; k++) {
        total = total + a[k];
    }
    return total;
}
```

This code logic can be interpreted as the quantified expression

\[(\forall k \in \mathbb{Z}_n)((s(-1) = 0) \land (s(k) = s(k-1) + a[k])) \]

Linear search

A **for** loop could also be used to search list \(\vec{a} \) for a value \(x \).

```c
bool search(int x, int a[], int n) {
    for (int k = 0; k < n; k++) {
        if (x == a[k]) {return true;}
    }
    return false;
}
```

Recursion can be used to implement search. For instance, in Haskell, you could define

```hs
search :: (Eq x) => ([x] -> Maybe
search _ [] = \Nothing -- nothing can be found in an empty list
search x (y:ys) = if x == y then Just x else search x ys
```

which can be written in mathematical notation as

\[s(x, \mathbb{Y}) = (\exists y \in \mathbb{Y})(x = y) \]

Greatest common divisor

You could use a **while** loop to compute the **greatest common divisor** of natural numbers \(n \leq m \).

```c
int gcd(unsigned m, unsigned a) { // assert \( 0 \leq m \leq a \\
while (a != 0) {
    r = a % m; // a = m * floor(a/m) + r = m * q + r, \ 0 \leq r < m
    a = m; // reduce the size of a 
    m = r; // reduce the size of m
}
}
```

The above `gcd` algorithm terminates because the magnitude of \(n \) decreases with each iteration. Therefore, the terminating condition \(n = 0 \) will be reached.
Collatz’s conjecture

A sequence
\[\vec{C} = \langle c_0, c_1, c_2, \ldots \rangle \]
is called Collatz if it is defined by the algorithm described below.

- Let \(c_0 > 1 \) be a natural number, called the seed.
- Define successive terms \(c_n \) for \(n > 0 \) by two cases:
 \[c_n = \begin{cases}
 3c_{n-1} + 1 & \text{if } c_{n-1} \text{ is odd} \\
 \frac{c_{n-1}}{2} & \text{if } c_{n-1} \text{ is even}
 \end{cases} \]

 For instance, the Collatz sequence with seed \(c_0 = 7 \) is
 \[\langle 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 \rangle \]

The Haskell code below can be used to construct a Collatz sequence.

```haskell
Collatz :: Integer -> Integer
Collatz 1 = []
Collatz n |
  odd n = 3\times n + 1 : Collatz (3\times n + 1)
  | even n = n \div 2 : Collatz (n \div 2)
```

The Collatz conjecture states:

Conjecture 1: The Collatz conjecture

For every seed \(c_0 > 1 \), the Collatz sequence halts for some finite \(n \) with \(c_n = 1 \).

You can write this conjecture using predicate notation. It is helpful to use function \(c_n = \text{collatz}(c_{n-1}) \) that returns the next Collatz number. The Collatz conjecture is

\[(\forall c_0 > 1)(\exists n > 0)(\text{collatz}(c_n) = 1) \]

Quantification

Predicate logic reasons over collections of things. This contrasts with Boolean logic, which reasons over a single instance. Predicate logic adds two quantifiers to propositional logic. The quantifiers are something and everything. Predicate statements are written using the templates:

- **Some** thing satisfies a property (the predicate)
- **Every** thing satisfies a property (the predicate)

Not something is nothing. Not everything is something or nothing.

Of course, if a property is True for all values of its variable, then it is True for some value of its variable.

\[(\forall x)(p(x)) \Rightarrow (\exists x)(p(x)) \]
For instance, you know there is some real number \(x \) that satisfies the equation
\[
x^2 - x - 1 = 0
\]
On the other hand, you know every real number \(x \) satisfies the equation
\[
x + 0 = x
\]
And, there are no real numbers \(x \) that satisfy the equation
\[
x^2 + x + 1 = 0
\]
Mathematicians use standard symbols for these and similar phrases.

\(\exists \) is read: For some, there exists, there is a least one, or like phrases. For some is an existential quantifier: It can be used to state a predicate is sometimes True or sometimes False.

\(\forall \) is read: For all, for every, for each, or like phrases. For all is a universal quantifier: It can be used to state a predicate is always True or never True.

Quantifiers modify a predicate: a statement that may be True or may be False depending of the values bound to variables in the statement.

Predicates arise in computing as expressions over collections of values that control the flow of a program. Predicates state relations between functions, variables, constants, things in general. For instance,

- “Point \((x, y)\) lies on the line determined by parameters \(a, b,\) and \(c\)” can be written
 \[
a x + by = c
 \]
 and named \(l(x, y, a, b, c) \).

- “Integers \(a\) and \(b\) are congruent mod \(m\)” can be written
 \[
a - b = cm
 \]
 and named \(m(a, b, m, c) \).

Some people use the symbol \(\exists \) to say “there is one and only one,” that is, the thing that satisfies the predicate unique.

Statements in predicate logic have forms such as

- All \(S \) are \(T \) \((S \subseteq T)\)
- No \(S \) are \(T \) \((S \cap T = \emptyset)\)
- Some \(S \) are \(T \) \((S \cap T \neq \emptyset)\)
- Some \(S \) are not \(T \) \((S \not\subseteq T)\)

Consider the line predicate \(l(x, y, a, b, c) \)
Fix the parameters: \(a = 2, b = 3 \) and \(c = 7 \) so the equation is
\[
2x + 3y = 7
\]
For the point \((x, y) = (2, 1)\) the predicate is True, but for \((x, y) = (1, 5)\) the predicate is False.

You know some functions.

- Constant functions: \(y = f(x) = c \), for instance \(y = 7 \)
- Linear functions: \(y = f(x) = mx + b \), for instance \(y = 3x + 2 \)
- Quadratic functions: \(y = f(x) = ax^2 + bx + c \), for instance \(y = x^2 - x - 1 \)
- Exponential functions: \(y = f(x) = b^x \), for instance \(y = 2^x \)
- Logarithmic functions: \(y = f(x) \)

There are, in fact, two solutions. The golden ratio \(\varphi = (1 + \sqrt{5})/2 \) and its conjugate \(\overline{\varphi} = (1 - \sqrt{5})/2 \).
“Function f maps different input x_0 and x_1 to different output values” can be written

$$(\forall x_0, x_1)((x_0 \neq x_1) \Rightarrow (f(x_0) \neq f(x_1)))$$

and named $\text{OneToOne}(f)$.

Describing the set of values where a predicate is True (or False) leads to useful definitions, theorems, and concepts.

Interchanging (commuting) quantifiers

One way to visualize the meaning of multiple quantifiers is through the use of graphs. It looks like there 8 combinations of $(\forall x)$, $(\exists x)$, $(\forall y)$, and $(\exists y)$, see the decision tree below.

However, some of these orders produce equivalent results. In fact, there are only 6 different ways to write pairs of these quantifiers.

- $(\forall x)(\forall y)$ commute:

 If predicate $p(x, y)$ is True for every x and for every y, then it is True for every y and for every x.

 $$(\forall x)(\forall y) \equiv (\forall y)(\forall x)$$

 The graph below shows this equivalence.

 For all x’s, for all y’s
 $$(\forall x)(\forall y) \equiv (\forall y)(\forall x)$$
• $(\exists x)(\exists y)$ commute:

If predicate $p(x, y)$ is True for some x and for some y, then it is True for some y and for some x.

$$(\exists x)(\exists y) \equiv (\exists y)(\exists x)$$

The graph below gives a minimal example of this equivalence.

![Graph](image)

There exists an x, there exists a y

$(\exists x)(\exists y)$

• $(\forall x)(\exists y)$ do not commute:

If a predicate $p(x, y)$ is True for all x’s and for some y, then it may not be True for some y and all x’s.

$$(\forall x)(\exists y) \not\equiv (\exists y)(\forall x)$$

The graph below shows these orders of quantifiers are not, in general, equivalent.

$(\forall x)(\exists y)$ allows the value of y to change depending on x.

$(\exists y)(\forall x)$ forces y to be the same for all values of x.

In the uncommon case, when there is only one value of y (the graph cannot wiggle), then the two expressions are the same.
For all x’s, there exists a y

$(\forall x)(\exists y)$

There exists a y, for all x’s

$(\exists y)(\forall x)$

- $(\forall y)(\exists x)$ do not commute:
 - If a predicate $p(x, y)$ is True for all y’s and for some x, then it may not be True for some x and all y’s.

$(\forall y)(\exists x) \neq (\exists x)(\forall y)$

The graph below shows these orders of quantifiers are not, in general, equivalent.

- $(\forall y)(\exists x)$ allows the value of x to change depending on y.
- $(\exists x)(\forall y)$ forces x to be the same for all values of y.

For every y, there is an x

$(\forall y)(\exists x)$

There is an x for every y

$(\exists x)(\forall y)$

In the uncommon case, when there is only one value of x (the graph cannot wiggle), then the two expressions are the same.

Pass a Quiz: Predicates: Logic for control

Take a quiz on page 329 to check your understanding. You can return to here from the quiz.

Homework Questions

- Use your time outside of class to solve these problems.

1. Rewrite the following expressions by distributing NOT over the quantifier.

These “distribute not across . . . ” exercises are De Morgan-like laws for first-order (predicate) logic.
1.1 \(\neg (\forall x)(p(x)) \),
1.2 \(\neg (\exists x)(p(x)) \),
1.3 \(\neg (\forall x)(\exists y)(p(x, y)) \),
1.4 \(\neg (\exists x)(\exists y)(p(x, y)) \),
1.5 \(\neg (\exists x)(\forall y)(p(x, y)) \).

2. How do \(\forall \) and \(\exists \) commute? That is, which of the equivalences below are True and which are False?

2.1 \((\forall x)(\forall y)(p(x, y)) \equiv (\forall y)(\forall x)(p(x, y)) \)
2.2 \((\exists x)(\forall y)(p(x, y)) \equiv (\forall y)(\exists x)(p(x, y)) \)
2.3 \((\exists x)(\exists y)(p(x, y)) \equiv (\exists y)(\exists x)(p(x, y)) \)
2.4 \((\forall x)(\exists y)(p(x, y)) \equiv (\exists y)(\forall x)(p(x, y)) \)

3. Explain what the statements below says about the function \(f : \mathbb{X} \rightarrow \mathbb{Y} \).

3.1 \((\forall x \in \mathbb{X})(\forall y_0, y_1 \in \mathbb{Y})((f(x) = y_0) \land (f(x) = y_1) \Rightarrow (y_0 = y_1)) \)
3.2 \((\forall y \in \mathbb{Y})(\exists x \in \mathbb{X})(f(x) = y) \)
3.3 \((\forall x_0, x_1 \in \mathbb{X})((x_0 \neq x_1) \Rightarrow (f(x_0) \neq f(x_1))) \)
3.4 \((|\mathbb{X}| > |\mathbb{Y}|) \Rightarrow (\exists x_0, x_1 \in \mathbb{X})((x_0 \neq x_1) \land (f(x_0) = f(x_1))) \)

4. Let canfool\((p, t)\) be the proposition

“You can fool person \(p \) at time \(t \).”

Use quantifiers \((\forall, \exists) \) over the set of persons \(\mathbb{P} \) and the set of time \(\mathbb{T} \) to write the following sentences using the canfool\((p, t)\) predicate.

4.1 You can fool some of the people all of the time.
4.2 You can fool all of the people some of the time.
4.3 You cannot fool all of the people all the time.
4.4 Name your answers to parts 4.1, 4.2 and 4.3 \(p_a, p_b, \) and \(p_c \) to write the famous quotation attributed to Abraham Lincoln.

You can fool all of the people some of the time, and some of the people all the time, but you cannot fool all of the people all the time.

5. Let \(\mathbb{F} = \{f : \mathbb{N} \rightarrow \mathbb{N}\} \) be the set of functions mapping the natural numbers to the natural numbers. Given a function \(f \in \mathbb{F} \), big Oh of \(f \), written \(O(f) \), is the set of functions \(g \in \mathbb{F} \) such that \(g(n) \) is less than or equal to \(c \cdot f(n) \) for some constant \(c > 0 \) and for all \(n \) greater than some natural number \(\mathbb{N} \).

Using the notation of predicate logic, write a statement that describes when \(g \in O(f) \)

6. Fermat’s last theorem states: If \(n \geq 3 \), then there are no positive integer \(x, y, z \) that solve the equation

\[
x^n + y^n = z^n
\]

Write Fermat’s last theorem using the language of predicates and quantifiers.

Commutative-like laws are also basic: Some systems obey them, others don’t. Those systems that have commutative laws are called Abelian. It is useful to know how \(\forall \) and \(\exists \) commute or don’t commute.

I found the canfool\((p, t)\) problem in Chris-tos Papadimitriou’s book on computational complexity (Papadimitriou, 1994)
Goldbach Conjectures

7 The **Goldbach’s conjecture** comes from noticing the pattern:

\[
\begin{align*}
4 &= 2 + 2 \\
6 &= 3 + 3 \\
8 &= 3 + 5 \\
10 &= 5 + 5 \\
12 &= 5 + 7 \\
14 &= 7 + 7 \\
16 &= 5 + 11 \\
18 &= 5 + 13 \\
20 &= 7 + 13 \\
\end{align*}
\]

It appears that every even integer greater than 2 can be written as the sum of two **prime** numbers.

Conjecture 2: Goldbach’s conjecture

Every even integer greater than 2 can be written as the sum of two prime numbers.

Write Goldbach’s conjecture using the notation of predicate logic.

8 The **Twin prime** conjecture comes from the pattern

\[
\begin{align*}
(3, 5) &= (5, 7) &= (11, 13) \\
(17, 19) &= (29, 31) &= (41, 43) \\
(59, 61) &= (71, 73) &= (101, 103) \\
\end{align*}
\]

It appears there is a never-ending list of “twin primes:” Pairs \((p, q)\) where both \(p\) and \(q\) are prime numbers and \(q = p + 2\).

Conjecture 3: Twin prime conjecture

There are infinitely many prime numbers \(p\) such that \(p + 2\) is also prime.

Write the Twin prime using the notation of predicate logic.

9 What is the **Collatz** sequence for the seed \(c_0 = 2\)?

10 What is the **Collatz** sequence for the seed \(c_0 = 13\)?
11 Use mathematical notation to write the predicate “The weak can never forgive,” that is attributed to Mahatma Ghandi.

12 The statements below come from Lewis Carroll (Carroll, 1958). For each statement, write a quantified predicate statement.

12.1 No Frenchmen like plum pudding.
12.2 All Englishmen like plum pudding.
12.3 Some thin persons are not cheerful.
12.4 All pigs are fat.
12.5 Some lessons are difficult.
12.6 All clever people are popular.
12.7 Some healthy people are fat.

13 Let \(p(x) \) be the statement \(x^2 = x + 1 \). What is the truth value of the following statements.

13.1 \(p(0) \)
13.2 \(p((1 + \sqrt{5})/2) \)
13.3 \((\forall x)(p(x)) \)
13.4 \((\forall x)(\neg p(x)) \)
13.5 \((\exists x)(p(x)) \)
13.6 \((\exists x)(\neg p(x)) \)

14 Write the Abel-Ruffini theorem using the notation of predicate logic.

Theorem 4: Abel-Ruffini

There is no single formula for the roots of a fifth (or higher) degree polynomial in terms of its coefficients, using only the usual algebraic operations (addition, subtraction, multiplication, division) and application of radicals (square roots, cube roots, etc).

15 Formal methods rely on a few basic concepts.

- A **pre-condition** is a predicate known to be True before a function (program, code segment, machine, network, exchange, ...) executes.
- A **post-condition** is a predicate that can be proven to be True after completion of a function (program, ...), provided the pre-condition was True.
- An **invariant** is a condition that remains True before and after an algorithm structure (a loop, a recursive call, a subroutine). Invariants are used to prove post-conditions given the pre-conditions.

What are the pre-and-post-conditions for the following functions?

15.1 Sort
15.2 Linear search
15.3 Binary search

If you were to construct these functions, what invariants would you use?
5. **Sudoku**: A case study in logic

Introduction

The purpose of this note is to demonstrate logic can be used to solve problems. The *Sudoku* game ([Wikipedia, 2014](https://en.wikipedia.org/wiki/Sudoku)) is used as an example. Ideas for the node come from Peter Norvig’s excellent description of how to solve Sudoku puzzles.

The Board

Sudoku is played on board divided into a 9×9 grid of cells.

The grid is divided into nine 3×3 regions. When the game starts some cells have been given initial values, as in the figure below.

These notes are meant to show the use of predicate calculus to express a problem and its solution. A lot of work is needed to complete it.

Peter Norvig is Director of Research at Google. His humorous powerpoint presentation of Lincoln’s Gettysburg Address is worth a look.

The Goal and Rules of Sudoku

The goal of Sudoku is to fill each cell with a single-digit, positive integer according to the following rules.

Row Rule: A digit appears once and only once in each row. An alternative, stronger description is:

Each row in a correctly solved puzzle is filled with a permutation of the digits in D^+.

Column Rule: A digit appears once and only once in each column.

Each column in a correctly solved puzzle is filled with a permutation of the digits in D^+.

Region Rule: A digit appears once and only once in each region.

Each region in a correctly solved puzzle is filled with a permutation of the digits in D^+.

Since all the rules have the same form, they can be represented by a single common rule:

Rule: Each unit in a correctly solved puzzle is filled with a permutation of D^+.

$D^+ = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
Each cell \(c = (i, j) \) belongs to three units:

1. Row \(R(i) = \{(i, j) : j = 1, 2, \ldots, 9\} \)
2. Column \(L(j) = \{(i, j) : i = 1, 2, \ldots, 9\} \)
3. Region \(G(i, j) = \{(i + 1, j + 1) \mod 3, (i + 2, j + 2) \mod 3\} \)

Solution Strategy

Norvig gives two rules for reducing the problem size.

1. If a cell \(c \) can be assigned just one value \(d \), then eliminate that value \(d \) from \(c \)'s peers.
2. If \(c \) is the only cell in the units of \(c \) where value \(d \) can be placed, then assign \(d \) to \(c \).

Homework Questions

- **Exercise 1:** Without regard to the rules, in how many ways can the board be filled with single-digit, positive integers?
- **Exercise 2:** If the only enforced rule is that each row contains a permutation \(D^+ \), in how many ways can the board be filled? Does this simplification reduce the search space to a manageable size?
- **Exercise 3:** Let \(v(c) \) denote the list of valid values that could be assigned to a cell \(c = (i, j) \). Let \(|v(c)| \) denote the number of values in the list.
 3.1 Under what conditions is the puzzle in a contradictory (failed or unsolvable) state?
 3.2 Under what conditions is the puzzle solved?
- **Exercise 4:** Let \(p(c) \) be a list of peers of cell \(c \). How would you write the elimination rule that states:

 If there is only value, \(d \), in the list of values for cell \(c \), then \(d \) is not on the list of values for any peer of \(c \).
- **Exercise 5:** Let \(u(c) \) be a list of units for cell \(c \). How would you write the elimination rule that states:

 If \(c \) is the only cell in the units of \(c \) where value \(d \) can be placed, then assign \(d \) to cell \(c \).
Pass a Quiz: Summative exam #1 on numbers and Boolean logic

Take a quiz on page 330 to check your understanding. You can return to here from the quiz.
6. **Programming: With functions**

Recursive functions are one model, among many, of computation: A computer or a computer program can be thought of as a function that maps input data x of type \mathbb{X} to output information y of type \mathbb{Y}. The programmed function must, almost always, be broken down into more simple functions that can be composed to implement the overall function (program).

Functions

Functions are studied in continuous mathematics: Usually by way of graphs of curves in a two-dimensional (x, y) Cartesian coordinate system. A curve represents a function if it passes the vertical line test:

Every vertical line crosses the graph of the curve at most once.

A full-circle $y = \pm \sqrt{1 - x^2}$ is not a function, but the top semi-circle $y = \sqrt{1 - x^2}$ is a function.

The vertical line $x = 0.5$ crosses the circle twice, at $y = \pm \sqrt{0.75} = \sin \pi/3 \approx 0.866025403784$. The relation $y = \pm \sqrt{1 - x^2}$ between x and y is not a function. But each separate equation

$$y = + \sqrt{1 - x^2} \quad \text{and} \quad y = - \sqrt{1 - x^2}$$

define functions.

Of course, this definition does not tell you how to compute f. The definition only describes a property of the map from \mathbb{X} to \mathbb{Y}.
Definition 8: Function

Using predicate logic, you can write \(f : X \to Y \) *is a function by*

\[
(\forall x \in X)(\forall y_0, y_1 \in Y)((f(x) = y_0) \land (f(x) = y_1) \Rightarrow (y_0 = y_1))
\]

This statement says, if \(f \) maps \(x \) to two values: \(y_0 \) and \(y_1 \), then these values are, in fact, equal. Conversely, you could say, if the \(y \)'s are different, the \(x \)'s must be different too. By De Morgan’s laws and contraposition

\[
((f(x) = y_0) \land (f(x) = y_1)) \Rightarrow (y_0 = y_1) \equiv
(y_0 \neq y_1) \Rightarrow ((f(x) \neq y_0) \lor (f(x) \neq y_1))
\]

In the diagram below: The figure on the left shows a function mapping each \(x \) to one and only one \(y \). The figure on the right shows a relation that is not a function; some \(x_0 \) maps to different values of \(y \).

\[f(x_0) \quad f(x_1) \]

\[\xrightarrow{f} \]

\[Y \]

\[x_0 \quad x_1 \]

\[f(x_0) \quad f(x_1) \]

\[\xrightarrow{f} \]

\[Y \]

\[x_0 \quad x_1 \]

\[f \text{ is a function from } X \text{ into } Y \]

\[f \text{ is not a function from } X \text{ into } Y \]

Properties of functions

There are several important properties of functions. Two of them are: **Onto** and **one-to-one**.

Onto property of functions

Definition 9: Onto

A function \(f : X \to Y \) maps \(X \) onto \(Y \) if every \(y \in Y \) has an \(x \in X \) such that \(f(x) = y \):

\[
(\forall y \in Y)(\exists x \in X)(f(x) = y)
\]

A curve is onto if it passes the first horizontal line test:

Every horizontal line crosses the graph of the curve at least once.

Another way to understand the onto concept is visualize a function as a map from a source set \(X \) to a target set \(Y \). An onto function completely fills the target set. In the diagram below: The figure on the left shows an onto function, each \(y \) has at least one arrow from some \(x \) mapping to it. The figure on the right shows a function that is not onto; some \(y \)'s have no arrow that map to them.

\[f : X \to Y \text{ is onto when } f(X) = Y. \]

Otherwise, \(f \) only map \(X \) into \(Y \).

\[x^2 = x(x - 1)(x - 2)(x - 3)(x - 4) \text{ is onto.} \]

\[x^2 = x(x - 1)(x - 2)(x - 3) \text{ is not onto } \mathbb{R}. \]
In C, onto can be tested using nested loops. Consider the pseudo-code:

```c
for (i=0; i< |Y|; i++) // loop over all of the y's
    y = Y[i]; // okay! |Y| is not legal C.
ontoY = false; // assume a false result
for (j=0; j<|X|; j++) // loop over all the x's
    x = X[j];
    if (f(x) == y) { // f was onto this value of y
        ontoY = true;
        break; // cut the j loop short
    }
if (ontoY == false) return false; // no x was not found for this y
return true;
```

In Haskell, the function onto to test whether or not a function \(f \) from \(X \) to \(Y \) is onto.

```haskell
onto :: (Eq y) => (x -> y) -> [x] -> [y] -> Bool
onto f xs [] = True -- every function maps onto the empty set
onto f xs (y:ys) = elem y (image f xs) && onto f xs ys
```

For this code two helper functions are needed.

1. **elem** that tests if a value is an element of a list

   ```haskell
elem :: (Eq x) => [x] -> x -> Bool
elem _ [] = False -- no element is in the empty list
elem x (y:ys) = x == y || elem x ys -- x is in the list (y:ys)
    -- if x is y or
    -- if x is in the tail ys
```

2. **image** that creates the list \(f(x) \) such that \(x \in X \).

   ```haskell
   image :: (x -> y) -> [x] -> [y]
   image f xs = [f x | x <- xs] -- we should remove duplicates
       -- from the returned list
   ```

One-to-one property of functions
Definition 10: One-to-one

A function \(f : X \rightarrow Y \) maps \(X \) one-to-one to \(Y \) if no \(y \in Y \) is the image of two or more \(x \)'s in \(X \). That is, different \(x \)'s map to different \(y \)'s.

\[
(\forall x_0, x_1 \in X)[(x_0 \neq x_1) \Rightarrow (f(x_0) \neq f(x_1))]
\]

A curve is one-to-one if it passes the second horizontal line test:

Every horizontal line crosses the graph of the curve at most once.

A one-to-one function never maps two (or more) source values to the same target. In the diagram below: The figure on the left shows an one-to-one function, no \(y \) has at more than one arrow mapping to it. The figure on the right shows a function that is not one-to-one; some \(y \) have more than one arrow mapping to it.

In C, one-to-one can be tested using nested loops.

```c
for (i=0; i<|X|; i++) {
    // loop over all of the x's
    xi = X[i];    // value in X at index i

    for (j=i+1; j<|X|; j++) {
        // loop over remaining x's
        xj = X[j];    // value in X at index j
        if (f(xi) == f(xj)) {
            // if xi and xj map to the same value
            return false; // return f is not one-to-one
        }
    }
}
return true;
```

In Haskell, the function `oneToOne` tests whether or not a function \(f \) from \(X \) to \(Y \) is oneToOne.

```haskell
oneToOne :: Eq b => (a -> b) -> [a] -> Bool
oneToOne f xs [] = True -- every function maps xs
    -- one-to-one to the empty set
oneToOne f (x:xs) = not elem (f x) (image f xs) && oneToOne f xs
```

Pass a Quiz: Basic function concepts

Take a quiz on page 332 to check your understanding. You can return to here from the quiz.
Intuitively, the *cardinality* of a set is the number of elements in it. The symbol |X| is used to denote the cardinality of a set. For finite sets, this is straightforward:

- The cardinality of the bits \(\mathbb{B} = \{0, 1\} \) is \(|\mathbb{B}| = 2\).
- The cardinality of the digits \(\mathbb{D} = \{0, 1, 2, \ldots, 9\} \) is \(|\mathbb{D}| = 10\).
- The cardinality of the hexadecimal numerals \(\mathbb{H} = \{0, 1, 2, \ldots, 9, A, B, \ldots, F\} \) is \(|\mathbb{H}| = 16\).

Definition 11: Cardinality of finite sets

A finite set \(\mathcal{X} \) has cardinality \(m \) if there is a one-to-one function from the modular integers \(\mathbb{Z}_m = \{0, 1, 2, \ldots, (m - 1)\} \) onto \(\mathcal{X} \).

The cardinality of an infinite set is more difficult to understand. There are unbounded orders of infinity. The smallest infinity is the size of the natural numbers \(\mathbb{N} \).

Definition 12: Cardinality of the natural numbers

The cardinality of \(\mathbb{N} \) is defined to be \(\aleph_0 \), pronounced “aleph-naught.”

Countable sets are finite or they have the same size (cardinality) as the natural numbers.

Definition 13: Cardinality of a countable set

A set \(\mathcal{X} \) is countable if it is finite or there is a one-to-one function from the natural numbers \(\mathbb{N} \) onto \(\mathcal{X} \). In this case, the cardinality of \(\mathcal{X} \) is \(|\mathcal{X}| = \aleph_0 \), “aleph − naught.”

Example: The integers \(\mathbb{Z} \) are countable

Here’s how to construct a one-to-one function from \(\mathbb{N} \) onto \(\mathbb{Z} \). Let

\[
f(n) = \begin{cases}
\frac{n}{2} & \text{if } n \text{ is even} \\
-(\frac{n+1}{2}) & \text{if } n \text{ is odd}
\end{cases}
\]

The first few mappings by this function are given in the list:

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z = f(n))</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td>2</td>
<td>-3</td>
<td>3</td>
<td>-4</td>
<td>4</td>
<td>-5</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Every integer \(z \) has a natural number \(n \) that maps to it. If \(z \) is greater than or equal to 0, then \(n = 2z \) maps to \(z \). If \(z \) is less than 0, then \(n = 2|z| + 1 \) maps to \(z \).
Example: The rationals \mathbb{Q} are countable

Consider the Stern-Brocot tree: It is a binary tree where each node is labeled $\frac{r}{s}$. The node $\frac{r}{s}$ has two children: Its left child is $\frac{r}{r+s}$ and its right child is $\frac{r+s}{s}$.

The following statements about the entries in the Stern-Brocot tree are True. See (Calkin and Wilf, 2000) for a more rigorous proofs. All node are in reduced form, that is, the numerator and denominator are relatively prime; their greatest common divisor is 1.

Proof: Stern-Brocot: Reduced fractions

The root vertex $\frac{1}{1}$ satisfies the statement: It is reduced. Similarly, observe at the next two levels

$$\frac{1}{2} \quad \text{and} \quad \frac{2}{1} \quad \text{are reduced.}$$

and

$$\frac{1}{3}, \frac{2}{3}, \frac{3}{2}, \frac{3}{1} \quad \text{are reduced.}$$

Suppose, by way of contradiction, there is some node $\frac{r}{s}$ where the fraction is not reduced. That is, some natural number larger that 1 evenly divides both. You can assume this node is at the highest possible level.

If $\frac{r}{s}$ is a left child, then its parent is $\frac{r}{s-r}$

$$\frac{r}{s-r} \leftarrow \frac{r}{r+(s-r)} = \frac{r}{s}$$

If $\frac{r}{s}$ is a right child, then its parent is $\frac{r-s}{s}$

$$\frac{r-s}{s} \rightarrow \frac{(r-s)+s}{s} = \frac{r}{s}$$

In both cases, the parent is not reduced if $\frac{r}{s}$ is not reduced. And, the parent is at a higher level than $\frac{r}{s}$, contradicting the assumption that $\frac{r}{s}$ was at the highest level.

Every positive rational number appears somewhere in the Stern-Brocot tree.
The rational number 1 is at the root of the tree. Suppose, by way of contradiction, there is some fraction r/s that is not in the tree. You may assume that r/s is the one with smallest numerator and denominator. If $r > s$, then $(r-s)/s$ would not be in the tree either, but its numerator $(r-s)$ is smaller than r, a contradiction. If $r < s$, then $r/(s-r)$ would not be in the tree either, but its denominator $(s-r)$ is smaller than s, another contradiction. Finally, you must show no rational number appears twice in this tree. Can you suggest a proof of this?

Pigeonhole principle

Suppose you owned n pigeons and had a coop with m pigeonholes. The pigeonhole principle states: If you’ve more pigeons than pigeonholes you need a bigger coop.

Theorem 5: Pigeonhole Principle

If n pigeons are placed in m pigeonholes where $n > m$, then some pigeonhole will have more than one pigeon.

Expressing the pigeonhole principle as its contrapositive can also be useful.

If no pigeonhole contains more than one pigeon, then there are fewer pigeons than pigeonholes, that is, $n \leq m$

Here are some examples of the pigeonhole principle.

Example: Fruit, words, birthdays, and printable characters

Pretend you have three types of fruit: Bunches of apples, oranges, and grapes that you want to distribute to a group of people.

- If there are 4 or more people, some fruit will be given out twice or more
 \[
 (P_1, A), (P_2, O), (P_3, G), (P_4, ?)
 \]
 The first 3 people can be given different types of fruit, but the fourth person must get a fruit already given.
 Here $n = 4$ people are distributed among $m = 3$ types of fruit. Notice that $n/m = 4/3$ rounds up to 2: $\lceil 4/3 \rceil = 2$.

- If there are 7 or more people, at least 3 people will given the same fruit.
 \[
 (P_1, A), (P_2, O), (P_3, G), (P_4, A), (P_5, O), (P_6, G), (P_7, ?)
 \]
Notice that $\frac{7}{3}$ rounds up to 3: $\lceil \frac{7}{3} \rceil = 3$.

- If there are 10 or more people, at least 4 will get the same fruit.
 Notice that $\frac{10}{3}$ rounds up to 4: $\lceil \frac{10}{3} \rceil = 4$.
- In general, if there are n or more people, at least $\lceil \frac{n}{3} \rceil$ will get the same fruit.
- On the other hand, if there are 2 or fewer people, some fruit type will not be given away.

\[(P_1, A), (P_2, O)\]

No grapes were given.
Notice that $\frac{2}{3}$ rounds down to 0: $\lfloor \frac{2}{3} \rfloor = 0$.

- If there are 5 or fewer people, some fruit type will not be given away more than once.

\[(P_1, A), (P_2, O), (P_3, G), (P_4, A), (P_5, O)\]

Grapes were given only once.
Notice that $\frac{5}{3}$ rounds down to 1: $\lfloor \frac{5}{3} \rfloor = 1$.

- If there are 8 or fewer people, some fruit will not be given away more than twice.
 Notice that $\frac{8}{3}$ rounds down to 2: $\lfloor \frac{8}{3} \rfloor = 2$.
- In general, if there are n or fewer people, some fruit will be not be given away more than $\lfloor \frac{n}{3} \rfloor$ times.

Example: English words

Pretend you’ve collected English words.

- In a set of 27 words, at least 2 will start with the same letter.
- In a set of 53 words, at least 3 will start with the same letter.

Pretend you’ve collected people.

- In a group of 367 people, at least 2 will have the same birthday.
- In a group of 733 people, at least 3 will have the same birthday.

Finally, there are 96 printable characters in the ASCII character set. In any string of 97 or more printable ASCII characters, some character must appear more than once.

The pigeonhole principle can be stated in terms of onto and one-to-one functions.
• If $|X| < |Y|$, then there does not exist any onto function $f : X \rightarrow Y$.

A small set cannot functionally cover a larger set. If there are fewer pigeons than holes, some hole will be empty.

$$(|X| < |Y|) \Rightarrow (\forall f : X \rightarrow Y)(\exists y \in Y)(\forall x \in X)(f(x) \neq y)$$

The conclusion (right-hand side) of the above implication can be stated as: For every function mapping X to Y there does not exist any $y \in Y$ such that for every $x \in X$ maps to it.

• If $|X| > |Y|$, then there does not exist any one-to-one function $f : X \rightarrow Y$.

A large set must over-cover some element in a smaller set. If there are more pigeons than holes, some hole will hold two or more pigeons.

$$(|X| > |Y|) \Rightarrow (\forall f : X \rightarrow Y)(\exists x_0, x_1 \in X, x_0 \neq x_1)(f(x_0) = f(x_1))$$

The conclusion (right-hand side) of the above implication can be stated as: For every function mapping X to Y there are two different values in X that map to the same value in Y.

Theorem 6: Generalize Pigeonhole principle

Let n be the number of pigeons to be placed in m pigeonholes.
Let $p(k)$ be the number of pigeons placed in pigeonhole k for
$k = 1, 2, \ldots, m$.

1. Some pigeonhole contains at least $\lceil n/m \rceil$ pigeons.

$$\left(\exists k \in \mathbb{Z}_m \right) \left(p(k) \geq \left\lceil \frac{n}{m} \right\rceil \right)$$

2. Some pigeonhole contains no more than $\lfloor n/m \rfloor$ pigeons.

$$\left(\exists k \in \mathbb{Z}_m \right) \left(p(k) \leq \left\lfloor \frac{n}{m} \right\rfloor \right)$$

Proof: Generalized Pigeonhole principle

Let $p(k)$ be the number of pigeons in hole k for $k = 0, 1, 2, \ldots, (m - 1)$. Summing $p(k)$ over all holes gives a total of n.

$$n = \sum_{\text{holes}} \left| \text{pigeons-in-hole} \right| = \sum_{k=0}^{m-1} p(k)$$

1. If every pigeonhole contains fewer than $\lfloor n/m \rfloor$ pigeons, then,

$$p(k) \leq \lfloor n/m \rfloor - 1 \text{ for all } k = 0, 1, \ldots, (m - 1).$$

The sum $\sum_{k=0}^{m} p(k) = n$.

Why is this True?

The proof is by contraction. See the chapter on proofs by contradiction for additional examples of this technique.
each hole gives,
\[
n = \sum_{k=0}^{m-1} p(k) \leq \sum_{k=0}^{m-1} \left(\left\lfloor \frac{n}{m} \right\rfloor - 1 \right) = m \left\lfloor \frac{n}{m} \right\rfloor - m
\]

Notice that \(\left\lfloor \frac{n}{m} \right\rfloor < \frac{n}{m} + 1 \)

Therefore,
\[
n \leq m \left\lfloor \frac{n}{m} \right\rfloor - m < m \left(\frac{n}{m} + 1 \right) - m = n
\]

A contradiction.

2. If every pigeonhole contains more than \(\lfloor n/m \rfloor \) pigeons, then, \(p(k) \geq \lfloor n/m \rfloor + 1 \) for all \(k = 0, 1, \ldots, (m-1) \). Summing \(p(k) \) over each hole gives,
\[
n = \sum_{\text{holes}} |\text{pigeons-in-hole}| \geq \sum_{\text{holes}} \left(\left\lfloor \frac{n}{m} \right\rfloor + 1 \right) = m \left\lfloor \frac{n}{m} \right\rfloor + m
\]

Notice that \(\left\lfloor \frac{n}{m} \right\rfloor + 1 > \frac{n}{m} \)

Therefore,
\[
n \geq m \left\lfloor \frac{n}{m} \right\rfloor + m > m \left(\frac{n}{m} + 1 \right) > n
\]

A contradiction.

Here are some additional pigeonhole principle examples.

Example: Hash Tables

A hash table is a data structure used in many computing applications. Intuitively, a hash table is a collection of boxes where objects are stored. If there are more objects than boxes, then some box must contain more than one object.

If there are \(m \) boxes in the hash table and \(n \) objects to store, then

- **Some box will contain \(\lfloor n/m \rfloor \) or more objects.**

 Let there be \(m = 5 \) boxes in which to put \(n = 12 \) objects. Then some box will contain \(\lfloor 12/5 \rfloor = 3 \) objects. (If each box contained 2 or fewer objects there would be no more than 10 objects.)

- **Some box will contain \(\lfloor n/m \rfloor \) or fewer objects.**

 For the \(m = 5 \) box, \(n = 12 \) object example, some box contains \(\lfloor 12/5 \rfloor = 2 \) or fewer objects. (If each box contained 3 or more objects there would be more than 15 objects.)
Pass a Quiz: Pigeonhole principle

Take a quiz on page 332 to check your understanding. You can return to here from the quiz.

Classification of functions

There are several useful function classes: Polynomials, logarithms and exponentials, permutations, and integer functions are some of these.

Polynomials

A polynomial can be written as a weighted sum of powers of x. For instance,

\begin{align*}
p(x) &= x^2 - x - 1 & \text{weights (coefficients)} & = (-1, -1, 1) \\
q(x) &= x^3 + x^2 + x + 1 & \text{weights (coefficients)} & = (1, 1, 1, 1) \\
r(x) &= 4x^3 - 3x & \text{weights (coefficients)} & = (0, -3, 0, 4)
\end{align*}

In general, a polynomial of degree $(n - 1)$ with coefficients (weights) $\langle a_0, a_1, \ldots, a_{n-1} \rangle$ can be written as

$$p(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_2x^2 + a_1x + a_0$$

Polynomials can be used to approximate more complex functions. For this course, their primary importance is in modeling positional number systems. From your prior study of mathematics, you should know about low degree polynomials. In particular, their graphs and solutions to their equations.

Graphs: You should be able to draw graphs of low degree polynomials.

- Constant polynomials: $y = c$
- Linear polynomials: $y = mx + b$
- Quadratic polynomials: $y = ax^2 + bx + c$

Polynomial equations: You should be able to compute solutions low degree polynomial equations.

- Linear equations: $mx + b = 0$ has solution $x = -b/m$
- Quadratic equations: $ax^2 + bx + c = 0$ has solutions

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
Logarithms and exponentials

Logarithms simplify calculations. To make calculations needed in astronomy for use in navigation, reckoning time, and other applications, logarithms were invented by John Napier and others.

There are three basic logarithms, but each is just a constant times the others.

1. The common logarithm, the logarithm base 10, written as a function \(y = \log x \) which means \(10^y = x \).

2. The natural logarithm, the logarithm base \(e \approx 2.718 \), written as a function \(y = \ln x \) which means \(e^y = x \).

3. The binary logarithm, the logarithm base 2, written as a function \(y = \lg x \) which means \(2^y = x \).

Logarithms and exponentials have many applications. The study of algorithmic complexity is just one use.

From your prior study of mathematics, you should know:

- A log of a product is the sum of logs
 \[\log(ab) = \log a + \log b \]

- A log of a quotient is the difference of logs
 \[\log\left(\frac{a}{b}\right) = \log a - \log b \]

- A log of a power is the power times the log
 \[\log(d^b) = b \log a \]

- A log of a root is the log divided by the root
 \[\log(\sqrt[n]{a}) = \frac{\log a}{b} \]

- The change of base rule for logarithms
 \[\log_b a = \frac{\log_c a}{\log_c b} \quad \text{or} \quad \log_b a \log_c b = \log_c a \]

Exponential obey related laws.

- An exp of a sum is the product of exps
 \[x^{a+b} = x^a x^b \]

- An exp of a difference is the quotient of exps
 \[x^{a-b} = \frac{x^a}{x^b} \]

Following Knuth’s notation, the binary logarithm is written \(\lg x \), the base 2 logarithm of \(x \). The inverse of \(\lg x \) is the exponential function \(2^y \). The old calculus joke relating logarithms and integrals is

\[\int \frac{1}{\text{cabin}} \, d\text{cabin} = \text{log cabin} + C = \text{houseboat} \]

I have no quote-able way to say the change of base rule.

\[\lg x = \lg 10 \log x \approx 3.322 \log x \]
\[\log x = \log 2 \lg x \approx 0.301 \lg x \]
\[\ln x = \ln 2 \lg x \approx 0.693 \lg x \]
• An exp of product is an exp of an exp

\[
x^{ab} = (x^a)^b
\]

• The root of an exp is the exp of a quotient

\[
\sqrt[n]{x^a} = x^{\frac{a}{n}}
\]

• The change of base rule for exponentials

\[
b^x = (c^{\log_c b})^x
\]

The change of base rules are important enough to be named theorems.

Theorem 7: Logarithm: Change of base

Let \(x, b, c \) be real positive real numbers with \(b \neq 1 \) and \(c \neq 1 \).

\[
\log_b x = \frac{\log_c x}{\log_c b}
\]

Proof: Logarithm: Change of base

First, rename \(\log_b x \) by saying \(y = \log_b x \). Then, by definition of logs and exps, \(b^y = x \).

Take the log base \(c \) of both sides of the equation \(b^y = x \).

\[
\begin{align*}
b^y &= x \\
\log_c b^y &= \log_c x \\
y \log_c b &= \log_c x \\
y &= \frac{\log_c x}{\log_c b} \\
\log_b x &= \frac{\log_c x}{\log_c b}
\end{align*}
\]

Theorem 8: Exponential: Change of base

Let \(x, b, c \) be real positive real numbers with \(b \neq 1 \) and \(c \neq 1 \).

\[
b^x = c^{x \log_c b}
\]
Proof: Exponential: Change of base

First, rename b^x by saying $c^y = b^x$.
Now take the log base c of both sides of the equation $c^y = b^x$.

\[
\begin{align*}
c^y &= b^x \\
y &= x \log_c b \\
c^y &= c^{x \log_c b} \\
b^x &= c^{x \log_c b}
\end{align*}
\]

Permutations

Permutations arrange things based on some criterion. Permutations are discussed in more detail in the notes on sorting. Permutations are functions that map a set in a one-to-one manner onto itself.

\[
\text{PERMUTATION} = \{\pi(x) : \pi : X \to X \text{ is a one-to-one and onto function}\}
\]

A basic fact is the relation (function) between the cardinality of X and the number of permutations. There are $n!$ permutations on n different things.
More generally, there are

\[
\frac{n!}{(n-m)!} = \frac{n(n-1)(n-2)\cdots(n-m+1)}{m!}
\]

ways to choose m of n things and then arrange the m things. Factorials are discussed in the notes on recursion. Binomial coefficients are discussed in the notes on counting.

Integer functions

Integer function act on or produce integer results. There are several useful integer functions: The floor, ceiling, quotient, remainder, and greatest common divisor functions are some of these.

This notation is used for these functions:

- $\lfloor x \rfloor$ is the floor of x
- $\lceil x \rceil$ is the ceiling of x
- $a \div m$ is the integer quotient when a is divided by m
- $a \mod m$ is the natural number remainder when a is divided by m
- $\gcd(a, b)$ is the greatest common divisor of a and b.

$n!$ read “n factorial,” is the product of the first n positive integers.

$0! = 1, 1! = 1, 2! = 2, 3! = 6, 4! = 24, \ldots$

$\binom{n}{m}$ is read “n choose m.” For small values a binomial coefficient can be evaluated using factorials.

\[
\binom{n}{m} = \frac{n!}{m!(n-m)!}
\]
The floor \([x]\) or greatest integer function is the largest integer less than or equal to \(x\). For instance,

\[
\begin{align*}
[\pi] &= 3 \\
[\pi - 2] &= 3 \\
[\pi - 2.5] &= 3 \\
[\pi - 3] &= 3
\end{align*}
\]

Here’s a plot of the floor for small values. Such graphs describe step functions.

The ceiling \(\lceil x \rceil\) or least integer function is the smallest integer greater than or equal to \(x\). For instance,

\[
\begin{align*}
\lceil \pi \rceil &= 4 \\
\lceil \pi - 2 \rceil &= 4 \\
\lceil \pi - 2.5 \rceil &= 4 \\
\lceil \pi - 3 \rceil &= 4
\end{align*}
\]

Here’s a plot of the ceiling for small values.
Consider x, bounded between by two consecutive integers $n < x < n + 1$.

- The floor of x is $\lfloor x \rfloor = n$
- The ceiling of x is $\lceil x \rceil = n + 1$
- The floor of $-x$ is $\lfloor -x \rfloor = -n - 1$
- The ceiling of $-x$ is $\lceil -x \rceil = -n$

The round $\lfloor x \rfloor$ or nearest integer function is the integer closest to x. In case of a tie at the half-way point $n + 0.5$ between n and $n + 1$, our choice is to always round up to $n + 1$. That is,

$$\lfloor x \rfloor = \lfloor x + 0.5 \rfloor$$

For instance,

$$\lfloor \pi \rfloor = 3 \quad \left\lfloor \frac{24}{5} \right\rfloor = 5 \quad (17) = 17$$

$$\lfloor -\pi \rfloor = -3 \quad \left\lfloor -\frac{24}{5} \right\rfloor = -5 \quad (-17) = -17$$

Here’s a plot of the round function for small values.
The fractional part \(\{x\} \) or residue function is the difference between \(x \) and the floor of \(x \).

\[
\{x\} = x - \lfloor x \rfloor
\]

The fraction part start from 0 at an integer \(n \) and increases along a line with slope 1 until \((n + 1) \) is reached, where the fractional part drops back to 0.

For instance,

\[
\{\pi\} \approx 0.1415 \cdots \quad \left\{ \frac{24}{5} \right\} = \frac{4}{5} \quad \{17\} = 0
\]

\[
\{-\pi\} \approx 0.8584 \cdots \quad \left\{ \frac{-24}{5} \right\} = \frac{1}{5} \quad \{-17\} = 0
\]

The quotient \(q = a \div m \) is the floor of \(a/m \). Here, the input values \(a \) and \(m \) are integers with \(m \neq 0 \).

\[
q = a \div m = \left\lfloor \frac{a}{m} \right\rfloor \quad \text{is the quotient of } a \text{ divided by } m.
\]
For instance,

\[
\begin{align*}
5 \div 3 &= 1 & 24 \div 5 &= 4 & 17 \div 1 &= 17 \\
-5 \div 3 &= -2 & -24 \div 5 &= -5 & -17 \div 1 &= -17
\end{align*}
\]

The integer quotient remains constant at value \(q \) for \(a = mq, mq+1, \ldots, mq + (m-1) \), where it jumps to \((q+1) \) when \(a \) reaches \((m+1)q \). Here’s a plot for \(m = 3 \) and small values of \(a \).

The remainder \(r = a \mod m \) is the remainder when \(a \) divide by \(m \).

\[
 r = a - mq = a - m(a \div m) = a - m \left\lfloor \frac{a}{m} \right\rfloor
\]

is the remainder of \(a \) divided by \(m \).

For instance,

\[
\begin{align*}
5 \mod 3 &= 2 & 24 \mod 5 &= 4 & 17 \mod 1 &= 0 \\
-5 \mod 3 &= 1 & -24 \mod 5 &= 1 & -17 \mod 1 &= 0
\end{align*}
\]

The remainder plot starts at \(r = 0 \) when \(a \) is a multiple of \(m \). The remainder steps by 1 as \(a \) increments until it reaches the next multiple of \(m \), where it returns to 0. Here’s a plot for \(r = a \mod 3 \) and small values of \(a \).

The greatest common divisor, \(\gcd(a, b) \) is the largest positive integer that divides both \(a \) and \(b \).
For instance,

\[
\begin{align*}
gcd(3, 5) &= 1 & gcd(5, 24) &= 1 & gcd(73, 37) &= 1 \\
gcd(6, 15) &= 3 & gcd(25, 35) &= 7 & gcd(30, 42) &= 6
\end{align*}
\]

The greatest common divisor can be pictured as a (3-dimensional) height-field above points \((a, b)\).

Pass a Quiz: Examples of Functions

Take a quiz on page 332 to check your understanding. You can return to here from the quiz.

Conversions among units of measure

How do you convert liters into gallons? Feet into meters? Pounds into grams? And other measures from one system to another? Consider the experimental method described below that computes these conversion factors by repeated approximations using modular real numbers.

Suppose you had a glass beaker that held exact 1 liter. Also suppose you had an empty jar that held exactly 1 gallon.

Consider this experiment:
1. Dump the contents of a completed filled beaker into the gallon jar.

2. Repeat step 1 as many times as possible without overfilling the jug.

You would find 3 liters can fit in gallon jar, but 4 cannot. When the fourth liter is poured there will be a residue left in the glass beaker.

\[3.0 \text{ liters} < 1 \text{ gallon} < 4.0 \text{ liters} \]

Since the residue, call it \(r \), is less than \(\frac{1}{2} \) of the beaker’s volume, one gallon is somewhere between 3.5 and 4 liters.

Repeat the process you can get a better estimate. That is, suppose you fabricate a beaker that holds exactly the residue from the fourth liter, and you use it to fill a liter bottle: It goes in 4 times without spilling. The fifth pour fills the liter and there is some small secondary residue.

Therefore, the first residue is more than one-fifth and less than one-fourth of a liter. That is, more than three-quarters and less than four-fifths of the fourth liter is needed to fill a gallon.

\[(0.2 < r < 0.25) \Rightarrow (3.75 \text{ liters} < 1 \text{ gallon} < 3.8 \text{ liters}) \]

You can repeatedly apply this quotient (integer part) and remainder (residue, fractional part) process and converge on the conversion factor

\[1 \text{ gallon} \approx 3.78541 \text{ liters}. \]

Homework Questions

を持っている時間を授業外で解いてください。

1. Let \(|X| > |Y| \). Determine if the statements below are True or False: Justify your answer.

 1.1 Every function \(f : X \rightarrow Y \) is onto.
 1.2 No function \(f : X \rightarrow Y \) can be onto.
 1.3 Some function \(f : X \rightarrow Y \) will be onto.
 1.4 Some function \(f : X \rightarrow Y \) will not be onto.
1.5 Answer the same questions when $|X| < |Y|$.

2 Composition is an operation on functions. Let $f : X \to Y$ and $g : Y \to Z$.

 The composition $g \circ f$ maps X to Z by the rule
 $$(g \circ f)(x) = g(f(x))$$

2.1 If $g(x) = \log x$ and $f(x) = 2^x$ what is $(g \circ f)(x)$? Simplify your answer.

2.2 If $g(x) = 2^x$ and $f(x) = \log x$ what is $(g \circ f)(x)$? Simplify your answer.

2.3 If $g(x) = x^2$ and $f(x) = 4x - 3$ what is $(g \circ f)(x)$? Simplify your answer.

2.4 If $g(x) = 4x - 3$ and $f(x) = x^2$ what is $(g \circ f)(x)$? Simplify your answer.

3 When I looked (2014-06-25) there were about 7,242,636,000 billion people on Earth. That is, the world's population was between 2^{32} and 2^{33} billion. Recall IPv4 addresses are 32-bits (4-bytes) wide. I’ve just summed the number of reserved IPv4 addresses and came up with 592,643,079.

3.1 If there are 2^{33} people on earth and each is assigned an IPv4 address, Show that some address must assigned be assigned to at least 3 people.

3.2 If there are 2^{33} people on earth and each is assigned an IPv4 address, Show that 3 people cannot be assigned to each address.

4 This is the change of base formula for logarithms. Let $\log x = y$. Write $\log_4 x$, $\log_8 x$, $\log_{16} x$, and $\log x$ in terms of y.

5 Show that $a^{\log_b c} = c^{\log_b a}$.

6 Show that $b = x^{\frac{1}{\log_a x}}$.

7 Use the “sum of logs is log of a product rule” to write the sum
 $$\sum_{1 \leq k \leq n} \log k$$
 as a logarithm that involves a factorial.

8 I found this question in (Graham et al., 1989). Given that $\ln 2 \approx 0.693147$ and $\log 2 \approx 0.301030$, show that
 $$\log x \approx \ln x + \log x$$

 Specifically, that the relative error is less than 1% in that
 $$\left| \frac{\ln x + \log x}{\log x} - 1 \right| < 0.01$$
9 Pretend you and your assistant are showing a card trick to friends. You deal your assistant a five card hand:

\[(A \spadesuit), (9, \spadesuit), (2, \clubsuit), (5, \clubsuit), (Q, \heartsuit)\]

Your assistant will show you four cards and you will know the fifth hidden card. The first step is to have your assistant code the suit of the hidden card by the arrangement of the revealed cards. How can this be done?

10 Shannon defined the information content \(I(x)\) of an event \(x\) that occurs with probability \(0 < p \leq 1\) to be

\[I(x) = \lg 1/p = -\lg p \text{ bits.}\]

The average information content, or entropy, of a sequence \(\hat{S}\) of events \(x_0, x_1, x_2, \ldots, x_{n-1}\) with corresponding probabilities \(p_0, p_1, p_2, \ldots, p_{n-1}\) is defined to be

\[H(\hat{S}) = -\sum_{k=0}^{n-1} p_k \lg p_k\]

10.1 When flipping a fair coin the probability of heads is \(p_H = 0.5\) and probability of a tails is \(p_T = 0.5\). What is the information content of flipping a single heads? What is the entropy of flipping the sequence heads, tails, heads?

10.2 When tossing a pair of fair dice the probability of rolling a total of 2 is \(p_2 = 1/36\), and the probability of rolling a total of 7 is \(p_7 = 6/36 = 1/6\), and the probability of rolling a total of 11 is \(p_{11} = 2/36 = 1/18\). What is the information content of rolling a total of 2? A 7? An 11? What is the entropy of rolling the sequence of totals \(\langle 2, 7, 11 \rangle\)?

11 Hash tables are used in search and other applications. Suppose you are given a hash function

\[h: \text{WORDS} \to \text{NUMBERS}\]

that turns a word into a number, an index into the hash table, where the word will be stored. Hashing can reduce search to constant time, a good thing. But collisions occur when two different words hash to the same number.

Suppose you define a 200 element hash table, and you start inserting words.

11.1 At what point do you know a collision must have occurred.

11.2 At what point do you know three or more words must have hashed to the same location?

12 A recent commercial has advertised that, in summer, in Florida, after setting your thermostat to 78\(^\circ\)F, you will save 6\% on your electric bill each time you raise the setting by 1\(^\circ\). At what temperature should you set your thermostat to get your electricity for free?
I think the interpretation in question 12 may be wrong. That model is *simple* deductions.

I suspect the electric company meant *compound* deductions at 6%. Using this model at what thermostat will your electricity be free?
7. Horner’s Rule: Polynomials & number conversions

The best number is 73. Why? 73 is the 21st prime number. Its mirror (37) is the 12th and its mirror (21) is the product of multiplying 7 and 3. In binary, 73 is a palindrome, 1001001 which backwards is 101001.

Dr. Sheldon Cooper (Jim Parsons) in The Big Bang Theory, Season 4 Episode 10 “The Alien Parasite Hypothesis”

Polynomials

Polynomials are a useful class of functions for several reasons. They can be:

- **Evaluated efficiently**: By Horner’s rule, called synthetic division in high-school algebra.
- **Differentiated easily**: \(dx^n/dx = nx^{n-1}\). A concept studied in calculus as a continuous extension of differences.
- **Integrated easily**: \(\int x^n dx = x^{n+1}/(n+1) + c\). A concept studied in calculus as a continuous extension of summations.

And, perhaps most importantly, polynomials can

- **Approximate** many other functions arbitrarily well under simple restrictions.

The set of power functions is the standard basis used for polynomials.

\[\{x^n : n \in \mathbb{N}\} = \{x^n : n = 0, 1, 2, 3, \ldots\} = \{1, x, x^2, x^3, \ldots\}\]

Written in the power basis, a polynomial \(p(x)\) has the form

\[p(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_2x^2 + a_1x + a_0\] (6)

where the degree of \(p(x)\) in equation (6) is \(n - 1\). and the coefficients are \(\langle a_0, a_1, \ldots, a_{n-2}, a_{n-1} \rangle\)

A root or zero of \(p(x)\) is a value of \(x\) such that

\[p(x) = 0\] (7)
The fundamental theorem of algebra states that every polynomial of degree \((n - 1) > 0\) has \((n - 1)\) roots, some may be complex numbers and some may occur more than once.

Theorem 9: Fundamental theorem of algebra

Every single-variable polynomial of degree \((n - 1) > 0\) with real coefficients has exactly \((n - 1)\) roots, counted by multiplicity.

Falling factorial powers

In the sum-and-difference calculus, falling factorial powers will provide a natural basis for writing polynomials. The falling factorial are:

Definition 14: Falling factorial powers

Falling factorial powers are defined by:

- A base (initial) case: \(x^0 = 1\).
- Recursion rule: \(x^n = x^{n-1} \cdot (x - (n - 1))\).

For instance,

\[
x^0 = 1 \\
x^1 = x^0(x - 0) = x \\
x^2 = x^1(x - 1) = x(x - 1) \\
x^3 = x^2(x - 2) = x(x - 1)(x - 2) \\
\vdots \\
x^n = x^{n-1}(x - (n - 1)) = x(x - 1) \cdots (x - (n - 1))
\]

An fundamental result of calculus is

The derivative of \(x^n\) is \(\frac{d}{dx}x^n = nx^{n-1}\)

The discrete analogy is:

The difference of \(x^n\) is \(\Delta x^n = nx^{n-1}\)

The proof is algebraic manipulation.

\[
\Delta x^n = (x + 1)^n - x^n \\
= [(x + 1)x^{n-1}] - [x^{n-1}] (x - (n - 1)) \\
= [(x + 1) - (x - (n - 1))]x^{n-1} \\
= nx^{n-1}
\]

Note that

\[
\frac{(x+h)^n - x^n}{h} = \frac{(x^n + \binom{n}{1}x^{n-1}h + \cdots + \binom{n}{n-1}h^{n-1} + \binom{n}{n}h^n) - x^n}{h} \\
= nx^{n-1} + o(h)
\]

So that the divided difference approaches \(nx^{n-1}\) as \(h \to 0\).
The falling factorial powers are related to binomial coefficients by the identity.

\[x^\underline{n} = x(x-1) \cdots (x-n+1) = \frac{x!}{(x-n)!} = \binom{x}{n} \]

The falling factorial powers are a natural basis for the sum-and-difference calculus. The fundamental theorem of the sum-and-difference calculus is the equation

\[\sum_{0 \leq k < n} x^\underline{k} = \frac{x^\underline{n+1}}{n+1} \]

This follows from the fact that the sum of values in column \(n\) of Pascal’s triangle up to row \(x\) is equal to the value in the column \((n+1)\) and row \((x+1)\). That is

\[\sum_{0 \leq k < n} x^\underline{k} = n! \sum_{0 \leq k < n} \frac{x}{n} = n! \binom{x+1}{n+1} = \frac{(x+1)^\underline{n+1}}{(n+1)!} \]

Stirling’s numbers of the second kind relate the polynomial power basis to falling factorial powers. Consider, the following expansions.

\[
\begin{align*}
x^0 &= x^\underline{0} = 1 \\
x^1 &= x^\underline{1} = x \\
x^2 &= x^\underline{2} + x^\underline{1} = x(x-1) + x \\
x^3 &= x^\underline{3} + 3x^\underline{2} + x^\underline{1} \\
&= x(x-1)(x-2) + 3x(x-1) + x \\
x^4 &= x^\underline{4} + 6x^\underline{3} + 7x^\underline{2} + x^\underline{1} \\
&= x(x-1)(x-2)(x-3) + 6x(x-1)(x-2) + 7(x-1) + x
\end{align*}
\]

The general formula is

\[x^{n-1} = \sum_{k} \left\{ \frac{n-1}{k} \right\} x^\underline{k} \quad (8) \]

Where \(\left\{ \frac{n}{k} \right\}\) are Stirling’s numbers of the second kind, that are defined by the recurrence

\[\left\{ \frac{n}{k} \right\} = k \left\{ \frac{n-1}{k} \right\} + \left\{ \frac{n-1}{k-1} \right\} \]

Notice that falling factorial powers satisfy the recurrence

\[x^k = x^\underline{k} \quad \text{or} \quad x \cdot x^\underline{k} = x^{k+1} + kx^\underline{k} \]
Therefore, if equation (8) is valid at \((n - 1) \), then

\[
x^n = x \cdot x^{n-1} = \sum_k \binom{n-1}{k} x \cdot x^k = \sum_k \binom{n-1}{k} (x^{k+1} + kx^k) = \sum_k \binom{n-1}{k} x^k + \sum_k \binom{n-1}{k} x^k = \sum_k \binom{n}{k} x^k.
\]

There are many useful polynomial bases. Some classical polynomials are: Chebyshev, Hermite, Jacobi, Lagrange, and Legendre polynomials. The choice of how to represent a polynomial depends on the application.

Evaluating a polynomial

Consider the golden polynomial \(g(x) = x^2 - x - 1 \), and suppose you want to evaluate \(g(x) \) at \(x = 3 \). By brute force you compute

\[
g(3) = 3 \cdot 3 - 3 - 1 = 5
\]

taking 1 multiply and 2 additions. For the general quadratic, by brute force, you evaluate

\[
p(x) = ax^2 + bx + c = a \cdot x \cdot x + b \cdot x + c
\]

taking 3 multiplies and 2 additions.

Horner’s rule computes the value of the polynomial from the highest exponent to the lowest.

\[
p(x) = ((a \cdot x + b) \cdot x + c)
\]

which requires only 2 multiplies and 2 additions. Although this may not seem to be a significant improvement, it is: Multiplies increase quadratically in the brute force algorithm, but only linearly in Horner’s Rule. For instance, naively evaluating

\[
p(x) = ax^3 + bx^2 + cx + d = a \cdot x \cdot x \cdot x + b \cdot x \cdot x + c \cdot x + d
\]

requires 6 multiplies and 3 additions, but

\[
p(x) = (((a \cdot x + b) \cdot x) + c) \cdot x + d
\]
only requires 3 multiplies and 3 additions.

Here’s an example. Let the polynomial be

\[p(x) = 2x^4 - 5x^3 + 3x^2 + 5x - 7 \]

and pretend you need its value at, say \(x = -3 \). That is, you need to compute the value of \(p(-3) \). Horner rule, sometime called synthetic division, is an efficient way to make this computation.

The first step is to copy the coefficients of

\[p(x) = 2x^4 - 5x^3 + 3x^2 + 5x - 7 \]

leaving sufficient space to make some calculations Then leave a blank line and draw a totaling line underneath it.

Horner’s rule (synthetic division)

<table>
<thead>
<tr>
<th>Horner’s Rule @ (x = -3)</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-5</td>
</tr>
</tbody>
</table>

| | | | | | | |

The value of \(p(x) \) at \(x = -3 \) is 302: \(p(-3) = 302 \). This can be used to infer that when

\[p(x) = 2x^4 - 5x^3 + 3x^2 + 5x - 7 \]

is divided by \((x + 3)\) you will compute a quotient polynomial

\[q(x) = 2x^3 - 11x^2 + 36x - 103 \quad \text{and a remainder of} \quad r = 302 \]

\[2x^4 - 5x^3 + 3x^2 + 5x - 7 = (2x^3 - 11x^2 + 36x - 103)(x + 3) + 302 \]
Example: Horner’s rule

Evaluate \(p(x) = x^3 - x^2 - x - 1 \) at \(x = 4 \).

<table>
<thead>
<tr>
<th>Horner’s Rule @ (x = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Evaluate \(p(x) = 7x^5 - 5x^3 + 3x^2 \) at \(x = -2 \).

<table>
<thead>
<tr>
<th>Horner’s Rule @ (x = -2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
<tr>
<td>-14</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

\[\text{horner} :: \ (\text{Num\ } a) \Rightarrow \ a \Rightarrow \ [a] \Rightarrow \ a \ -- \ a\ \text{number (value of } x) \]

\[\text{horner x [] = 0} \]

\[\text{horner x [c] = c} \]

\[\text{horner x [c:d:cs] = horner x [c*x+d:cs]} \]

Pass a Quiz: Horner’s rule

Take a quiz on page 333 to check your understanding. You can return to here from the quiz.

Conversion to decimal

Conventionally, numbers are written in positional notation. For instance, writing 314 states 3 hundreds, 1 ten, and 4 ones make the number 314.

\[314 = 3 \cdot 10^2 + 1 \cdot 10^1 + 4 \cdot 10^0 \]

Fixed-point numbers are also written in positional notation. For instance, writing 2.718 states 2 ones, 7 tenths, 1 hundredth, and 8 thousandths make 2.718.

\[2.718 = 2 \cdot 10^0 + 7 \cdot 10^{-1} + 1 \cdot 10^{-2} + 8 \cdot 10^{-3} \]

Numbers in bases other that 10 are written the similarly: Only the set of valid coefficients and the base differ.
Binary notation

Binary numbers are written using bits, elements from \(\mathbb{B} = \{0, 1\} \), and powers of 2. For instance,

\[
(1101)_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 13
\]

\[
(1001001)_2 = 1 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 73
\]

\[
(100.1001)_2 = 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 + 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 0 \cdot 2^{-3} + 1 \cdot 2^{-4} = \frac{73}{16}
\]

Octal notation

Octal numbers are written using octal numerals, elements from \(\mathbb{O} = \{0, 1, 2, 3, 4, 5, 6, 7\} \), and powers of 8. For instance,

\[
(237)_8 = 2 \cdot 8^2 + 3 \cdot 8^1 + 7 \cdot 8^0 = 159
\]

\[
(7.3)_8 = 7 \cdot 8^0 + 3 \cdot 8^{-1} = \frac{59}{8}
\]

Hexadecimal notation

Hexadecimal numbers are written using hexadecimal numerals, elements from \(\mathbb{H} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\} \), and powers of 16. In this case, the letters A through F stand for two-digit decimal numbers:

\[
A = 10, \quad B = 11, \quad C = 12, \quad D = 13, \quad E = 14, \quad F = 15
\]

For instance,

\[
(DEAD)_{16} = 13 \cdot 16^3 + 14 \cdot 16^2 + 10 \cdot 16^1 + 13 \cdot 16^0
\]

\[
= 57,005
\]

\[
(C0.DE)_{16} = 12 \cdot 16^1 + 0 \cdot 16^0 + 13 \cdot 16^{-1} + 14 \cdot 16^{-2}
\]

\[
= \frac{49374}{256} = 192.8671875
\]

Positional notation is polynomial notation

In each of the cases above, a number can be thought of as a polynomial evaluated at a given base: 10, 2, 8, or 16. The coefficients in each case are restricted to a particular alphabet: D, B, O, or H. Therefore, Horner’s rule can be used to convert from some base to decimal. Here are some examples.

In “The Shining,” a famous film by Stanley Kubrick staring Jack Nicholson, the little boy, Danny, is warned to stay out of room 237.

There is an old joke: Halloween = Christmas because OCT 31 = DEC 25.
• Convert the binary number \((100\ 1001)_2\) to decimal.

![Horner's Rule @ x = 2](image)

Therefore \((100\ 1001)_2 = 73\).

• Convert the binary number \((0010\ 1010)_2\) to decimal.

![Horner's Rule @ x = 2](image)

Therefore \((0010\ 1010)_2 = 42\).

• Convert the binary number \((1100\ 1100)_2\) to decimal.

![Horner's Rule @ x = 2](image)

Therefore \((1100\ 1100)_2 = 204\).

• Convert the octal number \((237)_8\) to decimal.

![Horner's Rule @ x = 8](image)

Therefore \((237)_8 = 159\).

Fixed-point to decimal

Horner’s rule can be used to convert fixed-point numbers, written in some base, to decimal. You know that \(3.1415\) can be written as a fraction

\[
3.1415 = \frac{31415}{10000} = \frac{31415}{10^4}
\]
In a similar fashion

\[(101.1101)_2 = \frac{(1011101)_2}{16} = \frac{(1011101)_2}{2^4}\]

Therefore you can compute the decimal value of a fixed-point number, by
(1) ignoring the point, (2) executing Horner's algorithm on the number, and
(3) dividing by the appropriate power of the base. For instance, to convert
\[(101.1101)_2\] use Horner's rule

<table>
<thead>
<tr>
<th>Horner's Rule @ x = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 1 1 0 1</td>
</tr>
<tr>
<td>2 4 10 22 46 92</td>
</tr>
<tr>
<td>1 2 5 11 23 46 93</td>
</tr>
</tbody>
</table>

Therefore,

\[(101.1101)_2 = \frac{93}{2^4} = \frac{93}{16} = 5.8125\]

When you multiply \[(101.1101)_2\] by \(2^4\) the binary point floats to the right end
of the string.

\[2^4 (101.1101)_2 = (1011101)_2\]

The integer part of \[(101.1101)_2\] is \((101)_2 = 5\) and the fractional part is
\[(0.1101)_2 = \frac{13}{16} = 0.8125\].

Pass a Quiz: Horner’s conversion to decimal

Take a quiz on page 333 to check your understanding. You can return to here
from the quiz.

Conversion: Decimal to other basis

By reversing the steps of Horner’s rule a decimal number can be converted to
binary, octal, hexadecimal on any other base. I call this repeated remainder-
ing.

The idea is straightforward. Given a natural number \(n\), its remainder \(r\)
when divided by 2 is either 0 or 1. The remaining algorithm repeatedly computes \(n\)’s remainders bit-by-bit by successively dividing quotients by 2.

The recursion to convert \(n\) to binary goes like this. Let

\[(n)_2 = (b_{(m-1)} \cdots b_1 b_0)_2\] where \(m = \lfloor \log n \rfloor + 1\)

- Let \(n_0 = n\) and \(b_0 = n_0 \mod 2\)
- For \(k = 1, 2, \ldots, (m - 1)\) define \(n_k\) and \(b_k\) by
 \[n_k = \left\lfloor \frac{n_{(k-1)}}{2} \right\rfloor \quad \text{and} \quad b_k = n_{(k-1)} \mod 2\]

The first division decides if \(n\) is even \((r = 0)\) or odd \((r = 1)\). This computes the least-
significant, rightmost, bit in the binary string that represents \(n\).
Here’s an example showing how to convert \(n = 161 \) to binary. The remainder bits \(b_k \) are computed from the least significant \(b_0 \) to the most significant \(b_{(m-1)} \).

\[
\begin{array}{c|cccccccc}
\text{Repeated Remaindering mod 2} \\
\hline
\text{Quotients} & 161 & 80 & 40 & 20 & 10 & 5 & 2 & 1 \\
\text{Remainders} & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
\end{array}
\]

Therefore, \((161)_{10} = (10100001)_{2} \). As another example, let’s convert \(n = 237 \) to binary.

\[
\begin{array}{c|cccccccc}
\text{Repeated Remaindering mod 2} \\
\hline
\text{Quotients} & 237 & 118 & 59 & 29 & 14 & 7 & 3 & 1 \\
\text{Remainders} & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
\end{array}
\]

Therefore, \((237)_{10} = (11101101)_{2} \). And here’s an example showing conversion to octal.

\[
\begin{array}{c|ccc}
\text{Repeated Remaindering mod 8} \\
\hline
\text{Quotients} & 73 & 9 & 1 \\
\text{Remainders} & 1 & 1 & 1 \\
\end{array}
\]

Therefore, \((73)_{10} = (111)_{8} \). Written in Haskell the algorithm might look like:

\[
\text{decToBin :: Natural -> [Bits]}
\]

\[
\text{decToBin 0 = [0]}
\]

\[
\text{decToBin 1 = [1]}
\]

\[
\text{decToBin n = decToBin (n ‘div’ 2) ++ [n ‘mod’ 2]}
\]

Decimal to fixed-point

To convert a decimal fraction, say 0.3 to binary use repeated flooring upon multiplication by 2. Let \(0 < f < 1 \) be a fraction written in decimal notation. Let

\[
f = (b)_2 = (0.b_1b_2b_3\cdots)_2
\]

be the binary representation of \(f \).

The recursion to convert \(f \) to \((b)_2\) is this:

- Let \(f_0 = f \) and \((b)_2 = 0\ldots\).
• For \(n = 1, 2, \ldots \) let define \(f_n \) and \(b_n \) by

\[
f_n = \begin{cases}
 p_{(n-1)} & \text{if } 2 \cdot f_{(n-1)} < 1 \\
 p_{(n-1)} - 1 & \text{if } 2 \cdot f_{(n-1)} \geq 1
\end{cases}
\]

\[
b_n = \begin{cases}
 0 & \text{if } 2 \cdot f_{(n-1)} < 1 \\
 1 & \text{if } 2 \cdot f_{(n-1)} \geq 1
\end{cases}
\]

For instance, here’s how to convert 0.3 to binary notation.

\[
0.3 \times 2 = 0.6 \quad \text{shows } 0.3 < 0.5 = (0.1)_2 \\
\therefore 0.3 = (0.0\cdots)_2
\]

\[
0.6 \times 2 = 1.2 \quad \text{shows } 0.3 > 0.25 = (0.01)_2 \\
\therefore 0.3 = (0.01\cdots)_2
\]

\[
0.2 \times 2 = 0.4 \quad \text{shows } 0.3 < 0.375 = (0.011)_2 \\
\therefore 0.3 = (0.010\cdots)_2
\]

\[
0.4 \times 2 = 0.8 \quad \text{shows } 0.3 < 0.3125 = (0.0101)_2 \\
\therefore 0.3 = (0.0100\cdots)_2
\]

\[
0.8 \times 2 = 1.6 \quad \text{shows } 0.3 > 0.28125 = (0.01001)_2 \\
\therefore 0.3 = (0.01001\cdots)_2
\]

And now the pattern repeats:

\[
0.3 = (0.0 \text{ 1001 1001 1001} \cdots)_2
\]

By changing the multiplier you can convert to another base. For instance, to convert 0.1 to hexadecimal use 16 as the multiplication factor.

\[
0.1 \times 16 = 1.6 \quad \text{shows } 0.1 = (0.1\cdots)_{16}
\]

\[
0.6 \times 16 = 9.6 \quad \text{shows } 0.1 = (0.19\cdots)_{16}
\]

\[
\vdots
\]

Therefore,

\[
0.1 = (0.199\cdots)_{16}
\]
If you like series, studied in calculus, notice that

\[
(0.199\cdots)_{16} = \frac{1}{16} + \frac{9}{16^2} \left[1 + \frac{1}{16} + \left(\frac{1}{16} \right)^2 + \cdots \right] \\
= \frac{1}{16} + \frac{9}{16^2} \left(\frac{1}{1 - 1/16} \right) \\
= \frac{1}{16} + \frac{9}{16^2} \left(\frac{16}{15} \right) \\
= \frac{1}{16} + \frac{3}{16 \cdot 5} \\
= \frac{8}{16 \cdot 5} \\
= 0.1
\]

Pass a Quiz: Remaindering: Convert decimal to another base

Take a quiz on page 334 to check your understanding. You can return to here from the quiz.

Homework Questions

⚠️ Use your time outside of class to solve these problems.

1 Let \(p(x) = 2x^4 - 8x^3 - 6x^2 + 5x - 7 \).

1.1 Evaluate \(p(3) \) using *brute force*. Count the number of multiplies and adds you make.

1.2 Evaluate \(p(3) \) using Horner’s rule. Count the number of multiplies and adds you make.

2 Consider a general polynomial of degree \((n - 1)\).

\[
p(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_2x^2 + a_1x + a_0
\]

2.1 Argue that evaluating \(p(x) \) by brute-force requires \(n(n-1)/2 \) multiplications and \(n-1 \) additions.

2.2 Argue that evaluating \(p(x) \) by Horner’s rule only requires \(n-1 \) multiplications and \(n-1 \) additions.

3 Use Horner’s rule to convert the following numbers to decimal notation.

3.1 \((1111111)_{2} \)

3.2 \((11001100)_{2} \)

3.3 \((10101010)_{2} \)

3.4 \((747)_{8} \)

3.5 \((123)_{4} \)

3.6 \((A47)_{16} \)
4 Use repeated remaindering to convert the following decimal number to the indicated base.

4.1 76 to binary.
4.2 137 to binary
4.3 177 to binary
4.4 76 to octal.
4.5 137 to hexadecimal
4.6 177 to hexadecimal

5 Use your (correct) answers to problem 3 to convert the following fixed-point numbers to decimal notation.

5.1 \((1111.1111)_2\)
5.2 \((11.001100)_2\)
5.3 \((1.23)_4\)
5.4 \((A.47)_16\)

6 Convert the following fixed-point decimal numbers to the indicated base.

6.1 1.125 to binary (notice this is 1 plus \(1/8\))
6.2 7.3 to binary
6.3 7.3 to octal
6.4 7.3 to hexadecimal

7 Look what happens when you create a table of \(p(n)\), \(\Delta p(n)\), and higher-order differences.

\[
\begin{array}{|c|cccc|}
\hline
n & p(n) & \Delta p(n) & \Delta^2 p(n) & \Delta^3 p(n) \\
\hline
0 & -1 & 0 & 2 & 0 \\
1 & -1 & 2 & 2 & 0 \\
2 & 1 & 4 & 2 & 0 \\
3 & 5 & 6 & 2 & 0 \\
4 & 11 & 8 & 2 & 0 \\
5 & 19 & 10 & 2 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
m & p(m-1) + \Delta p(m-1) & 2m & 2 & 0 \\
\hline
\end{array}
\]

Use this table and your knowledge of Horner’s rule to argue that:

7.1 You can evaluate \(p(0) = -1\), \(p(1) = -1\), and \(p(2) = 1\), at a cost of 6 multiplies and 6 additions.
7.2 Then you can evaluate
\[\Delta p(0) = p(1) - p(0) = 0, \quad \Delta p(1) = p(2) - p(1) = 2, \quad \text{and} \Delta^2 p(0) = \Delta p(1) - \Delta p(0) \]

at a cost of 3 more additions (subtractions)
Now show that you can be compute future values of \(p(n) \) for \(n = 3, 4, 5, \ldots \) at a cost of just 2 addition.

\[\Delta p(n - 1) = \Delta p(n - 2) + 2 \]
\[p(n) = p(n - 1) + \Delta p(n - 1) \]

7.3 What is the cost to evaluate \(p(n) = n^2 - n - 1 \) at \(n = 0, 1, \ldots, m \) using Horner’s rule at each value of \(n \)?

7.4 What is the cost to evaluate \(p(n) = n^2 - n - 1 \) at \(n = 0, 1, \ldots, m \) using the difference ideas developed above?

7.5 There is a general idea here: On a set of equally spaced numbers, say \(n = 0, 1, \ldots, m \), a polynomial can be evaluated using a constant number of multiplications and a linear number of additions. Can you:

- Create another example?
- Prove this?
- Look it up?

8 In calculus it is taught that the exponential function \(y = \exp x = e^x \) can be approximated by a Polynomials.

\[e^x \approx 1 + x + \frac{x^3}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} \]

Use Horner’s rule on the MacLaurin polynomial of degree 4 to approximate \(e \).

9 Pretend you need to evaluate a polynomial written using falling factorial powers. That is, given

\[p(x) = a_n x^{n-1} + a_{n-2} x^{2-2} + \cdots + a_2 x^2 + a_1 x^1 + a_0 \]

you need to compute \(p(c) \) for some value \(x = c \). How can you modify Horner’s rule to do this?

10 Polynomial interpolation is a common approximation method. The problem is to find a polynomial \(p(t) \) that fits observed data

\((t_0, y_0), (t_1, y_1), \ldots, (t_{n-1}, y_{n-1}) \)

Think of \(t \) as a time variable and \(y \) as some measured value at time \(t \). For instance, suppose you were given a time series \((0, o, 1, \ldots) \), measured at times \(0, 1, 2, \ldots \). Lagrange showed how to construct a polynomial that fits the data. In the example case, let

\[p(t) = 0 \cdot \frac{(t-1)(t-2)}{(0-1)(0-2)} + 0 \cdot \frac{t(t-2)}{(1-0)(1-2)} + 1 \cdot \frac{t(t-1)}{(2-0)(2-1)} \]
10.1 Do you agree that \(p(0) = 0, p(1) = 1, \) and \(p(2) = 1? \)

10.2 Show that you can reduce \(p(t) \) to \(t(t-1)/2. \)

10.3 What is the name (used in these notes) for sequence generated by \(p(t) \) at \(t = 0, 1, 2, 3, \ldots? \)

More generally, given time steps \(t_0, t_1, \ldots, t_{n-1} \) define the \textit{Lagrange basis} polynomials by

\[
l_j(t) = \prod_{0 \leq k \leq n - 1 \atop k \neq j} \frac{(t-t_k)}{(t_j-t_k)} \quad \text{for } j = 0, 1, \ldots, (n-1)
\]

10.4 Show that \(l_j(t) \) is a \textit{delta function}. That is,

\[
l_j(t_i) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}
\]

‘Let \(\langle y_0, y_1, y_2, \ldots \rangle \) be a time series measured at steps \(t_0, t_1, \ldots, t_{n-1}. \) The \textit{Lagrange} polynomial that interpolates the time series is

\[
L(t) = \sum_{k=0}^{n-1} y_k l_k(t)
\]

10.5 Show that \(L(t) \) interpolates the data. That is, show that

\[
L(t_i) = y_i \quad (\forall i = 0, 1, \ldots, (n-1)).
\]

11 In the notes on converting decimal \textit{fixed-point} numbers to another base you saw that

\[
0.3 = (0.0100110011001 \cdots)_2
\]

11.1 Write the binary expansion on the right as a sum of (negative) powers of \(2. \)

11.2 Factor \(2^{-2} \) out of every other term in your expansion to get a geometric series in powers of \(2^{-4}. \)

11.3 Factor \(2^{-5} \) out of every other term, starting from the second term, to get the same geometric series in powers of \(2^{-4}. \)

11.4 Use ideas about geometric series from \textit{calculus} to show that the geometric series in powers of \(2^{-4} \) is equal to \(16/15. \)

11.5 Conclude that the binary expansion of 0.3 is correct.
8. Sequences: The sum & difference calculus

Calculus: Derivatives and Integrals

Calculus studies what can be learned from derivatives and integrals of functions \(f : \mathbb{X} \to \mathbb{Y} \). In introductory calculus both the domain \(\mathbb{X} \) and the co-domain \(\mathbb{Y} \) are subsets of real numbers \(\mathbb{R} \).

- The derivative \(f'(x) \) of a function \(f \) at \(x \) is the limit of a divided-difference as the interval length \(h \) shrinks to zero

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

The value \(f'(x) \) of the derivative is the slope of the line tangent to the graph of the curve \(y = f(x) \).

- The integral is the area under the curve and the \(x \)-axis, provided \(f(x) > 0 \). An integral measures summed (accumulated) values of function \(f \) over a continuous domain.

A definite (left Riemann) integral \(\int_{a}^{b} f(x) \, dx \) of a function \(f \) over an interval \([a, b]\) is the limit of a sum as the number of terms approach

\[
\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{0 \leq k \leq n} h \cdot f(a + kh)
\]

The integral is the limit as \(n \) goes to \(\infty \) of sums of rectangular areas of height \(f(a + kh) \) and width \(h = (b - a)/n \).
infinity and the step between samples shrinks to zero.

\[\int_{a}^{b} f(x) \, dx = \lim_{h \to 0} \sum_{k=0}^{n} hf(a + kh) \]

where the step between samples is \(h = \frac{b-a}{n} \). Note that as \(n \to \infty \) the step size \(h \) goes to zero.

For instance,

\[\int_{a}^{b} x \, dx = \lim_{h \to 0} \sum_{k=0}^{n} h(a + kh) \]

Useful functions \(f \) model some behavior that interests us, but these functions may be complex. More simple functions may be able to approximate a complex phenomenon. One simplification is to discretize a continuous function.

Discrete Calculus: Sums and Differences

Instantaneous change can be approximated by discrete changes. Areas can be approximated by sums of discrete areas.

Understanding discrete calculus can help you understand calculus. Understanding calculus can help you understand discrete calculus. Many problems that can be modeled by calculus can be understood using discrete approximations of continuous models.

The discrete analogs of derivatives and integrals are differences and sums. Discrete numerical mathematics replaces limits of divided differences and infinite sums by more simple ideas.

- The fundamental theorem of calculus states: The integral of a derivative is the difference of function values at the ends of the interval \([a, x]\).

\[\int_{a}^{x} f'(t) \, dt = f(x) - f(a) \]

“Can you do Addition?” the White Queen asked.

“What’s one and one and one and one and one and one and one?”

“I don’t know,” said Alice. “I lost count.”

“She can’t do Addition,” the Red Queen interrupted.

“Can you do Subtraction? Take nine from eight.”

Lewis Carroll (Carroll et al., 2000).
Calculus studies functions defined on the real numbers \(\mathbb{R} \). Discrete calculus studies functions on sequences of numbers, most often the natural numbers \(\mathbb{N} \).

Sample Sequences

There are several famous sequences that can be used to describe the techniques used in the sum & difference calculus. Here is a partial list of useful sequences.

- **Alice**:
 \[\vec{A} = \langle 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ldots \rangle \]

 \[a(n) = 1 \quad \text{functional form} \]

 \[a_n = a_{n-1}, \quad a_0 = 1 \quad \text{recursive-initial value form} \]

 In Haskell: `let a = [1 | n <- [0..]].`

 The Alice sequence is fundamental to counting. Using the alphabet \{1\} you can name the natural numbers as unary strings:

 \[1 = 1, \quad 2 = 11, \quad 3 = 111, \quad 4 = 1111, \quad 5 = 11111, \ldots \]

 Unary notation wastes space, but its arithmetic is simple.

- **Gauss**:
 \[\vec{G} = \langle 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, \ldots \rangle \]

 \[g(n) = n \quad \text{functional form} \]

 \[g_n = g_{n-1} + 1, \quad g_0 = 0 \quad \text{recursive-initial value form} \]

 In Haskell: `let g = [n | n <- [0..]].`

 The well known story of Gauss, in the third grade, summing the natural numbers from 1 to 100 and Gauss’ genius at number theory causes me to name the sequence of natural numbers for Gauss (Hayes, 2006).

 Numbers in the Gauss sequence obey a linear growth model: Incrementing by a fixed constant (slope) at each step. Steps by 1 are perhaps the most simple example.

- **Triangular**:
 \[\vec{T} = \langle 0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, \ldots \rangle \]

 \[t(n) = n(n-1)/2 \quad \text{functional form} \]

 \[t_n = t_{n-1} + (n-1), \quad t_0 = 0 \quad \text{recursive-initial value form} \]

 In Haskell: `let t = [n*(n-1)/2 | n <- [0..]].`

 It seems to me that connectedness is the fundamental concept described by triangular numbers.

- **Doubling (or Power of 2)**:
 \[\vec{D} = \langle 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, \ldots \rangle \]

 \[d(n) = 2^n \quad \text{functional form} \]

 \[d_n = 2d_{n-1}, \quad d_0 = 1 \quad \text{recursive-initial value form} \]

 In Haskell: `let d = [2^n | n <- [0..]].`

 The growth (or death) of many things can be approximated exponentially: Doubling is perhaps the most simple example.

- **Mersenne**:
 \[\vec{M} = \langle 0, 1, 3, 7, 15, 31, 63, 127, 255, 511, \ldots \rangle \]

 \[m(n) = 2^n - 1 \quad \text{functional form} \]

 \[m_n = 2m_{n-1} + 1, \quad m_0 = 0 \quad \text{recursive-initial value form} \]

 In Haskell: `let m = [2^n-1 | n <- [0..]].`

 Mersenne was a “renaissance man” who I would describe as a “core router” on the early 1600s Internet. He is best remembered today because his sequence is where people search for bigger and bigger prime numbers through the GIMPS project.
• Fibonacci: \(\vec{f} = \langle 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots \rangle \)

\[
f(n) = \frac{\phi^n - \bar{\phi}^n}{\sqrt{5}} \quad \text{functional form}
\]

\[
f_n = f_{n-1} + f_{n-2}, \quad f_0 = 0, \quad f_1 = 1 \quad \text{recursive-initial value form}
\]

In Haskell: `let f = 0 : 1 : (zipWith (+) f (tail f)).`

• Quadratic: \(\vec{Q} = \langle 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, \ldots \rangle \)

\[
q(n) = n^2 \quad \text{functional form}
\]

\[
q_n = q_{n-1} + 2n - 1, \quad q_0 = 0 \quad \text{recursive-initial value form}
\]

In Haskell: `let q = [n*n | n <- [0..]].`

Pass a Quiz: Sequence basics

Take a quiz on page 334 to check your understanding. You can return to here from the quiz.

The Difference Sequence

Definition 15: Difference of a sequence

Let \(\vec{S} = \langle s_0, s_1, s_2, s_3, \ldots, s_n, \ldots \rangle \) be a sequence. The (forward) difference of \(\vec{S} \) is the sequence

\[
\Delta \vec{S} = \langle (s_1 - s_0), (s_2 - s_1), (s_3 - s_2), (s_4 - s_3), \ldots, (s_{n+1} - s_n), \ldots \rangle
\]

where each term in \(\Delta \vec{S} \) is the difference of successive terms in \(\vec{S} \).

On a term-by-term basis, each term in \(\Delta \vec{S} \) is computed by

\[
\Delta s_k = s_{k+1} - s_k, \quad k = 0, 1, 2, 3, \ldots
\]

Here are some results for the sequences mentioned above.

Figure 2: Differences of sample sequences

The difference of the Alice sequence is the Zero sequence.

\[
\Delta \vec{A} = \langle 0, 0, 0, 0, \ldots \rangle = \vec{Z}
\]
The difference of the Gauss sequence is the Alice sequence.
\[\Delta \vec{G} = \langle 1, 1, 1, \ldots \rangle = \vec{A} \]

The difference of the Triangular sequence is the Gauss sequence.
\[\Delta \vec{T} = \langle 0, 1, 2, 3, \ldots \rangle = \vec{G} \]

The difference of the Doubling sequence is itself.
\[\Delta \vec{D} = \langle 1, 2, 4, 8, \ldots \rangle = \vec{D} \]

The difference of the Mersenne sequence is the Doubling sequence.
\[\Delta \vec{M} = \langle 1, 2, 4, 8, \ldots \rangle = \vec{D} \]

The difference of the Fibonacci sequence inserts 1 to the start of the sequence
\[\Delta \vec{F} = \langle 1, 0, 1, 1, 2, 3, 5, \ldots \rangle = 1 : \vec{F} \]

The difference of the Quadratic sequence is the Odd sequence.
\[\Delta \vec{Q} = \langle 1, 3, 5, 7, 9, 11, 13, \ldots \rangle = \vec{O} \]

And, the difference of the Odd sequence is twice the Alice sequence.
\[\Delta O\vec{D} = \langle 2, 2, 2, 2, \ldots \rangle = 2 \cdot \vec{A} \]

In Haskell, the `diff` function maps a sequence to its difference.
```haskell
diff :: Num n => [n] -> [n]
diff xs = zipWith (-) (tail xs) xs
```

Pass a Quiz: Differences

Take a quiz on page 335 to check your understanding. You can return to here from the quiz.

The Sum Sequence

Let
\[\vec{S} = \langle s_0, s_1, s_2, s_3, \ldots, s_n, \ldots \rangle \]
be a sequence. The sequence of \(\vec{S} \)'s partial sums is the sequence
\[\sum \vec{S} = \langle 0, s_0, s_0 + s_1, s_0 + s_1 + s_2, \ldots, \sum_{k=0}^{n-1} s_k, \ldots \rangle \]

I choose to always begin a sequence of partial sums with the empty sum \(\sum_{k=0}^{n-1} \) (the sum of no terms) which is equal to zero. These partial sums are also called prefix sums.

This choice seems to make sense in all the instances I've considered, and it make for simple initial or terminal conditions.

It is useful to name a sum, for example, you could use \(S(n) \) to name the sum of \(n \) terms in a sequence \(\vec{S} \).

\[S(n) = \sum_{k=0}^{n-1} s_k = s_0 + s_1 + s_2 + \cdots + s_{n-1} \]
On a term-by-term basis, each term in $\sum \vec{S}$ is computed by

$$\sum_{k=0}^{n-1} s_k, \quad n = 0, 1, 2, 3, \ldots$$

That is, let n be the number of terms in a sum. Then the first few partial sums of terms in \vec{S} are:

<table>
<thead>
<tr>
<th>n</th>
<th>Sum Expression</th>
<th>Sum Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\sum_{k=0}^{-1} s_k = 0$</td>
<td>the sum of no terms</td>
</tr>
<tr>
<td>1</td>
<td>$\sum_{k=0}^{0} s_k = s_0$</td>
<td>the sum of 1 term</td>
</tr>
<tr>
<td>2</td>
<td>$\sum_{k=0}^{1} s_k = s_0 + s_1$</td>
<td>the sum of 2 terms</td>
</tr>
<tr>
<td>3</td>
<td>$\sum_{k=0}^{2} s_k = s_0 + s_1 + s_2$</td>
<td>the sum of 3 terms</td>
</tr>
</tbody>
</table>

Here are some examples for the sequences mentioned above.

Figure 3: Sums of sample sequences

The sum of the Alice sequence is the Gauss sequence.

$$\sum \vec{A} = \langle 0, 1, 2, 3, \ldots \rangle = \vec{G}$$

The sum of the Gauss sequence is the Triangular sequence.

$$\sum \vec{G} = \langle 0, 0, 1, 3, 6, 10, 15, \ldots \rangle = \vec{T}$$

The sum of the Triangular sequence is the Pyramidal sequence.

$$\sum \vec{T} = \langle 0, 0, 0, 1, 4, 10, 20, \ldots \rangle = \vec{P}$$

The sum of the Doubling sequence is the Mersenne sequence.

$$\sum \vec{D} = \langle 0, 1, 3, 7, 15, \ldots \rangle = \vec{M}$$

The sum of the Mersenne sequence is the Doubling minus the tail of the Gauss sequence.

$$\sum \vec{M} = \langle 0, 0, 1, 4, 11, 26, \ldots \rangle = \vec{D} - \text{tail}(\vec{G})$$

The sum of the Fibonacci sequence is the tail of itself minus the Alice sequence.

$$\sum \vec{F} = \langle 0, 0, 1, 2, 4, 7, 12, \ldots \rangle = \text{tail}(\vec{F}) - \vec{A}$$
The sum of the Quadratic sequence is not simple.
\[\sum \vec{Q} = \langle 0, 0, 1, 5, 14, 30, 55, \ldots \rangle \]

And, the sum of the Odd sequence is the Quadratic sequence.
\[\sum ODD = \langle 0, 1, 4, 9, 16, \ldots \rangle = \vec{Q} \]

In Haskell, the `sumSeq` function maps a sequence to its partial sums.

```haskell
sumSeq :: Num n => [n] -> [n]  -- the function maps a list to a list
sumSeq [] = [0]  -- the of terms in an empty list is 0
sumSeq ns = scanl (+) 0 ns  -- add terms in ns from the left, starting with 0
```

In the sum
\[\sum_{k=0}^{n-1} s_k, \, n = 0, 1, 2, 3, \ldots \]
\(k = 0 \) is called the lower limit, \(k = n - 1 \) is the upper limit, and \(s_k \) are the terms being added.

Pass a Quiz: Sums

Take a quiz on page 335 to check your understanding. You can return to here from the quiz.

The Fundamental Theorem of the Sum & Difference Calculus

The Fundamental theorem of discrete calculus states that the sum of differences telescopes:
\[(s_1 - s_0) + (s_2 - s_1) + \cdots + (s_n - s_{n-1}) = s_n - s_0 \]

Theorem 10: Fundamental theorem of discrete (sum & difference) calculus

A sum of differences is
\[\sum_{k=0}^{n-1} \Delta s_k = s_n |^n_0 = s_n - s_0 \]

Furthermore, the difference of a sum is
\[\Delta \left(\sum_{k=0}^{n-1} s_k \right) = \left(\sum_{k=0}^{n} s_k - \sum_{k=0}^{n-1} s_k \right) = s_n \]

Note the analogy between formulas:
\[\int_a^b \frac{d}{dx} f(x) \, dx = f(b) - f(a) \]
and
\[\frac{d}{dx} \int_a^x f(x) \, dx = f(x) \]
Proof: Fundamental theorem of discrete calculus

This fundamental theorem is easy to prove: A sum of difference telescopes.

\[\sum_{k=0}^{n-1} \Delta s_k = \sum_{k=0}^{n-1} (s_{k+1} - s_k) = (s_1 - s_0) + (s_2 - s_1) + (s_3 - s_2) + \cdots + (s_n - s_{n-1}) = s_n - s_0 \]

Furthermore,

\[\Delta \left(\sum_{k=0}^{n-1} s_k \right) = (s_0 + s_1 + s_2 + \cdots + s_n) - (s_0 + s_1 + s_2 + \cdots + s_{n-1}) = s_n \]

Pass a Quiz: Fundamental Theorem

Take a quiz on page 336 to check your understanding. You can return to here from the quiz.

Homework Questions

Use your time outside of class to solve these problems.

1. Consider the sequence of even natural numbers

 \[\text{EVEN} = \{0, 2, 4, 6, 8, \ldots \} \]

 Write the functional and recursive-initial value form that describe elements in EVEN.

2. Consider the sequence of odd natural numbers

 \[\text{ODD} = \{1, 3, 5, 7, 9, \ldots \} \]

 Write the functional and recursive-initial value form that describe elements in ODD.

3. Verify the differences of terms in the Alice, Gauss, Triangular, Doubling, Mersenne, Fibonacci, and Quadratic sequences are as claimed in Figure 2.

4. Use the fundamental theorem of discrete calculus to verify the partial sums of terms in the Alice, Gauss, Triangular, Doubling, Mersenne, Fibonacci, and Quadratic sequences are as claimed in Figure 3.
5 Most people define the triangular numbers by the function

\[t(n) = \frac{n(n+1)}{2} \quad \text{for} \quad n \in \mathbb{N} \]

What is the difference, if any, between this definition and the one used in these notes?

6 Consider the sequence of triangular fractions

\[\left(1 \cdot \frac{1}{3} \cdot \frac{1}{6} \cdot \frac{1}{10} \cdot \frac{1}{15} \cdots \right) \]

6.1 What function computes terms in this sequence?

6.2 Use the idea that difference of Triangular numbers are Gauss numbers to show that terms in the triangular fraction sequence can be written as differences of Gauss fractions.

\[\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{(n-1) \cdot n} + \frac{1}{n \cdot (n+1)} \]

6.3 Show that each term \(\frac{1}{k \cdot (k+1)} \) in the sum can be written as the difference

\[\frac{1}{k \cdot (k+1)} = \frac{1}{k} - \frac{1}{k+1} = -\Delta \frac{1}{k} \]

6.4 Use the fundamental theorem of the sum & difference calculus to find a formula for the sum.

7 Consider the sum

\[\frac{1}{2!} + \frac{2}{3!} + \cdots + \frac{n}{(n+1)!} + \frac{n+1}{(n+2)!} \]

7.1 Show that each term \(\frac{k}{(k+1)!} \) in the sum can be written as the difference

\[\frac{k}{(k+1)!} = \frac{1}{k!} - \frac{1}{(k+1)!} \]

7.2 Use the fundamental theorem of the sum & difference calculus to find a formula for the sum.

8 Consider the sequence of ratios of Fibonacci numbers

\[\left(\frac{F_2}{F_1}, \frac{F_3}{F_2}, \ldots, \frac{F_{(n+1)}}{F_n}, \ldots \right) \]

8.1 Write the first seven ratios

\[\left(1, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13} \right) \]

in fixed-point decimal notation. Guess the value to which these ratios converge.
8.2 In calculus, you’ll learn about limits and be required to show results such as the limit of ratios of Fibonacci numbers is the golden ratio φ.

$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \varphi$$

Use your knowledge that Fibonacci numbers can be computed by the function

$$f(n) = \frac{\varphi^n - \bar{\varphi}^n}{\sqrt{5}}$$

to show the above statement is True.

8.3 1 mile is 1.60934 kilometers, or 1 kilometer is 0.621371 miles. The golden ratio $\varphi \approx 1.618033$ and $1/\varphi \approx 0.61803$ are reasonable approximations to these conversion factors.

8.3.1 What is the relative error in both cases?

8.3.2 Use this approximation to conclude F_n kilometers is approximately F_{n-1} miles.

9 Consider the sequence of natural numbers

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...

9.1 Circle every other number and sum the uncircled one. What is a formula for the sum?

9.2 Circle every third number and sum the uncircled one. What is a formula for the sum?
Pass a Quiz: Summative exam #2 on functions, Horner’s rule, and sequences

Take a quiz on page 337 to check your understanding. You can return to here from the quiz.
9. Machine numbers: How computers do arithmetic

...if a program or algorithm looks pretty, why then, it must be OK. If you think that beauty is the sole criterion, remember that beauty is in the eye of the beholder, and in the eyes of a bug, a rose is just fodder!

Computers and calculators do not always follow the rules of mathematics. Ultimately, computer numbers are bounded and finite, while mathematical numbers are unbounded: Real numbers can become arbitrarily close to 0 and can tend to infinity (∞) without bound.

Machine numbers will be explained in terms of 8-bit computer words as described in the notes on abstracting a computer. Some fundamental ideas were described there and in the notes on arithmetic. You may want to refresh your memory. You will be expected to generalize from 8-bit examples to 16, 32, or 64 bit examples that model modern electronic computers. There are three number types we will consider:

1. **Unsigned natural numbers** \(\mathbb{N} = \{0, 1, 2, 3, \ldots \} \)

2. **Signed integers** \(\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \ldots \} \)

3. **Rational floating-point numbers** \(\mathbb{Q}_{fp} = \{\pm 1.f \times 2^e : f \in \mathbb{B}^4, e \in \mathbb{Z}_{bias=3} \} \)

where \(p = 4 \) is the precision and \(b = 3 \) is the exponent bias.

Unsigned natural numbers

On an 8-bit computer, \(2^8 = 256 \) unsigned natural numbers can be named: 0, 1, . . . , up to 255. The smallest unsigned natural number is 0, stored in an 8-bit word.

\[
0 = \{ \begin{array}{cccccccc}
7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]
The largest unsigned integer is \(2^8 - 1 = 255 = (FF)_{16}\), stored in an 8-bit word.

\[
255 = \{ 11111111 \}
\]

Other natural numbers between 0 and 255 are stored using different bit patterns. For instance,

\[
73 = \{ 01001001 \} \quad 237 = \{ 11110111 \}
\]

When 1 is added to 255 our computer will compute 0 as the sum. Our computer can detect this error because the carry-bit will be 1 and the zero-bit will be 0. Other strange arithmetic can happen too, for instance

\[
73 + 237 = 54 \quad \text{while 310 is what third grade math would tell us it should be.}
\]

Signed numbers (integers)

In third grade mathematics negative integers are written in sign-magnitude notation. An explicit minus sign (−) is used to denote negative integers. The plus sign is usually dropped for positive integers, but computers need an explicit sign to distinguish positive from negative integers.

\[
-41, -9, -1, -0, +0, +1, +9, +41
\]

Instead of sign-magnitude notation, computers represent signed integers using complement notation. The basic idea is that an integer and its negative sum to zero. For instance, using a decimal computer with words of length 3 you can write strings from 000 to 999. Consider the sums:

\[
\begin{array}{cccccc}
324 & 563 & 242 & 777 & 151 \\
676 & 437 & 758 & 223 & 849 \\
1000 & 1000 & 1000 & 1000 & 1000 \\
\end{array}
\]

Each sum is equal to 000 when the overflow into a fourth digit is dropped. That is, these pairs of integers are 3-digit ten’s complement negatives of each other. The interpretation is:

- Names \((n)_{10c}\) between \((000)_{10c}\) and \((499)_{10c}\) represent their normal non-negative values

 \[
 (0)_{10c} = 0 \quad (324)_{10c} = 324 \quad (223)_{10c} = 223 \quad (499)_{10c} = 499
 \]

- Names \((n)_{10c}\) between \((500)_{10c}\) and \((999)_{10c}\), are 1000 more than the negative numbers they represent.

 \[
 (500)_{10c} = -500 \quad (676)_{10c} = -324 \quad (777)_{10c} = -223 \quad (999)_{10c} = -1
 \]
In general, three digit string from 000 to 999 are interpreted to be integers in the following way.

<table>
<thead>
<tr>
<th>Three-digit ten’s complement numbers</th>
</tr>
</thead>
</table>
| \((x)_{10c} = \begin{cases}
 x & \text{if } 000 \leq x \leq 499 \\
 x - 1000 & \text{if } 500 \leq x \leq 999
\end{cases} \) |

In this way
\[(x)_{10c} + (1000 - x)_{10c} = (1000)_{10c} = 0 \]
For instance, with \(x = 237 \), we have
\[(237)_{10c} + (1000 - 237)_{10c} = (237)_{10c} + (763)_{10c} = 237 + (763 - 1000) = 0 \]

Padding ten’s complement numbers

Ten’s complement numbers can be padded to fill larger registers. For instance, to expand a 3-digit computer to 6-digits:

- Pad positive numbers with 0’s on the left.
 \[(073)_{10c} = (000\ 073)_{10c} \quad (123)_{10c} = (000\ 123)_{10c} \quad (499)_{10c} = (000\ 499)_{10c} \]

- Negative numbers are padded with 9’s on the left. For instance,
 \[(856)_{10c} = (999\ 856)_{10c} \quad (737)_{10c} = (999\ 737)_{10c} \quad (500)_{10c} = (999\ 500)_{10c} \]

Pass a Quiz: Machine numbers basics

Take a quiz on page 339 to check your understanding. You can return to here from the quiz.

Two’s complement numbers

Two’s complement numbers are written using the binary alphabet \(\mathbb{B} = \{0, 1\} \). This is the number system used for integer arithmetic on modern electronic computers. For illustration of two’s complement ideas we’ll use 8-bit binary strings.

\[(b_7b_6b_5b_4\ b_3b_2b_1b_0)_{2c} \]

These 256 strings will represent integers from −128 to 127.

In general, 8-bit strings from 0000 0000 to 1111 1111 are interpreted as integers in the following way.

<table>
<thead>
<tr>
<th>Eight-bit two’s complement numbers</th>
</tr>
</thead>
</table>
| \((x)_{2c} = \begin{cases}
 x & \text{if } 0 \leq x \leq 127 \\
 x - 256 & \text{if } 128 \leq x \leq 255
\end{cases} \) |
The leading leftmost bit \(b_7 \) signals if the number is positive or negative. But it is not just a sign. It is more than that. It is best to think of the eighth bit \(b_7 \) to represent the value \((-1)^{b_7}\).

\[
b_7 = \begin{cases}
0 & \text{the number is positive (or perhaps 0).} \\
1 & \text{the number is negative.}
\end{cases}
\]

In this context, the bit-pattern stored in a word is decoded differently from unsigned natural numbers.

\[
0 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \\
-1 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \\
73 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \\
-19 = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}
\]

Complement notation is defined by the rule that a number and its negative sum to 0. For instance, consider the 8-bit numbers \(w = (1001 1100)_{2c} \), whose negative is \(-w = (0110 0100)_{2c} \). That’s because their sum is:

\[
\begin{array}{c}
\text{Carries} \\
\hline
w = & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
-\text{w} = & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
\text{Sum} = & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]

The sum is eight 0 bits with an overflow carry bit of 1. Our 8-bit computer records 0000 0000, that is 0.

Our example two’s complement numbers are 8-bits wide: \(2^8 = 256 \) different values can be represented.

- The most negative 8-bit two’s complement number is
 \[
 (1000 0000)_{2c} = -128
 \]

- The most positive 8-bit two’s complement number is
 \[
 (0111 1111)_{2c} = +127
 \]

There are 256 integers from -128 to 127, inclusive.

Suppose instead, computer words are 4-bits wide. The table below show the natural numbers for 0 to 15 (0 to F, 0000 to 1111) and how these bit patterns represent integers in two’s complement and biased notations.

<table>
<thead>
<tr>
<th>Natural numbers</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two’s Complement</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>-8</td>
<td>-7</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>Biased (b = 7)</td>
<td>-7</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Negating a two's complement number: Copy and flip

A two’s complement number can be negated (positive-to-negative or negative-to-positive) using a simple bit-flipping rule.

1. Copy the bits from right-to-left up to and including the first 1. For instance,
 \[
 (0111 1000)_{2c} \overset{\text{copy}}{\mapsto} (\cdots 1000)_{2c} \quad \text{or} \quad (1000 1111)_{2c} \overset{\text{copy}}{\mapsto} (\cdots 1)_{2c}
 \]

2. Flip \((0 \mapsto 1, 1 \mapsto 0)\) the remaining bits to the left. For instance,
 \[
 (0111 1000)_{2c} \overset{\text{flip}}{\mapsto} (1000 1000)_{2c} \quad \text{or} \quad (1000 1111)_{2c} \overset{\text{copy}}{\mapsto} (0111 0001)_{2c}
 \]

For instance, the negative of \(-128\) cannot be represented using 8 bits. The largest 8-bit two’s complement number is 127. Nine bits are required to represent +128.

\[
(010000000)_{2c} = +128
\]

Converting from two’s complement to decimal

First, you can convert a positive two’s complement number to its decimal equivalent by using Horner’s rule. If the number is positive (its leading, most significant bit is 0), simply use Horner’s rule. For instance, \((0010 1100)_{2c} = 44\).

The bit-flipping algorithm to negate a two’s complement integer is not the hardware implementation. Most authors will describe two’s complement negation by

1. Compute the one’s complement: Flip each bit in the binary string.
2. Add 1 to the one’s complement.

Convince yourself that these steps produce the same result as described in this course.

Using the bit-flipping rule to negate an integer in two’s complement notation goes like this:

\[
\begin{array}{llllllllllll}
\text{Flip here} & \text{Copy here} \\
76 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
\downarrow & \downarrow \\
76 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
\end{array}
\]

The bit-flipping rule fails for a string that starts with 1 followed by only 0’s. Well the input is the output in this case. The most negative two’s complement number in \(n\)-bits can only be represented in \(n + 1\) bits.

Or you can do the conversion in your head if the number is small enough. Using look-up table can be a good method for small problems.
• Negate it.
\[(1100 0100)_{2c} \rightarrow (0011 1110)_{2c}\]

• Evaluate the negative using Horner’s rule.

```
<table>
<thead>
<tr>
<th>x = 2</th>
<th>Horner’s Rule @ x = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0 0 1 1 1 1 0 0</td>
</tr>
<tr>
<td></td>
<td>0 0 2 6 14 30 60</td>
</tr>
<tr>
<td></td>
<td>0 0 1 3 7 15 30 60</td>
</tr>
</tbody>
</table>
```

• Negate it. \(-60 = (1100 0100)_{2c}\)

And here’s another example that shows
\[(1010 1101)_{2c} = -83\]

First, negate the two’s complement number
\[-(1010 1101)_{2c} = (0101 0011)_{2c}\]

Next, evaluate the negation using Horner’s rule.

```
<table>
<thead>
<tr>
<th>x = 2</th>
<th>Horner’s Rule @ x = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1 0 1 0 0 1 1 1</td>
</tr>
<tr>
<td></td>
<td>0 2 4 10 20 40 82</td>
</tr>
<tr>
<td></td>
<td>1 2 5 10 21 43 86 83</td>
</tr>
</tbody>
</table>
```

Now negate the result to get \((1010 1101)_{2c} = -83\).

2. Here’s a second way to convert a negative two’s complement number to its decimal equivalent.

Use Horner’s rule on the two’s complement number and then subtract 256 from the result. For instance, to convert \((1010 1101)_{2c}\) to decimal, compute

```
<table>
<thead>
<tr>
<th>x = 2</th>
<th>Horner’s Rule @ x = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1 0 1 0 1 1 0 1</td>
</tr>
<tr>
<td></td>
<td>2 4 10 20 42 86 172</td>
</tr>
<tr>
<td></td>
<td>1 2 5 10 21 43 86 173</td>
</tr>
</tbody>
</table>
```

Now subtract \(2^8 = 256\) from 173.
\[(1010 1101)_{2c} = 173 - 2^8 = 173 - 256 = -83\]

Here is another example showing \(1100100\)\(_{2c}\) = \(-60\)

<table>
<thead>
<tr>
<th>Horner’s Rule @ (x = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 0 0 1 0 0</td>
</tr>
<tr>
<td>2 6 12 24 48 98 196</td>
</tr>
<tr>
<td>1 3 6 12 24 49 98 196</td>
</tr>
</tbody>
</table>

Subtract 256 to determine

\[(1100100)_{2c} = 196 - 256 = -60\]

3. Finally, here’s a third way to convert a negative two’s complement number to its decimal equivalent.

Treat the leading, leftmost bit \(b_7 = 1\) as \((-1)^b = -1\) and use Horner’s rule to the resulting string. That is, to convert

\[(1b_6b_5b_4b_3b_2b_1b_0)_{2c}\]

to decimal by applying Horner’s rule to the string

\(-1b_6b_5b_4b_3b_2b_1b_0\)

For example, to compute the decimal equivalent of \((10101101)_{2c}\), apply Horner’s rule to \(-1, 0, 1, 0, 1, 0, 1\)

<table>
<thead>
<tr>
<th>Horner’s Rule @ (x = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1 0 1 0 1 1 0 1</td>
</tr>
<tr>
<td>-2 -4 -6 -12 -22 -42 -84</td>
</tr>
<tr>
<td>-1 -2 -3 -6 -11 -21 -42 -83</td>
</tr>
</tbody>
</table>

Here is another example showing \(1100100\)\(_{2c}\) = \(-60\)

<table>
<thead>
<tr>
<th>Horner’s Rule @ (x = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1 1 0 0 0 1 0 0</td>
</tr>
<tr>
<td>-2 -2 -4 -8 -16 -30 -60</td>
</tr>
<tr>
<td>-1 -1 -2 -4 -8 -15 -30 -60</td>
</tr>
</tbody>
</table>

And here’s another example.

<table>
<thead>
<tr>
<th>Horner’s Rule @ (x = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1 1 0 0 1 0 0 0</td>
</tr>
<tr>
<td>-2 -2 -4 -8 -14 -28 -56</td>
</tr>
<tr>
<td>-1 -1 -2 -4 -7 -14 -28 -56</td>
</tr>
</tbody>
</table>

I just learned of third conversion from a comment made by Roger B.
That is, \((1100 1000)_2 = -56\)

You should question why this works. Consider: We are using 8 bits, two’s complement integers to represent positive and negative integers.

Let \((b_7b_6b_5b_4b_3b_2b_1b_0)_2\) be the binary representation of a natural number \(0 \leq n \leq 255\). The meaning of the two’s complement number \((b_7b_6b_5b_4b_3b_2b_1b_0)_2\) is given by the two cases for the most significant bit \(b_7\).

\[
(b_7b_6b_5b_4b_3b_2b_1b_0)_2 = \begin{cases}
(0b_6b_4b_3b_2b_1b_0)_2 & \text{if } 0 \leq n \leq 127, \\
(1b_6b_4b_3b_2b_1b_0)_2 - 256 & \text{if } 128 \leq n \leq 255.
\end{cases}
\]

Notice the leading 1 in \((1b_6b_4b_3b_2b_1b_0)_2\) stands for \(2^7 = 128\). Therefore,

\[
(1b_6b_4b_3b_2b_1b_0)_2 - 256 = (128 + (b_6b_4b_3b_2b_1b_0)_2) - 256 = -128 + (b_6b_4b_3b_2b_1b_0)_2
\]

Therefore, \((1b_6b_4b_3b_2b_1b_0)_2\) can be convert to decimal by applying Horner’s rule to \((-1b_6b_4b_3b_2b_1b_0)_2\). Here’s the 4-bit examples.

<table>
<thead>
<tr>
<th>4-bit negative two’s complement numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8 = (1000)_2 = -2^3 + 0</td>
</tr>
<tr>
<td>-7 = (1001)_2 = -2^3 + 1</td>
</tr>
<tr>
<td>-6 = (1010)_2 = -2^3 + 2</td>
</tr>
<tr>
<td>-5 = (1011)_2 = -2^3 + 3</td>
</tr>
<tr>
<td>-4 = (1100)_2 = -2^3 + 4</td>
</tr>
<tr>
<td>-3 = (1101)_2 = -2^3 + 5</td>
</tr>
<tr>
<td>-2 = (1110)_2 = -2^3 + 6</td>
</tr>
<tr>
<td>-1 = (1111)_2 = -2^3 + 7</td>
</tr>
</tbody>
</table>

In Haskell, the code to convert from a binary string to decimal might look like this.

```haskell
  twoscompToDecimal :: [Binary] -> Integer
  twoscompToDecimal t = if head t == 0
      then horner tail t
      else horner tail t - 2**(length t)
```

Converting from decimal to two’s complement

Now consider the problem of converting from decimal to two’s complement. Again, break the problem down into two cases: positive and negative.

For a positive integer \(n\) do the following:

1. Convert \(n\) to an *unsigned* binary by repeated remainder, as described in the chapter on Horner’s rule.
2. Prepend (on the left) a leading 0 to indicate $+n$.

For instance, to write $+73$ in two’s complement notation: Use repeated remainder to convert 73 into binary.

\[
\begin{array}{c|c|c|c|c|c|c}
\text{Quotients} & 73 & 36 & 18 & 9 & 4 & 2 & 1 \\
\text{Remainders} & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
\end{array}
\]

Therefore, unsigned 73 is $(1001001)_2$. Next, prepend a sign to get the two’s complement representation of +73.

\[+73 = (01001001)_2\]

There are several methods that convert a negative integer n into two’s complement notation. Compare with the three ways of changing two’s complement to decimal notation.

1. You can negate a negative number, perform repeated remaindering, pad with a sign, and negate the result.

For instance, to write -37 in two’s complement notation: First use repeated remainder to convert $|−37| = 37$ into binary.

\[
\begin{array}{c|c|c|c|c|c|c}
\text{Quotients} & 37 & 18 & 9 & 4 & 2 & 1 \\
\text{Remainders} & 1 & 0 & 1 & 0 & 0 & 1 \\
\end{array}
\]

Therefore unsigned 37 can be written as $(10101)_2$ in binary. Next, prepend a 0 to form signed $+37$.

\[+37 = (010101)_2\]

And then use the bit-flipping rule to negate $(010101)_2$.

\[-37 = (1011011)_2\] in 8-bits \quad -37 = (11011011)_2\]

As another example, consider mapping $−237$ to its two’s complement representation. First, by remaindering,

\[
\begin{array}{c|c|c|c|c|c|c|c}
\text{Quotients} & 237 & 118 & 59 & 29 & 14 & 7 & 3 & 1 \\
\text{Remainders} & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
\end{array}
\]

unsigned $237 = (11101101)_2$, signed $+237 = (011101101)_2$, and $-237 = (100010011)_2$. Don’t be someone who fails to use a sign for all signed numbers.
2. Using 8-bit numbers, the second method is to add 256 to the negative number and then use repeated remaindering. For instance, to write \(-37\) in two’s complement notation, first add 256 to get \(-37 + 256 = 219\) and then compute remainders.

For this second method the value to add depends on the magnitude of \(n\). Consider the examples:

\[
\begin{align*}
-2 \leq n < -1 & \text{ add } 4 \\
-4 \leq n < -2 & \text{ add } 8 \\
-128 \leq n < -64 & \text{ add } 256 \\
-2^m \leq n < -2^{m-1} & \text{ add } 2^{m+1}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Quotients</th>
<th>219</th>
<th>109</th>
<th>54</th>
<th>27</th>
<th>13</th>
<th>6</th>
<th>3</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remainders</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Therefore,

\[-37 = (11011011)_{2c} \quad \text{which can be truncated to 7 bits} \quad -37 = (1011011)_{2c}\]

3. A third method to convert a negative decimal integer \(n\) to two’s complement is to simply run the remaindering algorithm on \(n\), being careful when computing quotients.

<table>
<thead>
<tr>
<th>Quotients</th>
<th>-37</th>
<th>-19</th>
<th>-10</th>
<th>-5</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remainders</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Therefore,

\[-37 = (1011011)_{2c}\]

Here is another example.

<table>
<thead>
<tr>
<th>Quotients</th>
<th>-237</th>
<th>-119</th>
<th>-60</th>
<th>-30</th>
<th>-15</th>
<th>-8</th>
<th>-4</th>
<th>-2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remainders</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Therefore,

\[-237 = (100010011)_{2c}\]

Padding two’s complement numbers

Two’s complement numbers can be padded to fill larger registers. For instance, to expand a 8-bit computer to 16-bits:

- Pad positive numbers with 0’s on the left, most significant end.

\[
\begin{align*}
(0010\ 1110)_{2c} &= (0000\ 0000\ 0010\ 1110)_{2c} \\
(0111\ 0001)_{2c} &= (0000\ 0000\ 0111\ 0001)_{2c}
\end{align*}
\]
Floating-point numbers

The set of floating-point numbers is used to approximate the set of real numbers. It is beyond the scope of this course to provide a complete description of floating-point numbers. The IEEE Standard for Floating Point Arithmetic (IEEE 754) describes floating-point numbers in depth. There are some essential ideas you should know before writing answers to problems that involve real numbers.

Floating-point notation is built upon scientific notation. Rational numbers can be written in normalized decimal scientific notation:

\[t = \pm d.f \times 10^e \]

where \(d\) is a non-zero digit, \(f\) is a decimal string, and \(e\) is an integer.

Rational numbers can also be written in normalized binary scientific notation:

\[t = \pm 1.f \times 2^e \]

It is not necessary to record the 1 in \(1.f\), because it will always be there for normalized floating-point numbers. You only need to record the sign \(\pm\), the fractional part \(f\), and the exponent \(e\).

I call the examples “pidgin” floating-point numbers. A floating-point number \(t \in \mathbb{Q}_{fp}\) is an 8-bit string that is parsed into three parts as shown below.

<table>
<thead>
<tr>
<th>Storage of 8-bit pidgin floating point numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign Bit</td>
</tr>
<tr>
<td>(s)</td>
</tr>
</tbody>
</table>

The sign \(s\) controls whether the floating-point number is positive or negative. The next three bits \(e = e_2e_1e_0\) encode a base 2 exponent written with a bias \(b = 3\). That means the biased exponents in the range \((000, \ldots, 111)\) represent the integers in the range \((-3, \ldots, 4)\).

Pass a Quiz: Two’s complement notation

Take a quiz on page 339 to check your understanding. You can return to here from the quiz.

For instance, the normalized scientific notation for \(0.577215\) is \(5.77215 \times 10^{-1}\). Restricting to one non-zero digit to the left of the point is called normalizing the floating-point number. This avoids multiple representations for identical values. For instance, \(-0.000622145 \times 10^{26}\) is normalized as \(-6.022145 \times 10^{23}\).

The sign \(s\) conveniently encodes the sign of \(t\) by the function

\[(-1)^s = \begin{cases} 1 & \text{when } s = 0 \\ -1 & \text{when } s = 1 \end{cases} \]

Suppose the bias is \(b = 3\). The chart below shows biased numbers and their equivalent integers.

<table>
<thead>
<tr>
<th>Biased Number</th>
<th>Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)_{bias=3}</td>
<td>-3</td>
</tr>
<tr>
<td>(2)_{bias=3}</td>
<td>-1</td>
</tr>
<tr>
<td>(3)_{bias=3}</td>
<td>0</td>
</tr>
<tr>
<td>(4)_{bias=3}</td>
<td>1</td>
</tr>
<tr>
<td>(7)_{bias=3}</td>
<td>4</td>
</tr>
</tbody>
</table>

Suppose the bias is \(b = 8\). The chart below shows some biased numbers and their equivalent integers.

<table>
<thead>
<tr>
<th>Biased Number</th>
<th>Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)_{bias=8}</td>
<td>8</td>
</tr>
<tr>
<td>(8)_{bias=8}</td>
<td>0</td>
</tr>
<tr>
<td>(15)_{bias=8}</td>
<td>7</td>
</tr>
</tbody>
</table>

Suppose the bias is \(b = 127\). Then the biased representation of \(n = -37\) is

\[(-37 + 127)_{bias=127} = (90)_{bias=127} \]

The unsigned integers 0 to 255 can be translated left by \(b = 7 - 1 = 127\) mapping them from \(-127\) to 127.
Biased notation

Biased notation is an alternative to signed-magnitude and two’s complement notation for representing integers. Integer \(n \) is represented in **biased** notation as
\[
(n)_{\text{bias} = b} = n - b, \quad \text{where the bias } b > 0.
\]

Biased notation is a simple left-linear shift of all integers \(n \) by an amount \(b \). Adding a bias \(b > 0 \) to an integer \(n \) translates each integer \(n \) to the right by \(b \) places.

In the pidgin floating-point notation, **biased** numbers lie between 0 and \(7 = 2^3 - 1 \).
\[
0 \leq (n)_{\text{bias} = 4} \leq 7
\]

With a bias is \(b = 3 \). This gives integer exponents \(n \) in the range
\[
-3 \leq n \leq 4
\]

where
\[
-3 = 000_2, -2 = 001_2, -1 = 010_2, 0 = 011_2, 1 = 100_2, 2 = 101_2, 3 = 110_2, 4 = 111_2
\]

In practice, **biased** numbers lie between 1 and \(2^m - 2 \), for some number of bits \(m \).
\[
1 \leq (n)_{\text{bias} = b} \leq 2^m - 2
\]

And, the bias is \(b = 2^{m-1} - 1 \).

For IEEE 754 numbers the biases are:

- Single-precision floating point numbers are 32 bits wide. Their exponents are 8 bits wide and written as **biased** numbers in the range 1 to \(2^{23} = 2^8 - 2 \). Their bias is \(b = 127 = 2^7 - 1 \). This gives a range of exponents from
\[
-126 = 1 - 127 \quad \text{to} \quad 127 = 254 - 127
\]

- Double-precision floating point numbers are 64 bits wide. Their exponent are 11 bits, written as **biased** numbers in the range 1 to \(2^{1023} = 2^{11} - 2 \). The bias is \(b = 1023 = 2^{10} - 1 \). This gives a range of exponents from
\[
-1022 = 1 - 1023 \quad \text{to} \quad 1023 = 2047 - 1023
\]

- Quad-precision floating point numbers are 128 bits wide. Their exponent are 15 bits wide and written as **biased** numbers in the range 1 to \(2^{766} = 2^{15} - 1 \). The bias is \(b = 16, 383 = 2^{14} - 1 \). This gives a range of exponents from
\[
-16, 382 = 1 - 16, 383 \quad \text{to} \quad 16, 383 = 32, 766 - 16, 383
\]

In this way, **biased** numbers in the range 1 to \(2^m - 2 \) represent integers \(n \) between \(2 - 2^{m-1} \) and \(2^{m-1} - 1 \).
\[
2 - b \leq n \leq b - 1
\]
Normalized fractional part

The four fraction bits \(f = f_{-4}f_{-3}f_{-2}f_{-1} \) encode the natural numbers from 0 to 15, but their value is interpreted as

\[
\frac{f}{16} = \left(\frac{f_{-1}f_{-2}f_{-3}f_{-4}}{16}\right)_{2}
\]

Finally, except for 0, which is \(00000000 \), assume that all floating point numbers are normalized.

Therefore, if

\[
t = s e_0 f_{-1}f_{-2}f_{-3}f_{-4} = s e f
\]

is a floating point number, it represents the rational number

\[
t = (-1)^s \left(1 + \frac{f}{16}\right) \times 2^e
\]

where \(s \in \{0, 1\} \), \(0 \leq f \leq 15 \), and \(-3 \leq e \leq 3 \). Here are some examples of the my pidgin encoding of 8-bit wide normalized floating point numbers.

<table>
<thead>
<tr>
<th>Floating point</th>
<th>Decimal value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 000 0000</td>
<td>0</td>
</tr>
<tr>
<td>1 000 0000</td>
<td>(-1 \cdot 0.10 \times 2^{-3}) (-1/8)</td>
</tr>
<tr>
<td>0 001 0000</td>
<td>(+1 \cdot 0.10 \times 2^{-2}) (1/4)</td>
</tr>
<tr>
<td>0 001 0001</td>
<td>(+1 \cdot \left(1 + \frac{1}{16}\right) \times 2^{-2}) (17/64)</td>
</tr>
<tr>
<td>0 100 0000</td>
<td>(+1 \cdot 0.10 \times 2^{1}) (2)</td>
</tr>
<tr>
<td>0 100 0001</td>
<td>(+1 \cdot \left(1 + \frac{1}{16}\right) \times 2^{1}) (17/8)</td>
</tr>
<tr>
<td>0 111 0000</td>
<td>(+1 \cdot 0.10 \times 2^{4}) (16)</td>
</tr>
<tr>
<td>0 111 1111</td>
<td>(+1 \cdot \left(1 + \frac{15}{16}\right) \times 0 \times 2^{4}) (31)</td>
</tr>
</tbody>
</table>

The line graphs that follow show the distribution and density of these floating point numbers at each exponential scale.
In practice, IEEE 754 fractions can be single, double, or quad-precision.

- Single-precision floating point numbers are 32 bits wide. Their fractions are 23 bits wide and their precision is 24. Since
 \[2^{23} = \left(10^3\right)^{2.3} \approx 10^{6.9} \]
 single-precision arithmetic give about 6 or 7 digits of accuracy.

- Double-precision floating point numbers are 64 bits wide. Their fractions are 52 bits wide and their precision is 53. Since
 \[2^{52} = \left(10^3\right)^{5.2} \approx 10^{15.6} \]
 double-precision arithmetic give about 15 or 16 digits of accuracy.

- Quad-precision floating point numbers are 128 bits wide. Their fractions are 112 bits wide and their precision is 113. Since
 \[2^{112} = \left(10^3\right)^{11.2} \approx 10^{33.6} \]
 quad-precision arithmetic give about 33 or 34 digits of accuracy.

Floating-point arithmetic

Floating-point number systems are rife with arithmetic errors. Even the most basic rules do not apply.

- Floating-point arithmetic is not closed under addition. For instance, let \(t = 16 = 1.0 \times 2^4 = \left(01110000\right)_{fp} \)
 and \(s = 0.5 = 1.0 \times 2^{-1} = \left(00100000\right)_{fp} \).
 Both \(t \) and \(s \) are pidgin floating point numbers. But, their sum \(t + s = 16.5 \)
 cannot be written as a pidgin floating point number.

 \[
 16 + 0.5 = \left(1.0\right)_2 \times 2^4 + \left(1.0\right)_2 \times 2^{-1} = \left(1.00001\right)_2 \times 2^4
 \]

 Five bits after the binary point are needed.

 \[
 t + s = 16.5 = 33 \times 2^{-1} = \left(011100001\right)_{fp}
 \]

- Floating-point arithmetic is not associative. For instance

 \[
 (16 + 0.5) + 0.5 = 16 \quad \text{but} \quad 16 + (0.5 + 0.5) = 17
 \]
There are several measures of floating point errors that occur when approximating arithmetic over the real numbers.

Let \(t(x) \) be the floating point number closest to real number \(x \). Then \(e(x) = |x - t(x)| \) is the rounding error in approximating \(x \) by floating point number \(t(x) \). As the graphs above show, the rounding error increases as the magnitude of \(x \) increases. The relative error in approximating \(x \neq 0 \) by \(t(x) \) is defined to be

\[
E(x) = \frac{e(x)}{|x|} = \frac{|x - t(x)|}{|x|}
\]

Look at the first line graph above, where the magnitude of scale is the smallest.

<table>
<thead>
<tr>
<th>x</th>
<th>t(x)</th>
<th>e(x)</th>
<th>E(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/128</td>
<td>0</td>
<td>1/16</td>
<td>1</td>
</tr>
<tr>
<td>16/128</td>
<td>17/128</td>
<td>1/28</td>
<td>1/16</td>
</tr>
<tr>
<td>33/128</td>
<td>17/128</td>
<td>1</td>
<td>1/33</td>
</tr>
<tr>
<td>256/128</td>
<td>256/128</td>
<td>1/256</td>
<td>1/33</td>
</tr>
<tr>
<td>53/128</td>
<td>16/128</td>
<td>1/128</td>
<td>1</td>
</tr>
<tr>
<td>128/64</td>
<td>64/64</td>
<td>1/64</td>
<td>1/33</td>
</tr>
<tr>
<td>33/16</td>
<td>16/16</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>32/16</td>
<td>16/16</td>
<td>1/16</td>
<td>1/33</td>
</tr>
<tr>
<td>16/8</td>
<td>8/8</td>
<td>1/8</td>
<td>1/33</td>
</tr>
<tr>
<td>33/4</td>
<td>16/4</td>
<td>1</td>
<td>1/33</td>
</tr>
<tr>
<td>31/2</td>
<td>16/1</td>
<td>1/2</td>
<td>1/33</td>
</tr>
</tbody>
</table>

Machine epsilon

The machine epsilon \(\epsilon \) for floating-point arithmetic is defined to be the largest power of the base such that

\[
1 + \epsilon = 1
\]

In a binary floating point system, the machine epsilon will be a power of 2. In our pidgin floating-point arithmetic, \(\epsilon = 2^{-5} \). Notice that

\[
1 = 1 + 2^{-6} = 65/64 \notin \mathbb{Q}_{fp}
\]

\[
1 = 1 + 2^{-5} = 33/32 \notin \mathbb{Q}_{fp}
\]

\[
1 < 1 + 2^{-4} = 17/16 \in \mathbb{Q}_{fp}
\]

The machine’s epsilon measures the precision (accuracy or inaccuracy) of floating-point arithmetic. Machine epsilon can be computed by the formula

\[
\epsilon = 2^{-p}
\]

where \(p \) is the precision of the system.

In practice, the machine epsilon for IEEE 754 single, double, or quad-precision numbers are:
• Single-precision floating point numbers are 32 bits wide with a precision of 24. Single-precision machine epsilon is

\[2^{-24} \approx 5.96046447754 \times 10^{-8} \]

• Double-precision floating point numbers are 64 bits wide, with a precision of 53. Double-precision machine epsilon is

\[2^{-53} \approx 1.11022302463 \times 10^{-16} \]

• Quad-precision floating point numbers are 128 bits wide, with a precision of 113. Quad-precision machine epsilon is

\[2^{-113} \approx 9.62964972194 \times 10^{-35} \]

Pass a Quiz: Floating point notation

Take a quiz on page 340 to check your understanding. You can return to here from the quiz.

Homework Questions

Use your time outside of class to solve these problems.

1. Use Horner’s to convert the following unsigned binary numbers to decimal.

 1.1 \((1001001)_2\)
 1.2 \((0001001)_2\)
 1.3 \((10010001)_2\)
 1.4 \((011110)_2\)

2. Use repeated remaindering to convert the following unsigned integers to binary.

 2.1 73
 2.2 37
 2.3 237
 2.4 105

3. I got this one from Click & Clack, the Tappit Brothers: Given $1000 in $1 dollar bills and 10 envelopes, distribute the money among the envelopes so that you can give out any dollar amount from $1 to $1000.

4. Convert the following two’s complement (signed) integers to decimal notation.

 4.1 \((1001001)_{2c}\)
 4.2 \((0001001)_{2c}\)
4.3 \(10010001_{2c} \)
4.4 \(011110_{2c} \)

5 Convert the following signed integers to two’s complement notation.

5.1 \(-73\)
5.2 \(+37\)
5.3 \(-237\)
5.4 \(+105\)

6 Convert the following fixed-point binary numbers to decimal fractions.

6.1 \(0.011101_2\)
6.2 \(100.111101_2\)

7 Convert the following decimal numbers to fixed-point binary fractions.

7.1 0.575
7.2 57.5

8 Write your answers from problem (7) in normalized floating-point notation.

9 Using the 8-bit pidgin floating-point notation described in these notes, convert the following to their decimal representation.

9.1 \(10001101_{fp}\)
9.2 \(00001101_{fp}\)
9.3 \(11110000_{fp}\)
9.4 \(11110001_{fp}\)

10 Consider normalized single precision IEEE 754 floating point numbers.

10.1 What string of bits represents the positive number closest to zero?
10.2 Write this string using hexadecimal numerals.
10.3 What is the value of this number?
10.4 What string of bits represents the positive number farthest from zero?
10.5 Write this string using hexadecimal numerals.
10.6 What is the value of this number?
10. Names: By any name

God taught Adam the names of all things.

Mathematics is the art of giving the same name to different things.

What’s in a name? That which we call a rose by any other name would smell as sweet.

Every thing should have a name. Through translation, every thing chosen from a countable discrete set can be named by one of the natural numbers.

\[\mathbb{N} = \{0, 1, 2, 3, \ldots\} \]

Some people do not include 0 as a natural numbers. But, nothing is important! Nothing is more natural than nothing! The opposite of nothing is everything. Everything is important!

A single thing can have more than one name. For instance, \((41)_{10}\) and \((0010\ 0011)_{2}\) are both names for the same natural number called “forty-one.” Multiple names for the same value are called aliases. When a thing has aliases, algorithms that convert between them are useful.

Alphabets

There are several commonly used alphabets.
• The alphabet of bits $\mathbb{B} = \{0, 1\}$ for writing numbers in binary.

• The alphabet of digits

$$\mathbb{D} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} = \mathbb{B} \cup \{2, 3, 4, 5, 6, 7, 8, 9\}$$

for writing numbers in decimal.

• The alphabet of hexadecimal numerals

$$\mathbb{H} = \{0, 1, 2, 3, \ldots, 7, 8, 9, A, B, C, D, E, F\} = \mathbb{D} \cup \{A, B, C, D, E, F\}$$

for writing in hexadecimal.

There are also alphabets used for natural language and symbols. Instance are:

• The 26 letters in the lowercase English alphabet.

$$\mathbb{E} = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$$

These letters are encoded in Unicode as decimal 97 through 122 or their hexadecimal equivalent:

$$\mathbb{E} = \{(60)_{16}, (61)_{16}, (62)_{16}, \ldots, (78)_{16}, (79)_{16}, (7A)_{16}\}$$

• The 24 letters in the Greek alphabet is commonly used in mathematics.

$$\mathbb{G} = \{\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, \omicron, \pi, \rho, \sigma, \tau, \upsilon, \phi, \chi, \psi, \omega\}$$

These 24 lower case Greek letters are encoded in Unicode as decimal 945 through 968 or their hexadecimal equivalent:

$$\mathbb{G} = \{(3B1)_{16}, (3B2)_{16}, (3B4)_{16}, \ldots, (3C6)_{16}, (3C8)_{16}, (3C8)_{16}\}$$

• The Unicode character set is meant to be universal: Inclusive of all symbols used in all languages. The Unicode set of characters have decimal names from 0 to 1,114,111 or equivalent hexadecimal names

$$\mathbb{U} = \{c : 0 \leq c \leq (10FFFF)_{16} = 1,114,111\}$$

Strings

A string over an alphabet \mathbb{A} is a sequence of characters from \mathbb{A}. There is one empty string λ that names nothing; it contains no characters; its length is 0, $|\lambda| = 0$. For illustration, let $\mathbb{A} = \mathbb{E}$ the lower case English alphabet. Then, the set of all strings over \mathbb{E} is

$$\mathbb{E}^* = \{\lambda, a, b, c, \ldots, z, aa, \ldots, az, za, \ldots, zz, aab, \ldots\}$$

Hexadecimals are frequently used in describing computer organization: How a machine is built and operated. Binary numbers are too long. Hexadecimal numbers have just about the right length for recognizing patterns.

The Greek alphabet is also used by those who write in Greek.
Naming numbers

A fundamental naming problem is:

How many numerals are needed to write the number \(m \)?

To solve the problem in the binary case, notice that any number \(m \geq 1 \) can be bound below and above by powers of 2

\[
\forall m \in \mathbb{N}^+ \exists n \in \mathbb{N} \ (2^n \leq m < 2^{n+1})
\]

For instance,

\[
\begin{align*}
1 &= 2^0 \leq 1 < 2^1 = 2 \\
2 &= 2^1 \leq 2, 3 < 2^2 = 4 \\
4 &= 2^2 \leq 4, 5, 6, 7 < 2^3 = 8 \\
8 &= 2^3 \leq 8, 9, A, B, C, D, E, F < 2^4 = 16
\end{align*}
\]

and so on. Furthermore, to write \(2^n \) in binary requires \((n + 1)\) bits.

\[
\begin{align*}
2^0 &= (1)_2 \\
2^1 &= (10)_2 \\
2^2 &= (100)_2 \\
2^3 &= (1000)_2
\end{align*}
\]

and so on. Therefore, in the general case,

\[
\text{to write } m \text{ in the range } 2^n \leq m < 2^{n+1} \text{ requires } n + 1 \text{ bits.}
\]

You can compute \((n + 1)\) using the inequalities \(2^n \leq m < 2^{n+1} \). Take the log base 2 of each term to deduce that

\[
n \leq \log_2 m < n + 1
\]

Take the floor of \(\log_2 m \) to get \(n \) and add 1 to get \(n + 1 \), the number of bits needed to write \(m \).

\[
n + 1 = \lfloor \log_2 m \rfloor + 1 = \text{number of bits to write } m.
\]

In the general case, any number \(m \geq 1 \) can be bound below and above by powers of \(b \), for any numerical base \(b > 1 \).

\[
\forall m \in \mathbb{N}^+ \exists n \in \mathbb{N} \ (b^n \leq m < b^{n+1})
\]

For instance,

\[
\begin{align*}
1 \leq 1, 2, \ldots, b - 1 < b \\
b \leq b, b + 1, \ldots, b^2 - 1 < b^2 \\
b^2 \leq b^2, b^2 + 1, \ldots, b^3 - 1 < b^3
\end{align*}
\]
and so on.

When \(b^n \leq m < b^{n+1} \), \(n + 1 \) numerals are needed to write \(m \) in base \(b \). Take the log base \(b \) of each term, to deduce that

\[
n \leq \log_b m < n + 1
\]

Take the floor of \(\log_b m \) to get \(n \) and add 1 to get \(n + 1 \), the number of base \(b \) numerals needed to write \(m \).

\[
[\log_b m] + 1 = \text{number of base } b \text{ numerals needed to write } m.
\]

Theorem 11: String length of a number

Let \(A \) be a number system with cardinality \(b = |A| \). To write the number \(m \) in base \(b \) notation requires

\[
n + 1 = [\log_b m] + 1 = \text{numerals.}
\]

Numerals needed to represent a number

<table>
<thead>
<tr>
<th>Number represented (m)</th>
<th>Bits needed ([\log m] + 1)</th>
<th>Number represented (m)</th>
<th>Digits needed ([\log m] + 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (\leq m < 2)</td>
<td>1</td>
<td>1 (\leq m < 10)</td>
<td>1</td>
</tr>
<tr>
<td>2 (\leq m < 4)</td>
<td>2</td>
<td>10 (\leq m < 100)</td>
<td>2</td>
</tr>
<tr>
<td>4 (\leq m < 8)</td>
<td>3</td>
<td>100 (\leq m < 1000)</td>
<td>3</td>
</tr>
<tr>
<td>8 (\leq m < 16)</td>
<td>4</td>
<td>1000 (\leq m < 10^4)</td>
<td>4</td>
</tr>
<tr>
<td>16 (\leq m < 32)</td>
<td>5</td>
<td>(10^4 \leq m < 10^5)</td>
<td>5</td>
</tr>
</tbody>
</table>

Pass a Quiz: Naming Numbers

Take a quiz on page 341 to check your understanding. You can return to here from the quiz.

Counting strings

The number of strings that can be written depends on the cardinality of the alphabet and the string length. The length can be fixed, say \(n \) for some fixed, but unspecified natural number. Or, the length can vary from, say \(k = 0 \) to \(k = (n - 1) \).

Fixed length strings

There are several examples that you have mastered.
You can compute 2^n different binary strings of (fixed) length n: $2^1 = 2$ strings of length 1, $2^2 = 4$ strings of length 2, $2^3 = 8$ strings of length 3, etc.

You can write 10^n different decimal strings of (fixed) length n: $10^1 = 10$ strings of length 1, $10^2 = 100$ strings of length 2, $10^3 = 1000$ strings of length 3, etc.

You can write 16^n different hexadecimal strings of (fixed) length n: $16^1 = 16$ strings of length 1, $16^2 = 256$ strings of length 2, $16^3 = 4096$ strings of length 3, etc.

In general, there are $|A|^n$ different strings of length n over an alphabet A with cardinality $|A|$.

Pretend you want to name m things using using fixed-length strings over an alphabet A with $|A| = c$. You need to compute the string length n. You can construct a function that maps m and b to n.

With little loss of generality, you can assume the names are 0, 1, 2, ..., $(m-1)$. This reduces the problem of computing the number of base b numerals needed to write m names to the problem of computing the number of base b numerals needed to write the number $(m-1)$.

If you’ve studied the previous notes, you will realize that $\log_b(m-1)$ is a good approximation the string length needed to name m things. You know any number up to $b^n - 1$ can be written in n base b numerals. Therefore, you need to compute the least integer exponent n such that

$$b^{n-1} \leq (m-1) < b^n$$

or, if you prefer

$$b^{n-1} < m \leq b^n$$

You can compute n by taking the logarithm base b of all sides in the above inequality, and then computing the floor of the log.

$$b^{n-1} \leq (m-1) < b^n$$
$$n-1 \leq \log_b (m-1) < n$$
$$n-1 = \lceil \log_b (m-1) \rceil < n$$
$$n-1 < \lceil \log_b (m-1) \rceil + 1 = n$$

A more simple formula for n is $n = \lceil \log_b m \rceil$. Here’s how you can show

$$\lceil \log_b (m-1) \rceil + 1 = \lceil \log_b m \rceil$$

For instance, you can name 37 different things using binary strings of length

$$[\lg 37] = [5.2094536562] = 6$$

You know this because binary strings of length 5 can only name $2^5 = (10000)_2 = 32$ things, while 6 bits strings can name $2^6 = (100000)_2 = 64$ things. In fact, you can write

$$37 = (100101)_2$$

As another example, using the quaternary alphabet $\{0, 1, 2, 3\}$, you can make 37 different names with strings of length

$$[\log_4 37] = [2.60472668281] = 3$$

You know this because quaternary strings of length 2 can only name $4^2 = (100)_4 = 16$ things, while 4 “quatits” strings can name $4^3 = (1000)_4 = 64$ things. In fact, you can write

$$37 = (211)_4$$

For instance, in decimal, any number $(m-1) = 1000, 1001, \ldots, 9999$, that is any m such that

$$10^3 \leq (m-1) < 10^4$$

can can written in 3 digits. Reduction of a new problem on one you already know how to solve is an important problem-solving technique.
Theorem 12: Counting fixed-length strings

Let \(A \) be an alphabet with cardinality \(b = |A| \). To name \(m \) things using fixed-length strings over \(A \) requires their length to be

\[
n = \left\lceil \log_b m \right\rceil
\]

\(n = \left\lceil \log_b m \right\rceil = \) string length needed to name \(m \) things.

Look at the graph below. The top curve \(y = \lceil \lg x \rceil \) describes the number of bits to name \(m \) things. Notice that to name:

- 2 things requires 1 bits;
- 3 or 4 things requires 2 bits;
- 5, 6, 7, or 8 things requires 3 bits.

\[
\begin{align*}
\text{Variable length names} \\
\text{Letting the length of strings change give rise to a useful idea: Geometric sums, some call them geometric progressions. Consider the binary, decimal, and hexadecimal alphabets.}
\end{align*}
\]

- Use the binary alphabet \(\mathbb{B} \) and vary the string length from 0 to \((n - 1) \). You can see that there are

\[
1 + 2 + 4 + 8 + \cdots + 2^{n-1} = 2^n - 1 \quad \text{different variable length binary strings.}
\]

You know this because \(1 + 2 + 4 + 8 + \cdots + 2^{n-1} \) is the binary number of all 1’s

\[
\left(\begin{array}{c} n-\text{bits} \\ 11 \cdots 11 \end{array} \right)_2 = 2^n - 1
\]

Recall, \((11)_2 = 3 = 2^2 - 1, (111)_2 = 7 = 2^3 - 1, (1111)_2 = 15 = 2^4 - 1, \) etc.
• Use the decimal alphabet \mathcal{D} and vary the string length from 0 to $(n - 1)$. You can compute that there are
\[
1 + 10 + 100 + 1000 + \cdots + 10^{n-1} = \frac{10^n - 1}{9} \text{ different variable length decimal strings.}
\]
You know this because $1 + 10 + 100 + 1000 + \cdots + 10^n - 1$ is the decimal string of all 1’s
\[
\begin{pmatrix}
\text{n-digits} \\
11 \cdots 11
\end{pmatrix}
_{10} = \frac{99 \cdots 99}{9}
\]
Recall, $99 = 10^3 - 1$, $999 = 10^3 - 1$, $9999 = 10^4 - 1$, etc.

• Use the hexadecimal alphabet \mathbb{H} and vary the string length from 0 to $(n - 1)$. You can compute that there are
\[
1 + 16 + 256 + 4096 + \cdots + 16^{n-1} = \frac{16^n - 1}{15} \text{ different variable length hexadecimal strings.}
\]
You know this because $1 + 16 + 256 + 4096 + \cdots + 16^n - 1$ is the hexadecimal string of all 1’s
\[
\begin{pmatrix}
\text{n-hexits} \\
11 \cdots 11
\end{pmatrix}
_{16} = \frac{FF \cdots FF}{F}
\]
Recall, $FF = 16^2 - 1$, $FFFF = 16^3 - 1$, $FFFF = 16^4 - 1$, etc.

Now consider the general question.

How many names that can be written using alphabet \mathcal{A} with cardinality b if the string length varies from 0 to $(n - 1)$?

You know
- There is 1 string of length 0,
- There are b strings of length 1,
- There are b^2 strings of length 2,
- And so on, up to b^{n-1} strings of length $(n - 1)$.

The geometric sum
\[
1 + b + b^2 + \cdots + b^{n-1} = \sum_{k=0}^{n-1} b^k = \frac{b^n - 1}{b - 1}, \quad b \neq 1
\]
computes the answer to the question.

There are several ways to interpret the equivalence
\[
\sum_{k=0}^{n-1} b^k = \frac{b^n - 1}{b - 1}
\]
Let’s use the DNA alphabet as an example.

DNA alphabet $\mathcal{A} = \{A, C, G, T\}$

The strings over DNA are:
\[
\langle \lambda, A, C, G, T, AA, AC, AG, AT, CA, CC, CG, \ldots \rangle
\]
There is 1 string of length 0, 4 of length 1, $4^2 = 16$ strings of length 2, $4^3 = 64$ strings of length 3, and so on. To count all of these strings up to some limit, say $(n - 1)$, compute the value of the sum
\[
1 + 4 + 4^2 + \cdots + 4^{n-1} = \sum_{k=0}^{n-1} 4^k = \frac{4^n - 1}{3}
\]
Don’t like naming things by nothing? Subtract 1 from the sum to get
\[
4 + 4^2 + \cdots + 4^{n-1} = \sum_{k=0}^{n-1} 4^k = \frac{4^n - 1}{3} - 1 = \frac{4^n - 4}{3}
\]
as the number of non-empty DNA variable-length strings of length $(n - 1)$ or less.

If you write the numbers $\frac{4^n - 1}{3}$ in quaternary (base 4) notation for $n = 0, 1, 2, 3, 4, \ldots$ you will generate the sequence
\[
(0)_4, (1)_4, (11)_4, (111)_4, (1111)_4, \ldots
\]
If you write the numbers $\frac{4^n - 4}{3}$ in quaternary notation for $n = 1, 2, 3, 4, 5, \ldots$ you will generate the sequence
\[
(0)_4, (10)_4, (110)_4, (1110)_4, (11110)_4, \ldots
\]
One way to see this is to recognize that \(b - 1 \) is the largest natural number that can be written using a single base \(b \) numeral. And, using positional notation, you know
\[
(b - 1)(1 + b + b^2 + \cdots + b^{n-1}) = (b - 1) \sum_{k=0}^{n-1} b^k = b^n - 1
\]
is the largest base \(b \) number that can be written with \(n \) numerals.

You can also use concepts from the chapter on the sum & difference calculus. Note that \(b^k \) can be written as the difference.
\[
b^k = \frac{b^{k+1} - b^k}{b - 1}
\]
Therefore, the sum telescopes.
\[
1 + b + \cdots + b^{n-1} = \left(\frac{b}{b - 1} - \frac{1}{b - 1} \right) + \left(\frac{b^2}{b - 1} - \frac{b}{b - 1} \right) + \cdots + \left(\frac{b^n}{b - 1} - \frac{b^{n-1}}{b - 1} \right)
\]
\[
= \frac{b^n}{b - 1} - \frac{1}{b - 1}
\]
\[
= \frac{b^n - 1}{b - 1}
\]
You can also see the formula for a geometric sum is correct by algebraic manipulation.
\[
(b - 1)(1 + b + b^2 + \cdots + b^{n-1}) = (b + b^2 + b^3 + \cdots + b^n) - (1 + b + b^2 + \cdots + b^{n-1})
\]
\[
= b^n - 1
\]
Here are some examples.

- In binary you can write \(2^3 - 1 = 7 = (111)_2 \) variable-length strings of length 2 or less
 \[
 \langle \lambda, 0, 1, 00, 01, 10, 11 \rangle
 \]
 There are \(2^3 - 2 = 6 \) non-empty binary strings of length 1 or 2.

- In decimal, you can write \((10^3 - 1)/9 = 111 \) variable length strings of length 2 or less
 \[
 \langle \lambda, 0, \cdots, 9, 00, 01, \cdots, 99, 10, \cdots, 19, \cdots, 98, 99 \rangle
 \]
 One of length 0, 10 of length 1, and 100 of length 2. There are \((10^3 - 10)/9 = 990/9 = 110 \) non-empty decimal strings of length 1 or 2.

- In hexadecimal, you can write \((16^3 - 1)/15 = (111)_{16} = 273 \) variable length strings of length 2 or less
 \[
 \langle \lambda, 0, \cdots, F, 00, 01, \cdots, 0F, 10, \cdots, 1F, \cdots, FE, FF \rangle
 \]
 One of length 0, 16 of length 1, and 256 of length 2. There are \((16^3 - 16)/15 = (FF0)/F_{16} = (110)_{16} = 256 + 16 = 272 \) non-empty hexadecimal strings of length 1 or 2.
And, finally, for the DNA alphabet, there are \((4^3 - 1)/3 = 21\) variable-length strings of length 2 or less

\[
\langle \lambda, A, C, G, T, AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT \rangle
\]

One of length 0, 4 of length 1, and \(4^2 = 16\) of length 2. There are \((4^3 - 4)/3 = 60/3 = 20\) non-empty quaternary strings of length 1 or 2.

In general, for variable-length strings, you know there are \((b^n - b)/(b - 1)\) non-empty strings whose length varies from 1 to \((n - 1)\). So to name \(m\) things, you need to compute the least integer \(n\) such that

\[
m \leq \frac{b^n - b}{b - 1}
\]

To solve for \(n\) requires a little more dexterity.

\[
m \leq \frac{b^n - b}{b - 1}
\]

\[
m(b - 1) \leq b^n - b
\]

\[
m(b - 1) + b \leq b^n
\]

\[
\log_b(m(b - 1) + b) \leq n
\]

\[
\lceil \log_b(m(b - 1) + b) \rceil = n
\]

Consider using variable-length non-empty binary strings. To name \(m\) things requires strings of length up to \(\lceil \log(b(m + 2)) \rceil - 1\) bits.

Naming things in binary

<table>
<thead>
<tr>
<th>Fixed-length strings</th>
<th>Variable-length strings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Things named (m)</td>
<td>Bits needed (\lceil \log m \rceil)</td>
</tr>
<tr>
<td>1 < (m) ⩽ 2</td>
<td>1</td>
</tr>
<tr>
<td>2 < (m) ⩽ 4</td>
<td>2</td>
</tr>
<tr>
<td>4 < (m) ⩽ 8</td>
<td>3</td>
</tr>
<tr>
<td>8 < (m) ⩽ 16</td>
<td>4</td>
</tr>
<tr>
<td>16 < (m) ⩽ 32</td>
<td>5</td>
</tr>
</tbody>
</table>

Pass a Quiz: Naming Basics

Take a quiz on page 341 to check your understanding. You can return to here from the quiz.

Homework Questions

牌照 Use your time outside of class to solve these problems.
1 How many bits are needed to write the following numbers in binary? For small numbers, you may be able to see the answer in your head. For larger numbers use appropriate functions to compute the result.

1.1 32
1.2 73
1.3 255
1.4 256
1.5 737
1.6 37373737
1.7 If these numbers are written in hexadecimal notation, how many numerals are needed?

2 What is the general formula for the number of numerals needed to write a natural number \(n \) in base \(b \) notation?

3 What is the general formula for the number of bits needed to write an integers \(n \) two’s complement notation?

4 Pretend you wanted to name things using natural numbers: 0, 1, \ldots, (\(m - 1 \)). How many bits are needed to name the following number of things.

4.1 32
4.2 73
4.3 255
4.4 256
4.5 737
4.6 37373737
4.7 If names are written in hexadecimal notation, how many numerals are needed to names the given number of things?

5 What is the general formula for the number of numerals needed to name \(n \) using numbers written in base \(b \) notation?

6 The Arabic alphabet includes 28 letters. How many Arabic strings of length \((n - 1) \) are there? How many Arabic strings are there of length \(k \) for \(k = 0, 1, \ldots, (n - 1) \), that is, sum the individual results?

7 Think of seven plus or minus two things. How many bits are needed to name 5, 6, 7, 8 or 9 things? (Miller, 1994)

8 Suppose you had to name many things. Which would be easier for you? Explain why you made your choice.

Use names such as “ArrowBoldDownRight,” “ArrowBoldRightCircled;” etc.

Use an array, say DING[], where each entry points to one of these names, for instance DING[123]="ArrowBoldDownRight?"
For a modern perspective on alphabets: How many symbols (characters) are in the Unicode alphabet? How are they organized?

For historical perspective: How many symbols are in the ASCII alphabet? How many symbols are in the EBCDIC alphabet?

I’ve drawn the graph of the number of bits needed to write \(m \) as a constant step function, as \(m \) goes from \(2^n - 1 \) to \(2^n - 1 \), but the graph only fits the data the natural numbers. For instance, to write \(2.5 = 5/2 \) requires 3 bits

\[
(10.1)_2 = 2.5
\]

More than \(\lfloor \lg 2.5 \rfloor + 1 = 2 \), which the graph suggests. Show the following.

11.1 Let \(x = n \times 2^n \), how many bits are needed to write \(x \)?

11.2 If \(x \neq n/2^n \), show that the binary representation of \(x \) is infinitely long.

11.3 Suggest how to draw the correct graph of the number of bits needed to write \(x \).
Pass a Quiz: Summative exam #3 on machine numbers and naming things

Take a quiz on page 343 to check your understanding. You can return to here from the quiz.
11. **Counting**: How many are there?

Everything that can be counted does not necessarily count; everything that counts cannot necessarily be counted.

Albert Einstein

Counting is something we learn so early in life that we tend to dismiss it as a trivial skill, beneath the notice of mathematics.

Brian Hayes, (Hayes, 2001)

Counting is fundamental. There are too many things that count to count them all. Here are a few that I think are useful.

Counting truth assignments

A single Boolean variable \(p \) has two \((2^1) \) truth assignments.

1. **One truth assignment**: \(p = 0 \)

2. **Another truth assignment**: \(p = 1 \)

The set \(\mathbb{B} = \{0, 1\} \) of bits name all truth assignments on 1 Boolean variable.

A pair of Boolean variables \(p \) and \(q \) have four \((2^2) \) truth assignments.

1. **One truth assignment**: \(p = 0, q = 0 \)

2. **Another truth assignment**: \(p = 0, q = 1 \)

The 50¢ word for the study of counting is **combinatorics**.

0 is shorthand for False. Some use F and some use \(\bot \) for False.

1 is shorthand for True. Some use T and some use \(\top \) for True.
3. A third truth assignment: \(p = 1, q = 0 \)

4. And a fourth truth assignment: \(p = 1, q = 1 \)

The set
\[
\mathbb{B}^2 = \mathbb{B} \times \mathbb{B} = \{(0, 0), (0, 1), (1, 0), (1, 1)\}
\]
lists all truth assignments on two Boolean variables \(p \) and \(q \).

Taking an inductive leap, there should be \(8 = 2^3 \) truth assignments on three Boolean variables: \(p \), \(q \), and \(r \): For each truth assignment on \(p \) and \(q \), there are 2 truth assignments for \(r \): One where \(r \) is \(\text{False} \), and one where \(r \) is \(\text{True} \). The set \(\mathbb{B}^3 \) lists all truth assignments on 3 Boolean variables.

\[
\mathbb{B}^3 = \mathbb{B} \times \mathbb{B} \times \mathbb{B} = \{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)\}
\]

Notice 0 and 1 have been inserted into each ordered pair from equation 9 to create the list in equation 10. This doubles the size of \(\mathbb{B}^2 \) to create \(\mathbb{B}^3 \). In general, there is this theorem:

Theorem 13: Counting truth assignments

There are \(2^n \) truth assignments on \(n \) Boolean variables. That is,
\[
|\mathbb{B}^n| = |\mathbb{B}|^n = 2^n
\]
is the cardinality of \(n \)-dimensional Boolean space.

\[
\mathbb{B}^n = \underbrace{\mathbb{B} \times \cdots \times \mathbb{B}}_{n \text{ factors}} = \underbrace{\mathbb{B} \times \mathbb{B} \times \cdots \times \mathbb{B}}_{(n-1) \text{ factors}} \times \mathbb{B} = \underbrace{\mathbb{B} \times \cdots \times \mathbb{B}}_{n-1 \text{ factors}} \times \mathbb{B}
\]

Proof: Counting truth assignments

You’ve seen the theorem in True for \(n = 1, n = 2, \) and \(n = 3 \). This establishes a basis for mathematical induction.

Let’s hypothesize the theorem is True for some \(n \), that is,
\[
|\mathbb{B}^n| = \left|\left\{(p_0, p_1, p_2, \ldots, p_{n-1}) : p_k \in \mathbb{B}, k \in \mathbb{Z}_n\right\}\right| = 2^n
\]

Then, including another variable \(p_n \), which can have one of two values, you construct \(\mathbb{B}^{n+1} \) and double the cardinality of \(\mathbb{B}^n \).

\[
|\mathbb{B}^{n+1}| = |\mathbb{B} \times \mathbb{B}^n| = |\mathbb{B}| \cdot |\mathbb{B}^n| = 2 \times 2^n = 2^{n+1}
\]
11. **Counting**: How many are there?

Counting Boolean expressions

A **Boolean function** b maps truth assignments t to either True or False.

$$b : \mathbb{B}^n \rightarrow \mathbb{B}$$

You can count the number of **Boolean functions** based on n, the number of its input values.

Boolean expressions on no input variables

A constant can be thought of an function without any input. There are two ($2^2 = 2^1 = 2$) Boolean expressions without input:

1. $b_0() = \text{False}$, and
2. $b_1() = \text{True}$

Boolean expressions on one variable

A function can map one Boolean variable p in four ($2^2 = 2^1 = 4$) ways.

1. $b_0(p) = \text{False}$
2. $b_1(p) = p$
3. $b_2(p) = \neg p$
4. $b_3(p) = \text{True}$

Boolean expressions on two variables

A function $b(p, q)$ can map two Boolean variables p and q in sixteen ($2^2 = 2^4 = 16$) ways. Several of these are fundamental and useful, all of them can be named.

The numerical relations between a pair of Boolean variables p and q are the familiar.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$=$</td>
<td>equality</td>
<td>less than or equal</td>
</tr>
<tr>
<td>\neq</td>
<td>not equal</td>
<td>greater than</td>
</tr>
<tr>
<td>$<$</td>
<td>less than</td>
<td>greater than or equal</td>
</tr>
<tr>
<td>\leq</td>
<td>less than or equal</td>
<td>equal to</td>
</tr>
<tr>
<td>$>$</td>
<td>greater than</td>
<td></td>
</tr>
<tr>
<td>\leq</td>
<td>less than or equal</td>
<td></td>
</tr>
<tr>
<td>$>$</td>
<td>greater than</td>
<td></td>
</tr>
<tr>
<td>\geq</td>
<td>greater than or equal</td>
<td></td>
</tr>
<tr>
<td>\geq</td>
<td>greater than or equal</td>
<td></td>
</tr>
</tbody>
</table>

The table below a programming (logic) name, an **English** name, and a mathematical name to these six numerical Boolean relations.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\equiv</td>
<td>equivalent</td>
<td>less than or equal</td>
</tr>
<tr>
<td>$\not\equiv$</td>
<td>exclusive or</td>
<td>greater than</td>
</tr>
<tr>
<td>$\not<$</td>
<td>q does not imply p</td>
<td>greater than or equal</td>
</tr>
<tr>
<td>$\not\leq$</td>
<td>p implies q</td>
<td>equal to</td>
</tr>
<tr>
<td>$\not>$</td>
<td>q does not imply p</td>
<td></td>
</tr>
<tr>
<td>$\not\geq$</td>
<td>q implies p</td>
<td></td>
</tr>
</tbody>
</table>
The table below shows the mapping for the six numerical relations.

<table>
<thead>
<tr>
<th>Boolean (comparison) operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Decimal</td>
</tr>
</tbody>
</table>

An additional ten functions can be defined on ordered pairs of Boolean variables (p, q).

<table>
<thead>
<tr>
<th>Boolean operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Decimal</td>
</tr>
</tbody>
</table>

Boolean expressions on n variables

The generalization to n-input Boolean functions is this: For each truth assignment t on n Boolean variables, there are 2 mappings:

1. \(t \rightarrow \text{False} \)

2. \(t \rightarrow \text{True} \)

From the previous section there are \(2^n \) truth assignments \(t \) on \(n \) Boolean variables. A Boolean function maps each of these \(2^n \) truth assignments to either True or False.
Theorem 14: Counting Boolean functions

There are \(2^n \) factors

\[
2 \times 2 \times \cdots \times 2 = 2^n
\]

Boolean functions on \(n \) Boolean variables.

Proof: Counting Boolean functions

You’ve seen the theorem in True for \(n = 0, n = 1, \) and \(n = 2: \)

There are \(2^0 = 1, 2^1 = 4, \) and \(2^2 = 16 \) Boolean functions (expressions) on these numbers. This establishes a basis for mathematical induction.

Let’s hypothesize the theorem is True for some \(n, \) that is, there are \(2^n \) Boolean functions on \(n \) Boolean variables for some \(n \geq 0. \) That is,

\[
|\{b : \mathbb{B}^n \to \mathbb{B}\}| = 2^n \quad \text{for some } n \geq 0.
\]

Then, including another variable \(v_n, \) which can have one of two values, you construct \(\mathbb{B}^{n+1} \) and double the cardinality of \(\mathbb{B}^n. \)

\[
|\mathbb{B}^{n+1}| = |\mathbb{B} \times \mathbb{B}^n| = |\mathbb{B}| \cdot |\mathbb{B}^n| = 2 \times 2^n = 2^{n+1}
\]

Pass a Quiz: Counting truth assignments and Boolean functions

Take a quiz on page 344 to check your understanding. You can return to here from the quiz.

Counting functions

General functions from a finite set \(\mathbb{X} \) to another finite set \(\mathbb{Y} \) can be counted too. It is easy to construct a function:

For every \(x \) in the domain, choose one (and only one) \(y \) in the co-domain and include the pair \((x, y)\) in function, that is \(f(x) = y.\)

For instance, you can construct \(3^2 \) functions from \(\{a, b\} \) to \(\{0, 1, 2\}: \) Map \(a \) to one of 0, 1, 2 and map \(b \) to one of 0, 1, 2. Each of these 9 functions can be represented by one of the 9 sets below.

\[
\begin{align*}
\{f_0 \} &= \{(a, 0), (b, 0)\} \\
\{f_1 \} &= \{(a, 0), (b, 1)\} \\
\{f_2 \} &= \{(a, 0), (b, 2)\} \\
\{f_3 \} &= \{(a, 1), (b, 0)\} \\
\{f_4 \} &= \{(a, 1), (b, 1)\} \\
\{f_5 \} &= \{(a, 1), (b, 2)\} \\
\{f_6 \} &= \{(a, 2), (b, 0)\} \\
\{f_7 \} &= \{(a, 2), (b, 1)\} \\
\{f_8 \} &= \{(a, 2), (b, 2)\}
\end{align*}
\]

To change the example, if \(|\mathbb{X}| = 6 \) and \(|\mathbb{Y}| = 5, \) then \(5^6 \) functions from \(\mathbb{X} \) to \(\mathbb{Y} \) can be defined. In general, if \(|\mathbb{X}| = n \) and \(|\mathbb{Y}| = m, \) there are

\[
m^n = |\mathbb{Y}|^{|\mathbb{X}|}
\]

Using sets and subscripted functions symbols is just another way to name functions. Usually, people write

\[
f : \mathbb{X} \to \mathbb{Y}
\]

or

\[
y = f(x)
\]

to name functions. A description of \(f \) tells someone how to compute \(y \) given \(x.\)

For each of the six \(x \)'s choose one of the five \(y \)'s to map \(x \) to. That’s 5 choices 6 times.
functions from X to Y.

Another way to count functions is by counting adjacency matrices that represent functions. Let $f : X \to Y$ be a function, and let $|X| = n$ and $|Y| = m$. Then f is an $n \times m$ adjacency matrix.

For instances, to count functions from a 3-element set $X = \{a, b, c\}$ into a 4-element set $Y = \{0, 1, 2, 3\}$, you must fill in a 3×4 adjacency matrix. For instance, the matrix

$$
\begin{array}{cccc}
 0 & 1 & 2 & 3 \\
a & 0 & 0 & 0 \\
b & 0 & 1 & 0 \\
c & 0 & 0 & 1 \\
\end{array}
$$

defines a function $a \to 2, b \to 1, c \to 2$.

There are $3 \times 4 = 12$ entries in the matrix. For the matrix to represent a functions, there can be one-and-only one True value in each row. For each of the 3 rows, there are 4 choices of where to place the 1. Therefore, there are $4^3 = |Y|^{|X|}$ ways to fill the matrix. Therefore, there are 4^3 functions.

As a “counting functions” example, let

$$
X = \{0, 1\} \quad \text{and} \quad Y = \{a, b, c\}
$$

There are $3^2 = 9$ functions from X to Y.

1. $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

2. $\begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

3. $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$

4. $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

5. $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

6. $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

7. $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

8. $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

9. $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

Theorem 15: Counting functions

There are $|Y|^{|X|}$ functions from X to Y.
A direct proof is easiest here. For each \(x \in X \) there are \(|Y| \) choices of \(y \) to which \(x \) can be mapped.
In total, there are \(|Y|^{|X|} \) ways to construct a function.

The matrix below shows the count of functions as the cardinality of the domain \(X \) and range \(Y \) vary.

<table>
<thead>
<tr>
<th>(</th>
<th>Y</th>
<th>^{</th>
<th>X</th>
<th>}) functions from (X) to (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>Y</td>
<td>)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>32</td>
<td>243</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>64</td>
<td>729</td>
</tr>
</tbody>
</table>

Let’s name the empty function \(\phi \).
\[\phi : \emptyset \rightarrow Y \]

For technical reasons related to category theory, there must be a function from \(\emptyset \) to itself. That’s why there is a 1 in row 0, column 0 in array on the left.

You can test if \(f : X \rightarrow Y \) is a one-to-one or onto function by looking at \(f \)'s adjacency matrix.

- A function \(f \) is onto if every column in its adjacency matrix has at least one 1. For instance, the function represented by the adjacency matrix

\[
\begin{array}{ccc}
Y & a & b & c \\
X & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
3 & 0 & 1 & 0 \\
\end{array}
\]

is onto: Each element \(a, b, c \) in \(Y \) is the image of some \(x \) in \(X \).

There can be no onto functions from \(Y \) onto \(X \): Notice how \(b \in Y \) maps to two values: 2 and 3 in \(X \). This makes the “inverse” a relation, and keeps it from being a function. This is also an example of the pigeonhole principle: You can’t place four pigeons in three holes without some hole containing more than one bird.

If some column is not covered, the function is not onto. For instance,
Consider the adjacency matrix

\[
\begin{array}{ccc}
Y & a & b & c \\
\hline
0 & 0 & 0 & 1 \\
X & 1 & 0 & 1 & 0 \\
2 & 0 & 1 & 0 \\
3 & 0 & 0 & 1 \\
\end{array}
\]

The element \(a \in Y \) is not the image of any element in \(X \): Its column is all 0’s.

- A function \(f \) is one-to-one if no column in its adjacency matrix has more than one 1. For instance, consider the adjacency matrix

\[
\begin{array}{ccccc}
Y & a & b & c & d & e \\
\hline
0 & 0 & 0 & 1 & 0 & 0 \\
X & 1 & 0 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

It represents a one-to-one function: No letter in \(Y \) is the image of more than one number in \(X \).

The function is not onto: It can’t be, because four numbers cannot (functionally) cover five letters.

Therefore, the “inverse” is a partial function: It is not defined for input \(e \).

Counting permutations

Definition 16: Permutation

A permutation is a one-to-one function from a set onto itself.

For instance, there are 2 permutations on \(B \)

\((0, 1) \) and \((1, 0) \)

Using these permutations on \(B \), you can create 6 permutations on \{0, 1, 2\}.

- Insert 2 last, in the middle, and first in \((0, 1) \).

\((0, 1, 2), \ (0, 2, 1), \ (2, 0, 1) \)

- Insert 2 last, in the middle, and first in \((1, 0) \).

\((1, 0, 2), \ (1, 2, 0), \ (2, 1, 0) \)

On a word, a permutation is an anagram. For instance, some anagrams of “mathematics” are

- “asthmatic me”
- “hammiest cat”
- “mismatch tea”
- “sematic math”

where I’ve included an extra space for readability.
In general, given a permutation on \(n - 1\) elements, say on \(n - 1 = 5\) letters

\[\langle a, b, c, d, e \rangle \]

You can create a permutation on \(n\) (in this case \(n = 6\)) elements by inserting the new element \(f\) in one of \(n = 6\) positions, for instance

\[
\begin{align*}
\langle a, b, c, d, e \rangle & \rightarrow \langle a, b, c, d, e, f \rangle & \text{insert last} \\
\langle a, b, c, d, e \rangle & \rightarrow \langle a, b, c, d, f, e \rangle & \text{insert next to last} \\
\langle a, b, c, d, e \rangle & \rightarrow \langle a, b, c, f, d, e \rangle & \text{insert fourth} \\
\langle a, b, c, d, e \rangle & \rightarrow \langle a, b, f, c, d, e \rangle & \text{insert third} \\
\langle a, b, c, d, e \rangle & \rightarrow \langle a, f, b, c, d, e \rangle & \text{insert second} \\
\langle a, b, c, d, e \rangle & \rightarrow \langle f, a, b, c, d, e \rangle & \text{insert first}
\end{align*}
\]

This leads to recurrence equation/initial condition

\[\pi_n = n\pi_{n-1}, \quad \pi_0 = 1 \]

where \(\pi_n\) is the number of permutations on \(n\) things. The solution to the recurrence is

\[\pi(n) = \pi_n = n! \quad \text{"called n factorial"} \]

Theorem 16: Counting permutations

There are \(|\mathbb{X}|! = n!\) permutations on a set \(\mathbb{X}\) with cardinality \(|\mathbb{X}| = n\).

Proof: Counting permutations

We have seen the theorem is True for small cases, establishing a basis for induction.

Assume the theorem is True for some \(n\). Then given one of the \(n!\) permutations on \(n\) objects, you can insert a new \((n + 1)\)th object inserted into the given permutation in \(n + 1\) ways. This generated \(n + 1\) permutations for each of the \(n!\) original permutations. Thus, there are \((n + 1) \cdot n! = (n + 1)!\) permutations on \((n + 1)\) objects.

Pass a Quiz: Counting functions and permutations

Take a quiz on page 344 to check your understanding. You can return to here from the quiz.

Counting relations

A relation is a generalization of function.

- A function is deterministic: Given input \(x\) the output \(y\) is completely determined. For instance, the value of \(y\) is completely determined by the function

\[y = f(x) = x^2 - x - 1 \]
A relation can be **non-deterministic**: Given input \(x \) there may be many possible output values. For instance, the value of \(y \) is not completely determined by the relation

\[
y \leq x \quad \text{many values of } y \text{ satisfy the inequality.}
\]

The **Venn** diagram below shows associations between relations and functions.

Definition 17: Relation

A relation from \(X \) to \(Y \) is a subset of the Cartesian product

\[
X \times Y = \{(x, y) : x \in X \land y \in Y\}
\]

There are several important relations. Some are well-known:

- **Equality**: \(a = b \), if \(a - b = 0 \).
- **Less than**: \(a < b \), if \(a - b < 0 \)
- **Greater than**: \(a > b \) if \(a - b > 0 \).
- **Not equal**: \(a \neq b \), if \(a - b \neq 0 \).

There are many important relations that are not as well-known. Here are two of that are useful because they demonstrate general concepts.

- **Divides**: \(a \mid b \), if \(b = ac \) for some natural number \(c \).
- **Congruence**: \(a \equiv b \mod n \), if \(n \mid (b - a) \).

One way to count relations is to recognize a relation can be represented as an **adjacency matrix**. Let \(\sim \) be a relation from \(X \) to \(Y \). Let \(|X| = n \) and \(|Y| = m \). Label the elements in \(X \) by \(0, 1, \ldots, (n - 1) \). Label the elements in \(Y \) by \(0, 1, \ldots, (m - 1) \). Then the relation \(\sim \) can be expressed as an \(n \times m \) matrix.
A relational adjacency matrix

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>(m-2)</th>
<th>(m-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td>(n-2)</td>
<td>Fill with 0’s and 1’s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td>(n-1)</td>
<td>in any way you like</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are \(nm\) entries in the adjacency matrix. Each of the \(nm\) entries will be either \texttt{True} (1) or \texttt{False} (0).

- The value in row \(i\), column \(j\) is 0 if \(i \neq j\) (\texttt{False} if \(n\) is not related to \(m\))

- The value in row \(i\), column \(j\) is 1 if \(i \sim j\) (\texttt{True} if \(n\) is related to \(m\))

There are \(2^{nm}\) ways to fill-out an adjacency matrix. Therefore, there are \(2^{nm}\) relations between \(X\) and \(Y\).
For example, there are $16 = 2^{2^2}$ relations on the bits $\mathbb{B} = \{0, 1\}$. You can write them down.

<table>
<thead>
<tr>
<th>The empty relation</th>
<th>$0 \sim 0$</th>
<th>$a < b$</th>
<th>$a > b$</th>
<th>$1 \sim 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equality</th>
<th>Not Equal</th>
<th>$(0 \sim 0) \land (0 \sim 1)$</th>
<th>$(1 \sim 0) \land (1 \sim 1)$</th>
<th>$(0 \sim 0) \land (1 \sim 0)$</th>
<th>$(0 \sim 1) \land (1 \sim 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appalachian relation</th>
<th>$0 \sim 1$</th>
<th>$a \leq b$</th>
<th>$a \geq b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Theorem 17: Counting relations

Let $|X| = n$ and $|Y| = m$. There are

$$2^{nm} = 2^{|X| \cdot |Y|}$$ relations from X to Y.
11. **Counting: How many are there?**

The matrix below shows the count of relations as the cardinalities of the domain X and range Y vary.

```
| 2\textsuperscript{nm} relations from $X$ to $Y$ | $m = |Y|$ |
|-----------------------------------------------|--------|
| 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| 1 1 2 4 8 16 32 32 64 128 256 512 1024 2048 |
| 2 1 4 16 64 256 1024 65,536 1,048,576 33,554,432 |
| 3 1 8 64 512 4096 32,768 1,048,576 1,073,741,824 |
| 4 1 16 256 4096 65,536 1,048,576 33,554,432 |
| 5 1 32 1024 32,768 1,048,576 33,554,432 |
| 6 1 64 4096 262,144 16,777,216 1,073,741,824 |
```

Pass a Quiz: Counting relations

Take a quiz on page 345 to check your understanding. You can return to here from the quiz.

Counting subsets

Given a set you can form subsets. For instance, given the set of bits $\mathbb{B} = \{0, 1\}$, you can form $2^2 = 4$ subsets

$$\emptyset, \{0\}, \{1\}, \{0, 1\}$$

Recall the definition from the notes on sets.

Definition 18: Subset

Let X and Y be sets. X is a subset of Y, written

$$X \subseteq Y$$

if every element in X is also an element of Y.

$$(a \in X) \Rightarrow (a \in Y)$$

A proper subset is a subset that is not all of the enclosing set.

The empty set \emptyset. Some people use $\{\}$ to write \emptyset. The empty set \emptyset is the set without any elements. The empty set \emptyset is a subset of every set.

It is interesting to count the number of subsets of a given size. Using the diagram to the left,

```
<table>
<thead>
<tr>
<th>Binomial Coefficients ($\binom{n}{k}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose $k$</td>
</tr>
<tr>
<td>0 1 2 3</td>
</tr>
<tr>
<td>n 1 1 1</td>
</tr>
<tr>
<td>2 1 2 1</td>
</tr>
<tr>
<td>3 1 3 3 1</td>
</tr>
</tbody>
</table>
```

Subset \subseteq and proper subset \subset are similar to less than or equal \leq and less than $<$. An example of round versus pointy notation to describe similar ideas in different contexts.
Definition 19: Proper subset

Let X and Y be sets. X is a proper subset of Y, written $X \subset Y$, if X is a subset of Y, but X is not equal to Y.

$(X \subseteq Y) \land (X \neq Y)$

Given a set X with n there are two basic problems related to subsets:

1. How many subsets does X have? Can you express it as a function?

2. How many subsets of a given size (cardinality) does X have? Can you express it as a function?

To solve these problems it is useful to list the subsets of small sets and arrange them by the number of elements they contain.

<table>
<thead>
<tr>
<th>Subsets of \emptyset</th>
</tr>
</thead>
<tbody>
<tr>
<td>No elements</td>
</tr>
<tr>
<td>\emptyset</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subsets of ${0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>No elements</td>
</tr>
<tr>
<td>1 element</td>
</tr>
<tr>
<td>\emptyset</td>
</tr>
<tr>
<td>${0}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subsets of ${0, 1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>No elements</td>
</tr>
<tr>
<td>1 element</td>
</tr>
<tr>
<td>2 elements</td>
</tr>
<tr>
<td>\emptyset</td>
</tr>
<tr>
<td>${0}$</td>
</tr>
<tr>
<td>${0, 1}$</td>
</tr>
<tr>
<td>${1}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subsets of ${0, 1, 2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>No elements</td>
</tr>
<tr>
<td>1 element</td>
</tr>
<tr>
<td>2 elements</td>
</tr>
<tr>
<td>3 elements</td>
</tr>
<tr>
<td>\emptyset</td>
</tr>
<tr>
<td>${0}$</td>
</tr>
<tr>
<td>${0, 1}$</td>
</tr>
<tr>
<td>${0, 1, 2}$</td>
</tr>
<tr>
<td>${1}$</td>
</tr>
<tr>
<td>${0, 2}$</td>
</tr>
<tr>
<td>${1, 2}$</td>
</tr>
</tbody>
</table>

Look at how you can use the subsets of $\{0, 1, 2\}$ above to create subsets of $\{0, 1, 2, 3\}$

First, all subsets of $\{0, 1, 2\}$ are subsets of $\{0, 1, 2, 3\}$
Second, if X is a $k - 1$ element subset of $\{0, 1, 2\}$, then $X \cup \{3\}$ is a k element subset of $\{0, 1, 2, 3\}$.

This is demonstrated in the diagram below, which expands the $8 = 2^3$ subsets of $\{0, 1, 2\}$ to 16 subsets of $\{0, 1, 2, 3\}$.

Do you see the color coding of subsets?

<table>
<thead>
<tr>
<th>Subsets of ${0, 1, 2, 3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>No elements</td>
</tr>
<tr>
<td>\emptyset</td>
</tr>
<tr>
<td>${1}$</td>
</tr>
<tr>
<td>${2}$</td>
</tr>
<tr>
<td>${3}$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

There are several things you can notice about constructing subsets. But first, we should name things.

Definition 20: Binomial coefficient

The symbol

\[
\binom{n}{k}
\]

stands for the count of k-element subsets of an n-element set. \(\binom{n}{k}\) is called a **binomial coefficient**.

\(\binom{n}{k}\) is a binomial coefficient and is called “n choose k.” These **boundary conditions** hold:

- The \emptyset is the only subset of X with $k = 0$ elements. Therefore
 \[
 \binom{n}{0} = 1 \quad \text{for all } n \in \mathbb{N}, \quad \text{there is only 1 way to choose nothing}.
 \]

- X is the only subset of X with $k = n$ elements. Therefore
 \[
 \binom{n}{n} = 1 \quad \text{for all } n \in \mathbb{N}, \quad \text{there is only 1 way to choose everything}.
 \]

- If $k > n$, you cannot choose k elements from fewer (n) elements. Therefore
 \[
 \binom{n}{k} = 0 \quad \text{for all } k > n, \quad \text{you can’t choose more than you have}.
 \]
There are some other facts about binomial coefficients that you can deduce.

- There are \(n \) singleton subsets of \(X \). Therefore

\[
\binom{n}{1} = n \quad \text{for all } n \geq 1.
\]

- Choosing \(k \) elements to put in a subset is equivalent to choosing \(n - k \) elements to not put in the subset. Therefore

\[
\binom{n}{k} = \binom{n}{n-k} \quad \text{for all } 0 \leq k \leq n, \, n \in \mathbb{N}.
\]

Perhaps you noticed that the number of subsets doubles each time the cardinality of \(X \) is increased by 1. This idea can be used to answer the question: How many subsets does \(X \) have? And, express the answer as a function?

Theorem 18: Counting all subsets

There are \(2^n \) subsets of an \(n \)-element set.

Proof: Counting subsets

There is 1 subset of the empty set, it is a subset of itself: \(\emptyset \subseteq \emptyset \). By the above reasoning, the number of subsets doubles each time another element is put in the starting set. That is, when the size of the set, its cardinality, increases from \(n - 1 \) to \(n \), the number of subsets doubles: All the old subsets are still subsets. And, you can insert the new element in each of these subsets creating just as many new subsets. Bluntly, let \(d_n \) be the number of subsets of an \(n \)-element set. Then \(d_n \) satisfies the Doubling recurrence equation

\[
d_n = 2d_{n-1}, \quad d_0 = 1
\]

Terms \(d_n \) in the Doubling sequence can be computed by the Doubling function

\[
d(n) = 2^n
\]

A corollary is: The sum of counts of subsets of the various sizes \(k = 0, 1, \ldots, n \) is \(2^n \) must be \(2^n \). The sum of binomial coefficients \(\binom{n}{k} \) for \(k = 0, 1, \ldots, n \) is \(2^n \).

Corollary 1: Pascal’s triangle: Row sum is \(2^n \)

Let \(X \) have cardinality \(n \). There are \(\binom{n}{k} \) (say \(n \) choose \(k \)) \(k \)-element subsets of \(X \). The sum of these binomial coefficients for each \(k \) from

\[
\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n} = 2^n
\]
Counting of subsets by their size

Consider counting the number of ways you can choose k things from a set with n things. That is, computing the value of the binomial coefficient $\binom{n}{k}$.

Look again at the $(n - 1) = 4$ element set $X = \{0, 1, 2, 3\}$. There are 4 subsets of X with cardinality 3. There are 6 subsets of X with cardinality 2. Using these subsets you can create 10 three-element subsets of $X \cup \{4\} = \{0, 1, 2, 3, 4\}$.

The numbers generated in this fashion fill Pascal’s triangle. The value in row n and column k is $\binom{n}{k}$, the number of k-element subsets of an n-element set.
The value in row \(n \), column \(k \) of Pascal’s triangle is the number of ways \(k \) elements can be chosen from a set of \(n \) elements. The notation for the value in row \(n \), column \(k \) is

\[
\binom{n}{k}
\]

and is called “\(n \) choose \(k \).”

The values in Pascal’s triangle can be computed a two-dimensional recursion equation known as Pascal’s identity or Pascal’s rule.

Theorem 19: Pascal’s identity

Binomial coefficients satisfy the recurrence known as Pascal’s identity

\[
\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}
\]

with boundary conditions

\[
\begin{align*}
\binom{n}{0} &= 1, \ (n = 0, 1, \ldots) \\
\binom{n}{n} &= 1, \ (n = 1, 2, \ldots)
\end{align*}
\]
11. COUNTING: HOW MANY ARE THERE? 201

Proof: Pascal’s identity

A direct proof goes like this.
Given a set X with $n - 1$ elements. Let

$$X' = X \cup \{y\}, \quad \text{where } y \notin X.$$

$\{X\}'$ has n elements, its cardinality is n.

By notation, there are $\binom{n-1}{k}$ subsets of X with k elements. Each of
these is also a subset of X'.

And, there are $\binom{n-1}{k-1}$ subsets of X with $k - 1$ elements. The set $\{y\}$
can be inserted (unioned) into each of these to create a k element subset
of X'.

Therefore, the number of k-element subsets of X' is the number of
k-element subsets of X plus the number of $k - 1$-element subsets of X.

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Notice when you fill Pascal’s triangle with 0’s to form a rectangular array:
The first column is the Alice sequence; the second column is the Gauss
sequence; the third column is the triangular sequence; numbers in the fourth
column are called pyramidal numbers, and so on into higher dimensional
spaces.

Pascal’s rectangle

<table>
<thead>
<tr>
<th></th>
<th>Choose k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>1</td>
<td>1 1 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2</td>
<td>1 2 1 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>3</td>
<td>1 3 3 1 0 0 0 0 0 0</td>
</tr>
<tr>
<td>4</td>
<td>1 4 6 4 1 0 0 0 0 0</td>
</tr>
<tr>
<td>5</td>
<td>1 5 10 10 5 1 0 0 0 0</td>
</tr>
<tr>
<td>6</td>
<td>1 6 15 20 15 6 1 0 0 0</td>
</tr>
<tr>
<td>7</td>
<td>1 7 21 35 35 21 7 1 0 0</td>
</tr>
<tr>
<td>8</td>
<td>1 8 28 56 70 56 28 8 1 0</td>
</tr>
<tr>
<td>9</td>
<td>1 9 36 84 126 126 84 36 9 1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Naming values in Pascal’s triangle by binomial coefficient notation is impor-
tant. A side-by-side view can help you remember this.

<table>
<thead>
<tr>
<th>Values of binomial coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5</td>
</tr>
<tr>
<td>0 1 (0)</td>
</tr>
<tr>
<td>1 1 1 (1)</td>
</tr>
<tr>
<td>2 1 2 1 (2) (2)</td>
</tr>
<tr>
<td>3 1 3 3 1 (3) (3) (3)</td>
</tr>
<tr>
<td>4 1 4 6 4 1 (4) (4) (4) (4)</td>
</tr>
<tr>
<td>5 1 5 10 10 5 1 (5) (5) (5) (5) (5)</td>
</tr>
</tbody>
</table>

To count the number of k-element subsets, let’s consider one way you how you could form a k-element subset.

1. Line each of the n elements up in a list: From your knowledge of permutations, you know there are $n!$ ways to do this.

 The chart below shows the first element can be chosen in n ways; then the second element can be chosen in $n - 1$ ways; and the third in $n - 2$ ways; down to 2 and 1 ways to choose the penultimate and ultimate elements.

 $n \times (n - 1) \times (n - 2) \times \cdots \times 2 \times 1$

 first second third \cdots $(n - 1)^{st}$ n^{th}

 This first step in counting k-element subsets of an n-element set maps n to $n!$

 $n \rightarrow n!$

2. Now throw away (divide out) the last $(n - k)$ elements in the list, leaving only the first k elements: The last $(n - k)$ elements can be arranged in $(n - k)!$ ways. This reduces our count of subsets from $n!$ to $n!/(n - k)!$.

 $n! \rightarrow \frac{n!}{(n - k)!}$

3. Recognize that the k remaining chosen elements can be arranged in $k!$ ways, and this is immaterial with respect to sets. Our count of subsets is reduced to

 $\frac{n!}{(n - k)!} \rightarrow \frac{n!}{k!(n - k)!} = \binom{n}{k}$

 This is the functional form for binomial coefficients
Theorem 20: Binomial coefficients: Factorial form

There are

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]

\(k\)-element subsets of an \(n\)-element set.

Using the theorem you can write the recurrence relation

\[
\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}
\]

which leads to an efficient recursive algorithm to compute \(n\) choose \(k\).

```plaintext
choose :: Int -> Int -> Int
choose n 0 = 1
choose 0 k = 0
choose n+1 k+1 = (choose n k) * (n+1) `div` (k+1)
```

Power set of a set

The collection of all subsets of a set \(\mathcal{Y} \) is called the power set of \(\mathcal{Y} \).

Definition 21: Power set of a set

Let \(\mathcal{Y} \) be a set. The power set of \(\mathcal{Y} \), written \(2^\mathcal{Y} \), is the set of all subsets of \(\mathcal{Y} \). That is,

\[
2^\mathcal{Y} = \{X : X \subseteq \mathcal{Y} \}
\]

If \(\mathcal{A} \) has 3 elements then \(\mathcal{A} \)’s power set contains \(2^3 = 8 \) elements, each of which is a subset of \(\mathcal{A} \).

Think about how you might construct all subsets of \(\mathcal{X} \). A binary decision tree provides a simple algorithm.

For each element \(x \) make one of two choices: include \(x \) in the subset or leave it out.

Consider the decision tree for constructing subsets of \(\mathcal{X} = \{a, b, c\} \). When the left branch is followed, the element is not included in the subset. When the right branch is followed, the element is included in the subset.

![Decision Tree](image_url)
Theorem 21: Cardinality of a power set

A set \(X \) with \(n \) elements has \(2^n \) subsets. That is, the power set \(2^X \) of \(X \) contains all \(2^n \) subsets of \(X \).

Proof: Cardinality of a power set

An inductive proof goes like this. First, there is a basis:

- The power set of the empty set \(\emptyset \) is \(\{\emptyset\} \), which has cardinality \(1 = 2^0 \).
- The power set of a singleton \(\{a\} \) is \(\{\emptyset, \{a\}\} \), which has cardinality \(2 = 2^1 \).
- And, there are \(4 = 2^2 \) and \(8 = 2^3 \) subsets of a 2-element and 3-element, respectively.

Next, there is a hypothesis: For some \(n \), any \(n \)-element set \(X \) has \(2^n \) subsets. Finally, there is a conclusion: If \(X' = X \cup \{y\} \) for some \(y \notin X \), then \(X' \) has \(2^{(n+1)} \) subsets: \(2^n \) subsets that do not include \(y \) and \(2^n \) subsets that do.

If \(|X| = n \), then the cardinality of the power set of \(X \) is \(|2^X| = 2^{|X|} = 2^n \).

Pass a Quiz: Counting subsets

Take a quiz on page 344 to check your understanding. You can return to here from the quiz.

Counting permutations by cycles

Stirling’s numbers of the first kind count the number of permutations with a given number of cycles. This will be explained in more detail in the notes on sorting data & permutations. But, for now, let’s just derive the recurrence that counts permutations with a given number of cycles.

The Stirling’s number of the first kind \(\left[\begin{array}{c} n \\ k \end{array} \right] \) counts the number of ways to arrange \(n \) objects into \(k \) cycles. A cycle is like placing beads on a necklace. The clockwise cycle
can be written using cycle notation as

\[[1, 2, 3, 4, 5] = [2, 3, 4, 5, 1] = [3, 4, 5, 1, 2] = [4, 5, 1, 2, 3] = [5, 1, 2, 3, 4] \]

This permutation describes the mapping from one sequence to another. Apply this permutation a series of times to the normal order. You’ll see the numbers shift right and cycle from the last position to the first position.

\[
\begin{align*}
\langle 1, 2, 3, 4, 5 \rangle & \rightarrow \langle 5, 1, 2, 3, 4 \rangle \quad \text{apply once} \\
& \rightarrow \langle 4, 5, 1, 2, 3 \rangle \quad \text{apply twice} \\
& \rightarrow \langle 3, 4, 5, 1, 2 \rangle \quad \text{apply thrice}
\end{align*}
\]

The order in of numbers in the cycle is important. For instance,

\[[1, 5, 4, 3, 2] \]

describes a counterclockwise rotation.

And,

\[[1, 2, 3, 4, 5] \neq [2, 1, 3, 4, 5] \]

because you cannot interchange the 1 and 2 without breaking the necklace.

A permutation can have more than one cycle.

\[[1, 2, 3][4, 5] \]

is a two-cycle permutation on the five numbers. Apply this permutation a series of times to the normal order. You’ll see the first three and last two numbers cycle among themselves.

\[
\begin{align*}
\langle 1, 2, 3, 4, 5 \rangle & \rightarrow \langle 3, 1, 2, 5, 4 \rangle \quad \text{apply once} \\
& \rightarrow \langle 2, 3, 1, 4, 5 \rangle \quad \text{apply twice} \\
& \rightarrow \langle 1, 2, 3, 5, 4 \rangle \quad \text{apply thrice}
\end{align*}
\]

It can be shown that there are 50 different two cycles on 5 elements, but that is not obvious.

What may be obvious is:
• A non-empty set cannot be represented without any cycles at all: \([n]_0 = 0\).

• And, \(n\) elements can be written in \(n\) cycles in only 1 way: \([n]_n = 1\).

These are the boundary conditions for Stirling’s numbers of the first kind.

\[
\begin{align*}
[n]_0 &= 0 \quad \text{for } n > 0 \quad \text{and} \quad [n]_n = 1 \quad \text{for all } n
\end{align*}
\] (11)

Do you see the factorial sequence in the column labeled 1?

\[
[n]_1 = (n - 1)!
\]

Do you see the triangular sequence in sub-diagonal?

\[
\binom{n}{n-1} = \frac{n(n-1)}{2}
\]

Theorem 22: Stirling’s identity of the first kind

Stirling’s numbers of the first kind can be generated by the two-dimensional recurrence equation

\[
[n]_k = (n-1)[n-1]_k + [n-1]_{k-1}
\]

together with the boundary conditions

\[
[n]_0 = 0, \quad (n = 1, \ldots) \quad \quad [n]_n = 1, \quad (n = 0, 1, 2, \ldots)
\]

The only functional form for Stirling’s numbers of the first kind that I can point to is quite complex. I won’t even try to write it down.
Counting partitions by subsets

Stirling’s numbers of the second kind count partitions of a set. This will be explained in more detail in the notes on equivalences: how to partition a set. But, for now, let’s just derive the recurrence that counts the number of partitions of a set into a given number of subsets.

Stirling’s numbers of the second kind \(\{n\}_k \) counts the number of ways to partition a set into \(k \) subsets. For instance, consider the set \(X = \{1, 2, 3, 4, 5\} \). It is a partition of itself, and \(\{5\}_1 = 1 \). \(X \) can also be partitioned into three subsets: Some ways to do this are:

\[
\begin{align*}
&\{\{1, 2, 3\}, \{4\}, \{5\}\}, \quad \{\{1, 2\}, \{3, 4\}, \{5\}\}, \quad \{\{1\}, \{2, 4\}, \{3, 5\}\} \\
&\{\{1, 2\}, \{3, 4\}, \{5\}\}, \quad \{\{1\}, \{2, 4\}, \{3, 5\}\} \\
&\{\{1\}, \{2\}, \{3, 4, 5\}\}, \quad \{\{1\}, \{2\}, \{3, 4, 5\}\} \\
&\{\{1\}, \{2\}, \{3, 4, 5\}\}, \quad \{\{1\}, \{2\}, \{3, 4, 5\}\}
\end{align*}
\]

There are \(\{5\}_3 = 25 \) different ways to partition \(X \) into 3 subsets, but that is not obvious.

What may be obvious is:

- A non-empty set cannot be partitioned without any subsets at all: \(\{n\}_0 = 0 \).

- And, an \(n \)-element set can be partitioned into \(n \) subsets in only 1 way: \(\{n\}_n = 1 \).

Do you see the triangular sequence in the column labeled 2?

\[
\{n\}_3 = \binom{n}{3} = \frac{n(n-1)(n-2)}{3!}
\]

Do you see the triangular sequence in sub-diagonal?

\[
\{\binom{n}{n-1}\}_2 = \frac{n(n-1)}{2}
\]

<table>
<thead>
<tr>
<th>Stirling Numbers of the Second Kind ({n}_k)</th>
<th>Subset (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>(n)</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>
Theorem 23: Stirling’s identity of the second kind

Stirling’s numbers of the second kind can be generated by the two-dimensional recurrence equation

\[
\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}
\]

together with the boundary conditions

\[
\binom{n}{0} = 0, \quad (n = 1, \ldots) \quad \binom{n}{n} = 1, \quad (n = 0, 1, 2, \ldots)
\]

together with the boundary conditions

\[
\binom{n}{0} = 0 \quad \text{for } n > 0 \quad \text{and} \quad \binom{n}{n} = 1 \quad \text{for all } n \quad (12)
\]

The functional form for Stirling’s numbers of the second kind is not so simple.

\[
\binom{n}{k} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^n.
\]

Pass a Quiz: Stirling numbers

Take a quiz on page 345 to check your understanding. You can return to here from the quiz.

Homework Questions

🧬 Use your time outside of class to solve these problems.

1. How many truth assignments are there are 1, 2 and 3 Boolean variables? List the truth assignments. What is the pattern?

2. How many functions can be defined on the truth assignments in problem 1? What is the pattern?

3. Physicist estimate there are about 10^{80} atoms in the universe. How many inputs must a Boolean function have to be able to construct more functions than hydrogen atoms?

4. Let $B^2 = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$ be the set of all Boolean pairs, and let B^3 the the set of all Boolean triples.

 1. How many functions can be defined from B^2 to B^3?

 2. How many relations can be defined between B^2 and B^3?
5 Dr. S. Cooper assigned his assistant Ms. Jensen the task of listing all relations from H to H, where H is the set of hexadecimal numerals. She politely refused. Why?

6 “Well then,” Dr. Cooper said, “give me all functions from D to H!” To which Ms. Jensen said, “Well maybe I can do that. Let me calculate.” Why did she agree to consider this task?

7 The formula for counting functions is $|Y|^{\mid X\mid}$. When $Y = \emptyset$ the formula states there are no functions from a non-empty set X to \emptyset. Does this jibe with the definition of a function given in the notes programming: with functions

$$(\forall x \in X)(\forall y_0, y_1 \in Y)((f(x) = y_0) \land (f(x) = y_1) \Rightarrow (y_0 = y_1))$$

That is, if $Y = \emptyset$, is it True that there is no function f that maps each $x \in X$ to at most one element in $Y = \emptyset$.

8 In how many ways can you choose and permute n elements from X in the following instances

8.1 $n = 5$ and $X = H$.

8.2 $n = 5$ and $X = \mathbb{E}$, the lower case English letters.

8.3 For arbitrary $n = 5$ and X.

9 An Italian meal can contain up to 9 contains. They are listed below with the number of choices on a particular menu.

1. Aperitivo (5 choices) 6. Formaggio e frutta (1 choice)
2. Antipasto (4 choices) 7. Dolce (6 choice)
3. Primo (2 choices) 8. Caffè (4 choice)
4. Secondo (3 choices) 9. Digestivo (5 choice)
5. Contorno (5 choices)

9.1 If you are served one items from course, how many different meals could you have?

9.2 If you can decline a course, but still have no more than one item per course, how many different meals could you have?

9.3 If you on a date, how many meals can you and your date have?

10 A permutation is a one-to-one function from a finite set onto itself. Let $\pi = \langle p_0, p_1, \ldots, p_{n-1} \rangle$ be a permutation of 0 to $n - 1$.

An ascent in a permutation is a pair $\langle p_{j-1}, p_j \rangle$ where $p_{j-1} < p_j$. The pair is a descent if $p_{j-1} > p_j$. For instance,

- $\langle 0, 1, 2 \rangle$ has 2 ascents: $\langle 0, 1 \rangle$ and $\langle 1, 2 \rangle$
- $\langle 2, 1, 0 \rangle$ has no ascents,

Each of $\langle 1, 0, 2 \rangle$, $\langle 0, 2, 1 \rangle$, $\langle 2, 0, 1 \rangle$, and $\langle 1, 2, 0 \rangle$ has one ascent and one descent.
Definition 22: Eulerian numbers

The symbol \(\langle n \k \rangle \) is the count of permutations of \(n \) elements with \(k \) ascents.

\(\langle n \k \rangle \) is an Eulerian number and it is pronounced “\(n \) ascent \(k \).”

From the above example, you know

\[
\langle 3 \0 \rangle = 1, \quad \langle 3 \1 \rangle = 4, \quad \langle 3 \2 \rangle = 1
\]

10.1 How many permutations of \(n \) values have no ascents?

10.2 How many permutations of \(n \) values have \(n \) ascents?

10.3 How many permutations of \(n \) values have \((n - 1)\) ascents?

10.4 Explain why

\[
\sum_{k=0}^{n-1} \langle n \k \rangle = n!
\]

10.5 Explain why

\[
\langle n \k \rangle = \langle n \n-k \rangle
\]

10.6 Fill in Euler’s triangle listing the values of \(\langle n \k \rangle \) for \(n = 0, 1, 2, 3, 4, 5, 6 \) and \(k = 0, \ldots, n \).

The order of terms in the sum is not relevant.

11 A partition of positive integer \(n \) is a set of positive integers whose sum is \(n \).

For instance, \(6 = (1 + 5) = (2 + 4) = (3 + 3) \) are three different partitions of 6 into 2 terms.

Let \(p(n, k) \) denote the number of partitions of \(n \) into exactly \(k \) terms.

For example, 6 can be partitioned into \(k = 1, 2, 3, 4, 5 \) and 6 terms in the following ways.

\[
\begin{align*}
p(6, 1) &= 1 & \text{(6)} & \text{1 way} \\
p(6, 2) &= 3 & \text{(5 + 1, 4 + 2, 3 + 3)} & \text{3 ways} \\
p(6, 3) &= 3 & \text{(4 + 1 + 1, 3 + 2 + 1, 2 + 2 + 2)} & \text{3 ways} \\
p(6, 4) &= 2 & \text{(3 + 1 + 1 + 1, 2 + 2 + 1 + 1)} & \text{2 ways} \\
p(6, 5) &= 1 & \text{(2 + 1 + 1 + 1 + 1)} & \text{1 way} \\
p(6, 6) &= 1 & \text{(1 + 1 + 1 + 1 + 1 + 1)} & \text{1 way} \\
\end{align*}
\]

11.1 What are the boundary conditions \(p(n, 1), n = 1, 2, 3, \ldots \)?

11.2 What are the boundary conditions \(p(n, n), n = 1, 2, 3, \ldots \)?

11.3 Explain why the recurrence equation

\[
p(n, k) = p(n - 1, k - 1) + p(n - k, k)
\]

describes how you could compute \(p(n, k) \)? Hints: How can you write \(n \) using \(k \) terms using a representation of \((n - 1)\) with \(k - 1 \) terms? How
can you write \(n \) using \(k \) terms using a representation of \((n - k)\) with \(k \) terms? Why must these two methods produce different sums?

11.4 Fill in “Partition into Terms” triangle listing the values of \(p(n, k) \) for \(n = 0, 1, 2, 3, 4, 5, 6 \) and \(k = 0, \ldots, n \).

12 Hollerith (punched) cards were used to write control command or computational data for a computer until the mid-1980’s.

The IBM card, designed in 1928 has 12 rows and 80 columns. Assume there can be only one punch is allowed per column.

12.1 In how many ways can a card not be punched?
12.2 In how many ways can a card be punched once?
12.3 In how many ways can a card be punched twice?
12.4 In how many ways can a card be punched eighty times?
12.5 In how many ways can a card be (legitimately) punched eighty-one times?

13 A hand of five cards is dealt from a standard deck of 52 cards?

13.1 How many one-pair hands are there? An example one-pair hand is

13.2 How many two-pair hands are there? An example two-pair hand is

13.3 How many straight hands are there? An example straight hand is
13.4 How many full-house hands are there? An example full-house hand is

13.5 How many royal flush hands are there? An example royal flush hand is

13.6 What is the probability of each of the above classes of hands?
12. Catalan Numbers: A case study in counting

Pascal’s triangle is widely known.

<table>
<thead>
<tr>
<th>Binomial Coefficients (\binom{n}{k})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose (k)</td>
</tr>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 \</td>
</tr>
<tr>
<td>0 1 \</td>
</tr>
<tr>
<td>1 1 1 \</td>
</tr>
<tr>
<td>2 1 2 1 \</td>
</tr>
<tr>
<td>3 1 3 3 1 \</td>
</tr>
<tr>
<td>(n) 4 1 4 6 4 1 \</td>
</tr>
<tr>
<td>5 1 5 10 10 5 1 \</td>
</tr>
<tr>
<td>6 1 6 15 20 15 6 1 \</td>
</tr>
<tr>
<td>7 1 7 21 35 35 21 7 1 \</td>
</tr>
<tr>
<td>8 1 8 28 56 70 56 28 8 1 \</td>
</tr>
<tr>
<td>9 1 9 36 84 126 126 84 36 9 1 \</td>
</tr>
<tr>
<td>\vdots \vdots \vdots</td>
</tr>
</tbody>
</table>

The number in row \(n \) column \(k \) of Pascal’s triangle is a binomial coefficient denoted \(\binom{n}{k} \) and pronounced “\(n \) choose \(k \).” Binomial coefficients can be computed using the factorial formula

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]

Binomial coefficients can also be computed using Pascal’s identity

\[
\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}
\]

with boundary conditions

\[
\binom{n}{0} = 1 \quad \text{and} \quad \binom{n}{n} = 1
\]

Not finished: The idea is to show how Catalan numbers appear in many guises and their relation to binomial coefficients.

Note the Alice, Gauss, and triangular number sequences are the first columns of Pascal’s triangle. Note how a sum in one column totals to a value in the next column. Note each row sums to \(2^n \).

Unless you are confident you can compute small factorial formulas of \(\binom{n}{k} \), you should evaluate a few. For example, what are \(\binom{7}{4} \) and \(\binom{10}{3} \)?

Pascal’s identity and it boundary conditions can be likened to a partial differential equation with boundary conditions. PDE’s can be used to model acoustics, fluid flow, heat transfer, and many other phenomena.
You’ve noticed that the first, second, and third columns of Pascal’s triangle are the Alice, Gauss, and triangular number sequences, respectively. This immediately provides the sum of columns identity: The sum of binomial coefficients in column k up to row m is

\[\sum_{n=k}^{m} \binom{n}{k} = \binom{m+1}{k+1} \]

This results from the fundamental theorem of the sum-and-difference calculus: First, write $\binom{n}{k}$ as a difference.

\[\binom{n}{k} = \binom{n+1}{k+1} - \binom{n}{k+1} \]

Second, evaluate the sum the differences.

\[
\begin{align*}
\sum_{n=k}^{m} \binom{n}{k} &= \sum_{n=k}^{m} \left(\binom{n+1}{k+1} - \binom{n}{k+1} \right) \\
&= \binom{m+1}{k+1} - \binom{k}{k+1} \\
&= \binom{m+1}{k+1} - 1
\end{align*}
\]

Binomial coefficients also count subsets of a set A.

Theorem 24: Counting Subsets, Again

Let A be a set with cardinality n. Then A has $\binom{n}{k}$ subsets with k elements.

This leads to the discovery of another sum in Pascal’s triangle.

Theorem 25: Row Sum: Pascal’s Triangle

The sum of values in row n of Pascal’s triangle is 2^n.

\[\sum_{k=0}^{n} \binom{n}{k} = 2^n \]

Proof. Any subset of A has k elements for some $k = 0, 1, 2, \ldots, n$. The binomial coefficient $\binom{n}{k}$ counts the number of k-element subsets. The total over all k’s is the number of subsets, which known to be 2^n. \qed

Catalan numbers

I think it is interesting when you find a simple expression that counts many seemingly different things. Catalan numbers count: full binary trees, well-nested parenthesis, sub-diagonal paths in a grid, triangulation of a convex polygon, and other things.

Consider an $n \times n$ grid.

For demonstration, let it be a 4×4 grid.
A monotonic path from \((0, 0)\) to \((n, n)\) is a sequence of right and left moves on the grid.

There must \(n\) moves right \(\rightarrow\) and \(n\) moves up \(\uparrow\). For instance, on a \(4 \times 4\) grid, a path from \((0, 0)\) to \((4, 4)\) is

\[\langle \rightarrow, \uparrow, \rightarrow, \rightarrow, \uparrow, \rightarrow, \uparrow \rangle\]

The sequence of \(\rightarrow\) and \(\uparrow\) moves is \(2n\) long. If you choose \(n\) of the \(2n\) locations and place \(\rightarrow\)'s there, then the up moves will be determined too. There are \(\binom{2n}{n}\) ways to choose \(n\) of \(2n\) locations. Therefore, there are

\[\binom{2n}{n} = \frac{(2n)!}{n!n!}\]

paths in the grid from \((0, 0)\) to \((n, n)\).

A Catalan path does not go above the diagonal.

Homework Questions

1. Use your time outside of class to solve these problems.

Binary trees are basic data structures. A full binary tree is one where each internal node has exactly two children.
And a full binary tree

1.1 Let T_n be a full binary tree with n internal nodes. How many edges does T_n have?

1.2 Let T_n be a full binary tree with n internal nodes. How many leafs does T_n have?

1.3 Let C_n be the number of full binary trees with n internal nodes. What is a recurrence equation for C_n?

1.4 Let C_n be the number of full binary trees with n internal nodes. What is a formula, involving binomial coefficients, for C_n?

C_n is called a Catalan number.
13. *Mathematical induction: Or is it recursion?*

Finally, you have broader considerations that might follow what you would call the “falling domino” principle. You have a row of dominoes set up, you knock over the first one, and what will happen to the last one is the certainty that it will go over very quickly. So you could have a beginning of a disintegration that would have the most profound influences.

Dwight D. Eisenhower, April 7, 1954 news conference

Introduction

Mathematical induction works “bottom up.” Starting from base cases (initial conditions), use previous results to generate the next result. The fundamental example is the construction of the natural numbers. Starting at 0, increment each number by 1 at each step generating the Gauss sequence $\mathcal{G} = \langle 0, 1, 2, 3, 4, \ldots \rangle$.

Interestingly, you can generate the natural numbers by establishing a natural transformation between them and sets. Specifically, let

- $0 \equiv \emptyset$, the set with cardinality 0.
- $1 \equiv 0 \cup \{0\} \equiv \{\emptyset\}$, a set with cardinality 1.
- $2 \equiv 1 \cup \{1\} \equiv \{\emptyset, \{0\}\}$, a set with cardinality 2.
- $3 \equiv 2 \cup \{2\} \equiv \{\emptyset, \{0\}, \{0, \{0\}\}\}$, a set with cardinality 3.
- In general, the number n is associated with a set with n elements.

$$n \equiv (n - 1) \cup \{n - 1\}$$

Another example: Let $\tau(n)$ be the predicate statement “the sum of the first n natural numbers is $n(n - 1)/2$.”

$$\tau(n) \equiv 0 + 1 + 2 + \cdots + (n - 1) = \frac{n(n - 1)}{2} \quad \tau \text{ is for "triangular."}$$

A mathematical induction proof shows that $\tau(n)$ is True for all natural numbers n.

$$\forall n \in \mathbb{N} \left(\tau(n) = \text{True} \right)$$
More explicitly,

\[
(\forall n \in \mathbb{N})(0 + 1 + 2 + \cdots + (n - 1) = \frac{n(n - 1)}{2})
\]

Mathematical induction has two steps, which I like to break into three parts. To prove that a predicate \(\tau(n) \) is True for all natural numbers \(n \) do this:

1. Establish a basis for induction: Prove that \(\tau(k) \) is True for some natural number \(k \). Usually, \(k = 0 \) or \(k = 1 \) or some other small number.

2. Complete the inductive (two) step:
 (a) Make an inductive hypothesis: Assume \(\tau(n) \) is True for some natural number \(n \geq k \).

\[
(\exists n, n \geq k)(0 + 1 + 2 + \cdots + (n - 1) = \frac{n(n - 1)}{2})
\]

(b) Derive the inductive conclusion: Prove \(\tau(n + 1) \) is True. That is, prove

\[
(0 + 1 + 2 + \cdots + (n - 1)) + n = \frac{(n + 1)n}{2}
\]

If both steps can be demonstrated, then you can conclude that \(\tau(n) \) is True for all natural numbers \(n \geq k \).

The following two examples are fundamental: (1) Sums of natural numbers are binomial coefficients; (2) Sums of powers of 2 are Mersenne numbers. Learning how to employ mathematical induction to prove these two facts will help you understand the structure of other mathematical induction proofs.

1. The sum of the first \(n \) natural numbers can be evaluated by the formula \(n(n - 1)/2 \), which is a Triangular number and the binomial coefficient \(\binom{n}{2} \).

\[
0 + 1 + 2 + \cdots + (n - 1) = \frac{n(n - 1)}{2}
\] (13)

2. The sum of the first \(n \) powers of 2 can be evaluated by the formula \(2^n - 1 \), which is a Mersenne number.

\[
2^0 + 2^1 + 2^2 + 2^3 + \cdots + 2^{n-1} = 2^n - 1
\] (14)

Let’s see how inductive proofs of statements 13 and 14 go.
Theorem 26: Sum of natural numbers

The sum of the first n natural numbers

$$0 + 1 + 2 + 3 + \cdots + (n - 1)$$

can be evaluated by computing the value of the Triangular function

$$n \rightarrow \frac{n(n - 1)}{2} = \left(\frac{n}{2}\right)$$

Proof: Sum of natural numbers

The proof has these steps:

1. The basis for induction can start at $n = 1$. In this case, there is only one term in the sum: The sum is simply 0. And, the function is $1 \rightarrow \frac{1(1-1)}{2} = 0$. The sum is equal to the function value at $n = 1$.

2. The inductive step shows the implication

 $$\tau(n) \Rightarrow \tau(n+1) \text{ is True.}$$

 (a) Assume $\tau(n) = \text{True}$ for some value of $n \geq 1$. That is, assume

 $$(\exists n \in \mathbb{N}, n \geq 1) \left(0 + 1 + 2 + \cdots + (n - 1) = \frac{n(n-1)}{2}\right)$$

 (b) Prove the sum of the first $(n + 1)$ natural numbers equals $(n + 1)n/2$.

 To do so, note that the sum of the first $(n + 1)$ natural numbers is the sum of the first n plus the $(n+1)^{st}$ natural number. This leads to the derivation:

 $$[0 + 1 + 2 + 3 + \cdots + (n - 1)] + n = \frac{n(n-1)}{2} + n$$

 $$= \frac{n(n-1)}{2} + \frac{2n}{2}$$

 $$= \frac{(n^2 - n) + 2n}{2}$$

 $$= \frac{n^2 + n}{2}$$

 $$= \frac{(n+1)n}{2}$$

 Therefore, $\tau(n+1) = \text{True}$ for all values of n. That is,

 $$(\forall n \in \mathbb{N}) \left(0 + 1 + 2 + \cdots + (n - 1) = \frac{n(n-1)}{2}\right)$$
The graphs below of $y(x) = x(x - 1)/2$ and the sum of values on the graph of $\Delta y(x) = y(x + 1) - y(x) = x$ show the values agree.

This may be confusing. The red dots along a vertical dashed line represent 0, 1, 2, 3, 4 and so on. The space between the dots are (dashed) line segments of these lengths stacked upon one another. The sum of lengths always reaches the blue quadratic curve.

Now, let’s tackle statement 13 from above.

Theorem 27: Sum of powers of 2

The sum of the first n powers of 2

$$2^0 + 2^1 + 2^2 + 2^3 + \cdots + 2^{n-1}$$

can be evaluated by computing the value of the function $n \to 2^n - 1$

Proof: Sum of powers of 2

The proof has these steps:

1. **The basis for induction can start at $n = 1$. In this case, the sum is simply $2^0 = 1$, and the function is $1 \to 2^1 - 1 = 1$ also. The sum is equal to the value of the function at $n = 1$.**

2. **The inductive step shows the implication**

 $$\tau(n) \Rightarrow \tau(n + 1) \text{ is True.}$$

 (a) Assume the value of the sum (of the first n powers of 2) is equal to the value of the function $2^n - 1$, for some $n \geq 1$. That is,

 $$\exists n \in \mathbb{N}, n \geq 1 \mid (2^0 + 2^1 + 2^2 + \cdots + 2^{n-1} = 2^n - 1)$$

 (b) **Prove the sum (of the first $(n + 1)$ powers of 2) is the same as the value $2^{n+1} - 1$.**
To do so, note the sum of the first \((n+1)\) powers of 2 is the sum of the first \(n\) powers of 2 plus the \((n+1)\)th power of 2. This leads to the derivation:

\[
(2^0 + 2^1 + 2^2 + 2^3 + \cdots + 2^{n-1}) + 2^n = (2^n - 1) + 2^n \\
= 2 \cdot 2^n - 1 \\
= 2^{n+1} - 1
\]

Therefore, the statement is True for all values of \(n\).

\[
(\forall n \in \mathbb{N}) \left(1 + 2 + 4 \cdots + 2^{n-1} = 2^n - 1 \right)
\]

Notice the graph of \(y(x) = 2^x - 1\) and the sum of values on the graph of \(\Delta y(x) = y(x + 1) - y(x) = 2^x\) agree. The axes in the graph are semi-log. That is, the \(x\) axis is linear, while the \(y\) axis is plotted logarithmically.

Notice that adding up red points gives a value on the graph.

There are many other useful statements that have simple inductive proofs. Too many count. A few will be mentioned.

Geometric sums

You can generalize the statement about sums of powers of 2 equaling a function to arbitrary geometric sequences. That is, you can find the function that evaluates an sums of terms in a geometric sequence.

For instance, consider sums of powers of 3: Sums the terms in the sequence

\[
\{1, 3, 9, 27, 81, 243, \ldots, 3^{n-1}, \ldots\}
\]

Wow! This is even more confusing, because the \(y\)-axis is compressed by a logarithmic scaling. Instead of plotting \(x\) versus \(y\), the graph plots \(x\) versus \(\log y\). Because \(2^x\) is just a little bigger than \(2^x - 1\) the two curves appear to overlap as \(x\) becomes large, but they are always 1 apart.
The first few sums are:

\[
\begin{align*}
\sum_{0}^{−1} &= 0 = \frac{3^0 - 1}{2} \quad \text{(no terms (empty sum))} \\
1 &= 1 = \frac{3^1 - 1}{2} \quad \text{(one term)} \\
1 + 3 &= 4 = \frac{3^2 - 1}{2} \quad \text{(two terms)} \\
1 + 3 + 9 &= 13 = \frac{3^3 - 1}{2} \quad \text{(three terms)} \\
&\vdots \\
1 + 3 + \cdots + 3^{n−1} &= \frac{3^n - 1}{2} \quad \text{(n terms)}
\end{align*}
\]

Do you see a pattern? Here’s the general statement.

Theorem 28: Geometric sums

The sum of terms in a geometric sequence is \(a(r^n - 1)/(r - 1)\). That is, let

\[
\mathbf{R} = \langle a, ar, ar^2, ar^3, \ldots \rangle = \langle r_0, r_1, r_2, r_3, \ldots \rangle
\]

be a geometric sequence, with ratio \(r \neq 0\) and initial condition \(r_0 = a\). Then, the sum of the first \(n\) terms in \(\mathbf{R}\) is

\[
a + ar + ar^2 + \cdots + ar^{n−1} = \sum_{k=0}^{n-1} ar^k = a \left(\frac{r^n - 1}{r - 1} \right) \quad (15)
\]

Proof: Geometric sums

The proof that equation 15 is True for all natural numbers goes like this.

For \(n = 1\) both sides of equation 15 equal \(a\). Next, if the equation is True for some \(n \geq 1\), then you can derive

\[
(a + ar + ar^2 + \cdots + ar^{n−1}) + ar^n = a \left(\frac{r^n - 1}{r - 1} \right) + ar^n
\]

\[
= a \left(\frac{r^n - 1}{r - 1} \right) + a(r^n - 1) = a \left(\frac{r^n - 1}{r - 1} \right)
\]

\[
= a \left(\frac{r^n - 1 + r^{n+1} - r^n}{r - 1} \right) = a \left(\frac{r^{n+1} - 1}{r - 1} \right)
\]

Therefore, if the statement is True for some \(n\), then it is True for \((n + 1)\) as well. Using this you can conclude the statement of the theorem is True for all values of \(n\).

The graphs below are of \(y(x) = (3^x - 1)/2\) and the sum of values on the
The graph of $\Delta y(x) = y(x+1) - y(x) = 3^x$. Notice that adding up red points gives a value on the graph.

The axes in the graph are semi-log. That is, the x axis is linear, while the y axis is plotted logarithmically.

In Haskell, the code to sum the terms in an geometric sequence might look like this.

```haskell
geometricSum :: [Arithmetic] -> Integer
geometricSum [] = 0
geometricSum (ns) = head ns * (head ns + last ns)/2
```

```haskell
SumNats :: [Geometric] -> Integer
SumNats [] = 0
SumNats (ns) = let r = (head head ns)/head ns
               in head ns * (r ** length ns -1)/(r-1)
```

Arithmetic sums

You can generalize the statement about sums of natural numbers equaling a particular function to an arbitrary arithmetic sequences. That is, you can find the function that evaluates an sums of terms in an arithmetic sum. Consider an arithmetic sequence that starts at -2 and increased by 3 at each step

$$\langle -2, 1, 4, 7, 10, 13, \ldots \rangle$$
Do you see a pattern? The sum is the number of terms \(n \) times the average of the first and last term in the sum.

Here’s the general statement.

Theorem 29: Arithmetic Sums

Let \(\vec{A} = \langle a_0, a_1, a_2, a_3, \ldots \rangle = \langle b, m + b, 2m + b, 3m + b, \ldots \rangle \) be an arithmetic sequence.

The sum of the first \(n \) terms of \(\vec{A} \) is

\[
\sum_{k=0}^{n-1} (km + b) = n \left(\frac{2b + (n-1)m}{2} \right) = (\text{# terms}) \frac{1^{st} + n^{th}}{2}
\]

Proof: Arithmetic sums

Here’s how a proof might be stated.

The basis for induction is: The sum of no \((n = 0) \) terms is empty and equal to 0. Likewise, the function value

\[
n \rightarrow n \left(\frac{2b + (n-1)m}{2} \right) \quad \text{is 0 when } n = 0
\]

Now, assume

\[
\sum_{k=0}^{n-1} (km + b) = n \left(\frac{2b + (n-1)m}{2} \right) \quad \text{is True for some } n \geq 0.
\]

Then, the sum of the first \((n + 1)\) terms equals the sum of the first \(n\) terms plus the last \((n+1)^{th}\) term. That is,

\[
\sum_{k=0}^{n} (km + b) = \left(\sum_{k=0}^{n-1} (km + b) \right) + (nm + b)
\]
To see this, use the hypothesis to replace
\[\sum_{k=0}^{n-1} (km + b) \quad \text{with} \quad n \left(\frac{2b + (n-1)m}{2} \right) \]
and follow the algebra.

\[
\sum_{k=0}^{n} (km + b) = \left[\sum_{k=0}^{n-1} (km + b) \right] + (nm + b) \\
= n \left(\frac{2b + (n-1)m}{2} \right) + (nm + b) \\
= \left(\frac{2nb + n(n-1)m}{2} \right) + \frac{2nm + 2b}{2} \\
= \frac{2nb + n(n-1)m + 2nm + 2b}{2} \\
= \frac{2b(n+1) + n(n+1)m}{2} \\
= (n + 1) \left(\frac{2b + nm}{2} \right)
\]

Therefore, if the statement is True for some \(n \), then it is True for \((n + 1) \) as well. Using this you can conclude the statement of the theorem is True for all values of \(n \).

In Haskell, the code to sum the terms in an arithmetic sequence might look like this.

```haskell
arithmeticSum :: [Arithmetic] -> Integer
arithmeticSum [] = 0
arithmeticSum (ns) = length ns * (head ns + last ns)/2
```

Pass a Quiz: Basic induction problems

Take a quiz on page 345 to check your understanding. You can return to here from the quiz.

Strong induction

Sometimes the inductive hypothesis needs to be strengthened. For instance, you may need to know that all of

\[p(k), p(k + 1), p(k + 2), \ldots, p(n-1) \]

are True

in order to conclude \(p(n) \) is true. A classical example is the fundamental theorem of arithmetic. The theorem was know to Euclid and is also called the Unique factorization theorem.
Theorem 30: Fundamental theorem of arithmetic

Every integer \(n \) greater than 1 is either a prime number or the product of prime numbers. The factorization is unique, except for the order of the factors.

Proof: Fundamental theorem of arithmetic

As a basis for induction: Each of \(n = 2, 3, 4 = 2^2, 5, 6 = 2 \cdot 3 \) can be written uniquely as a product of prime numbers. Make the hypothesis that, for some \(n \geq 7 \), all natural numbers from 2 to \(n - 1 \) can be written uniquely as the product of primes. Consider \(n \), the next value after \(n - 1 \). If \(n \) is a prime number, the proof is complete. If \(n \) is not prime, then it can be written as the product of two integers \(n = ab \) where \(1 < a \leq b < n \). By the inductive hypothesis, both \(a \) and \(b \) can be written as the product of primes. Therefore, \(n \) can be written as the product of primes. Establishing the uniqueness of the factorization is best accomplished using a contradiction.

Perhaps Dorothy, from the Wizard of Oz, asking the Guardian of the Emerald City Gates: “What kind of a horse is that?” and receiving the reply “He’s the Horse of a Different Color, you’ve heard tell about.” led George Polya to his statement that “there is no horse of a different color”. His False proof shows what can go wrong when you need strong induction and don’t use it.

Theorem 31: False theorem: No horse of a different color

All horses are of the same color.

Proof: No horse of a different color

You are to find the mistake in this “proof.”
If there is only one horse, it is of the same color as itself. Assume, for some \(n \), that any set of \(n \) horses all have the same color. Let \(X \) be a set of \(n + 1 \) horses. By the hypothesis, the first \(n \) and last \(n \) horses all have the same color. And, since the two sets overlap, all horses in \(X \) have the same color.

Homework Questions

Use your time outside of class to solve these problems.

1. Consider the first few sums of powers on \(k \) for \(k = 0, 1, 2, 3, \ldots, (n - 1) \).

 Use mathematical induction to show that:

 1.1 \[0 + 1 + 2 + 3 + \cdots + (n - 1) = \sum_{k=0}^{n-1} k = \frac{n(n-1)}{2} \]

 1.2 \[0^2 + 1^2 + 2^2 + 3^2 + \cdots + (n - 1)^2 = \sum_{k=0}^{n-1} k^2 = \frac{n(n-1)(2n-1)}{6} \]
1.3 \[0^3 + 1^3 + 2^3 + 3^3 + \cdots + (n-1)^3 = \sum_{k=0}^{n-1} k^3 = \frac{n^2(n-1)^2}{4} \]

2 Consider the following inductive proof of the statement: “Every odd natural number is prime.” Proof: 3, 5 and 7 are prime numbers. Therefore the statement is True. Do you find anything wrong with this proof?

3 The notes make that statement “the sum of natural numbers is a binomial coefficient.” Establish that the general equation below is always True

\[\sum_{k=m}^{n-1} k = \binom{n}{2} \frac{(n+1)(n-1)}{2} \quad \text{for } n \geq m. \]

4 The notes make that statement “the sum of powers of 2 is a Mersenne number.” Establish that the general equation below is always True

\[\sum_{k=m}^{n-1} 2^k = 2^m (2^{n-m} - 1) \]

5 If you invest A dollars each month and you earn interest at a monthly rate on the total amount invested, what will your investment be worth after n months?

6 Use mathematical induction to prove the sum of the even natural numbers from 0 to $2n$ is $n(n + 1)$.

\[\sum_{k=0}^{n} 2k = n(n + 1) \]

7 Use mathematical induction to prove the sum of products consecutive pairs of natural numbers is the product of three consecutive number divided by 3, that is,

\[\sum_{k=0}^{n-1} k(k - 1) = \frac{n(n - 1)(n - 2)}{3} \]

8 Use mathematical induction to prove the summation formula

\[\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1} \]

is true for all natural numbers $n \geq 0$.

9 Use mathematical induction to prove the sum of k times $k!$ from $k = 0$ to $k = n - 1$ is $n! - 1$

\[\sum_{k=0}^{n-1} k \cdot k! = n! - 1. \]

An interesting identity involving π is

\[\frac{\pi^2}{6} = \sum_{k=1}^{\infty} \frac{1}{k^2} \]

is true for any natural number $n \geq 2$.

10 Use mathematical induction to prove the summation formula

\[\sum_{k=1}^{n} \frac{1}{k^2} < 2 - \frac{1}{n} \]

is true for any natural number $n \geq 2$.

An interesting identity involving π is

\[\frac{\pi^2}{6} = \sum_{k=1}^{\infty} \frac{1}{k^2} \]
11 Prove that the sum of binomial coefficients in a column of Pascal’s triangle equals the binomial coefficient in the next column and down one row from where you stopped the sum. That is, show that
\[
\sum_{k=0}^{n-1} \binom{k}{m} = \binom{n}{m+1}
\]

12 Prove that the sum of all binomial coefficients in a row of Pascal’s triangle equals a power of 2, that is,
\[
\sum_{k=0}^{n} \binom{n}{k} = 2^n
\]

How is this related to the total number of subsets of an n-element set? How is this related to the cardinality of the power set of the set?

13 Use mathematical induction to show that the sum of the first n Fibonacci numbers is a Fibonacci number minus one. Specifically, show that
\[
F_0 + F_1 + \cdots + F_{n-1} = F_{n+1} - 1
\]

14 Prove that the sum of the odd-indexed Fibonacci numbers up to \(F_{2n+1}\) equals \(F_{2n+2}\). That is,
\[
\sum_{k=0}^{n} F_{2k+1} = F_{2n+2}
\]

15 Prove that
\[
\sum_{k=0}^{n} F_{2k} = F_{2n+1} - 1
\]

16 Prove that
\[
\binom{n}{0} + \binom{n-1}{1} + \binom{n-2}{2} + \cdots + \binom{0}{n} = F_{n+1}
\]

17 Prove 6 divides \(7^n - 1\) for all natural numbers \(n\).

18 Prove \(n! \geq 2^n\) for all natural numbers \(n \geq 4\).

19 An Indian folk tale tells Rani, a peasant girl who did a good deed. As reward, the Raja said he would grant any wish. Rani only asked for one grain of rice today, two grains tomorrow, four grains the next day, and so on for 30 days. The Raja granted Rani’s wish. Assuming none of the rewarded rice was consumed

19.1 How much rice did Rani have after 30 days?

19.2 The Freerice website estimates 20,000 grains of rice are needed (along with other ingredients) to feed a person for one day. How many people could Rani feed for only 1 day? For 2 days? For 3 days?

19.3 What function maps the store in Rani’s rice warehouse to the number of people who could be feed for \(n\) days?

20 What is wrong in the proof that there is no horse of a different color?

21 Prove Bernoulli’s inequality: If \(1 + h > 0\) then \(1 + nh \leq (1 + h)^n\).
22 Consider the table

\[
\begin{align*}
1 &= 0 + 1 \\
2 + 3 + 4 &= 1 + 8 \\
5 + 6 + 7 + 8 + 9 &= 8 + 27 \\
10 + 11 + 12 + 13 + 14 + 15 + 16 &= 27 + 64 \\
\end{align*}
\]

Guess the general rule these instances suggest and prove your rule is correct by using mathematical induction.

23 The Zeno is named for Zeno of Elea, the Greek philosopher, who argued that an arrow could never reach its mark: It must reach its halfway point before the mark and there is always a next halfway point. What is the sum of first \(n \) halfway distances?

24 I started an annuity 40 years ago. Each month I have deposited $100 into an account with a rate of return of one-half of one-percent per month on the value of the account.

1. How much money have I paid into the account?

2. With a little bit of analysis, you can deduce that the value of my account can be computed by the sum

\[
100 \left[1 + 1.005 + (1.005)^2 + \cdots + (1.005)^{479} \right] \text{ dollars}
\]

Use your knowledge of geometric sums to my account value is approximately \(200000(1.005)^{480} \), about $200,000.

25 Curious George wondered if the sum formulas

\[
\sum_{k=0}^{n-1} 1 = \binom{n}{1} \quad \text{and} \quad \sum_{k=0}^{n-1} k = \binom{n}{2}
\]

generalize to

\[
\sum_{k=0}^{n-1} k^2 = \binom{n}{3}
\]

Show that CG’s conjecture is wrong by giving a simple counterexample.

26 The correct formula for the sum of squares is

\[
\sum_{k=0}^{n-1} k^2 = \binom{n}{3} + \binom{n+1}{3}
\]

Use mathematical induction to prove this equation is valid.

27 It is interesting to write Pascal’s triangle as a triangle the way most people
27.1 Consider the sequence of the central column
\[
\langle 1, 2, 6, 20, 70, 252, 924, \ldots \rangle = \langle c_0, c_1, c_2, c_3, c_4, c_5, c_6, \ldots \rangle
\]
What function (as a binomial coefficient) computes terms \(c_n \) in this sequence?

27.2 What recurrence equation does the function satisfy?

27.3 Show that \(c_n \) can be computed by the sum
\[
\sum_{k=0}^{n} \binom{n}{k}^2
\]
14. **Recursion: Or is it mathematical induction?**

Hofstadter’s Law: It always takes longer than you expect, even when you take into account Hofstadter’s Law.

[Recursive] Recursive: adj. See: Recursive

Stan Kelly-Bootle, English computer scientist and author (1929 –). Devil’s DP Dictionary. (Kelly-Bootle, 1981)

Compound interest is the eighth wonder of the world. He who understands it, earns it . . . he who doesn’t . . . pays it.

Albert Einstein

Examples of recursion

Recursion works “top down:” Reduce a complex problem to the computation of smaller cases of the same problem. Keep doing so, recursively, until you reach terminating conditions [base cases]. Recursion defines objects in terms of terminal conditions and rules.

1. One or more terminal conditions [base case(s)]
2. Rules that reduce all other cases to the terminal conditions [base case(s)].

Here are some examples of recursive definitions.
Addition on the natural numbers

Let \(n \) be a natural number. Assume the existence of \(\text{succ}(n) \), the successor function, that computes \(\text{succ}(n) = (n + 1) \) for any natural numbers \(n \). Then, \(\text{add}(n, a) = (n + a) \) can be defined by:

- The base case is \(\text{add}(0, a) = a \).
- The rule is \(\text{add}(\text{succ}(n), a) = \text{succ}(\text{add}(n, a)) \) For instance,

\[
\begin{align*}
\text{add}(0, a) &= a \\
\text{add}(1, a) &= \text{succ}(\text{add}(0, a)) = \text{succ}(a) = a + 1 \\
\text{add}(2, a) &= \text{succ}(\text{add}(1, a)) = \text{succ}(a + 1) = a + 2 \\
\text{add}(3, a) &= \text{succ}(\text{add}(2, a)) = \text{succ}(a + 2) = a + 3 \\
&\vdots \quad \vdots
\end{align*}
\]

Summations

1. The base case for summations: “The sum of no terms, the empty sum \(\sum_{k=0}^{-1} \cdot \), has value 0.”

\[
\sum_{k=0}^{-1} \cdot = 0 \quad \text{where} \quad \cdot \quad \text{is any expression.}
\]

Recall the notes on summations and the use of notation to denote the sum of no terms.

2. The rule is “the sum of the first \((n + 1)\) terms is the sum of the first \(n\) terms plus the missing \((n + 1)^{st}\) term.”

\[
\sum_{k=0}^{n} f(k) = \left[\sum_{k=0}^{n-1} f(k) \right] + f(n)
\]

This rule for sums was used extensively in the notes about induction. For instance, in proving \(t(n) = n(n - 1)/2 \) computes the (partial) sums of natural numbers.

\[
0 + 1 + 2 + \cdots + (n - 1) + n = [0 + 1 + 2 + \cdots + (n - 1)] + n
\]

And, proving \(m(n) = 2^n - 1 \) computes the (partial) sums of powers of 2.

\[
2^0 + 2^1 + \cdots + 2^{n-1} + 2^n = \left[2^0 + 2^1 + \cdots + 2^{n-1} \right] + 2^n
\]
Factorials

A factorial is a product of factors. The base case is 0! = 1. The rule is

\[n! = n \cdot (n-1)! \text{ for } n > 0. \]

Factorials count the number of permutations on a set of objects. People often ask: Why is 0! = 1? Here are some reasons.

1. **Nothing** can be arranged (permuted) in 1 way: Just do nothing. There is only 1 way to do nothing: Don’t do anything.

2. For the rule \(n! = n(n-1)! \) to remain True for \(n = 1 \), it must be that
 \[1 = 1! = 1(1-1)! = 0! \]

3. For the binomial coefficient \(\binom{n}{k} \) to be sensical at \(k = 0 \) and \(k = n \) it must be that \(0! = 1 \)
 \[\binom{n}{0} = \frac{n!}{0!n!} = \binom{n}{n} = 1 \]

Stirling’s approximations to \(n! \) is interesting.

Theorem 32: Stirling’s approximation to \(n! \)

\(n \) factorial is asymptotically approximated by

\[n! \approx \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \]

That is, the ratio approaches 1 as \(n \) increases without bound.

\[\lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e} \right)^n} = 1 \]

Binomial coefficients

Recall the notes on computing the value of “\(\binom{n}{k} \)” and counting subsets if you need to refresh your mind on the notion of binomial coefficients. For binomial coefficients the base cases are boundary conditions.

\[\binom{n}{0} = \binom{n}{n} = 1 \text{ for } n \in \mathbb{N}. \]

The rule is Pascal’s identity,
Theorem 33: Pascal’s identity

Binomial coefficients satisfy the recurrence

\[
\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1},
\]
for all integers \(m\) and \(n > 0\).

Unlike the previous examples, Pascal’s identity is a 2-dimensional recursion: It involves two variables \(n\) and \(m\).

Recursive definition of strings

Recursion is a fundamental computing concept. An understanding of recursion is useful for writing solutions to problems in a programming languages. Here are a few fundamental things you can define using recursion.

Strings over an alphabet \(A\) can be defined recursively.

Definition 23: Strings

A string \(s\) over \(A\) is defined by:

1. The empty string \(\lambda\) is a string.
2. If \(s\) is a string and \(c \in A\) is a character, then \(cs\) is a string.

Some example palindromes are:
civic, radar, level, kayak
Able was I ere I saw Elba

A word \(w\) is a string in a language \(L \subseteq A^*\), pronounced “A-star,” the Kleene closure of \(A\), the set of all strings that can be formed over the alphabet \(A\).

Definition 24: Palindromes

A palindrome is a string defined by:

1. The empty string \(\lambda\) is a palindrome.
2. Let \(c \in A\) be a character. Then \(c\) is a palindrome.
3. If \(c \in A\) is a character and \(s\) is a palindrome, then \(cs\) is a palindrome.

Pass a Quiz: Basic problems on recursion

Take a quiz on page 345 to check your understanding. You can return to here from the quiz.

Recursive definitions of sequences

Many sequences can be recursively. Commonly, this is done by giving initial or boundary conditions and a recurrence equation. The notes on example sequences in the notes on the sum & difference calculus give several examples of sequences defined by an initial condition and a recurrence equation.
• The Alice sequence $\vec{A} = \langle 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ldots \rangle$ can be enumerated by the initial condition

$$a_0 = 1 \quad \text{initial condition}$$

and the recurrence equation

$$a_n = a_{n-1} \quad \text{for } n > 0.$$

The Alice sequence is the first column in Pascal’s triangle. If you change the initial condition, but keep the equation different sequences are generated. For instance, if $a_0 = \pi$, then the “pie-sequence” is generated

$$\vec{\pi} = \langle \pi, \pi, \pi, \pi, \ldots \rangle$$

Summing terms in the Alice sequence gives the Gauss sequence.

• The Gauss sequence $\vec{G} = \langle 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \ldots \rangle$ can be enumerated by

$$g_0 = 0 \quad \text{initial condition}$$

and the recurrence equation

$$g_n = g_{n-1} + 1 \quad \text{for } n > 0.$$

The Gauss sequence is the second column in Pascal’s triangle.

If you draw lines around triangles, you’ll see the sum of the natural numbers generates the triangular numbers: Stack crimson balls from the Gauss sequence as diagonals on smaller triangles produces another triangle.

$$\sum_{0 \leq k < 7} (6 - k) = 6 + 5 + 4 + 3 + 2 + 1 + 0 = 21 = \frac{7(7-1)}{2}$$

If you draw lines around squares, you’ll see the sum of odd integers produces squared numbers n^2.

Note the rectangle at the left is 7 dots by 6 dots. The lower triangle is one-half of the dots. The number of dots in the lower triangle is $(7 \cdot 6)/2 = 21$.

The study of single-variable recurrence equations and their solutions is the discrete analog of the study of differential equations from continuous mathematics. But we’ll go more elementary.

You can handily show that $x = 3$ satisfies $x^2 + x - 12 = 0$. Simply substitute 3 for x in the equation and compute

$$3^2 + 3 - 12 = 9 + -12 = 0$$

It takes more skill to find 3 in the first place.
\[\sum_{0 \leq k < 7} (2k + 1) = 1 + 3 + 5 + 7 + 9 + 11 + 13 = 49 \]

- The triangular sequence \(\vec{T} = (0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, \ldots) \) can be enumerated by

\[
t_0 = 0 \quad \text{initial condition}
\]

and the recurrence equation

\[
t_n = t_{n-1} + (n - 1) \quad \text{for } n > 0.
\]

The triangular sequence is the third column in Pascal’s triangle.

- Powers of 2 form the basis for writing numbers in binary notation.

\[
\vec{P}_2 = (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, \ldots)
\]

Powers of 10 form the basis for writing numbers in decimal notations.

\[
\vec{P}_{10} = (1, 10, 100, 1000, 10000, 100000 \ldots)
\]

- The Mersenne sequence \(\vec{M} = (0, 1, 3, 7, 15, 31, 63, 127, 255, 511, \ldots) \) can be enumerated by

\[
m_0 = 0 \quad \text{initial condition}
\]

and the recurrence equation

\[
m_n = 2m_{n-1} + 1 \quad \text{for } n > 0.
\]

Terms in the Mersenne sequence are sums of terms in the powers of 2 sequence.

\[
m_n = \sum_{k=0}^{n-1} 2^k
\]
• The Fibonacci sequence \(F = \langle 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots \rangle \) can be enumerated by

\[
 f_0 = 0 \quad \text{and} \quad f_1 = 1 \quad \text{initial conditions}
\]

and the recurrence equation

\[
 f_n = f_{n-1} + f_{n-2} \quad \text{for} \quad n > 1.
\]

The Fibonacci recurrence is “second-order” meaning the previous 2 values are needed to compute the next term.

Changing the initial conditions to \(f_0 = 2 \) and \(f_1 = 1 \) generates the Lucas sequence

\[
 \mathcal{L} = \langle 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, \ldots \rangle
\]

Functions satisfying recurrence equations

We want to show how a given function \(f(n) \) satisfies given terminal condition(s) and some recurrence equation. Mathematical induction can be used to proof many useful results. Here are some examples.

The Triangular sequence

The function \(t(n) = n(n - 1)/2 = \binom{n}{2} \) satisfies the triangular recurrence

\[
 t_n = t_{n-1} + (n - 1) \quad \text{for} \quad n > 0, \quad \text{with initial condition} \quad t_0 = 0.
\]

(16)

This recursion generates the triangular sequence

\[
 T = \langle 0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, \ldots \rangle
\]

First, the function \(t(n) \) satisfies the initial condition

\[
 t(0) = \frac{0(0 - 1)}{2} = 0 = t_0
\]

Next, by a renaming of variables

\[
 t(n) = n(n - 1)/2 \implies t(n - 1) = \frac{(n - 1)(n - 2)}{2}
\]

Substitute these expressions into equation 16 and see if it is True. Let’s substitute \(t(n - 1) = (n - 1)(n - 2)/2 \) into the triangular equation and follow
the algebra.

\[
\begin{align*}
t(n) &= t(n-1) + (n-1) \\
&= \frac{(n-1)(n-2)}{2} + (n-1) \\
&= \frac{(n-1)(n-2) + 2n - 2}{2} \\
&= \frac{n^2 - n}{2} \\
&= \frac{n(n-1)}{2}
\end{align*}
\]

The Mersenne sequence & the Tower of Hanoi

The function \(m(n) = 2^n - 1 \) satisfies the Mersenne recurrence

\[m_n = 2m_{n-1} + 1 \quad \text{for } n > 0, \text{ and initial condition } m_0 = 0. \]

and generates the Mersenne sequence \(\mathcal{M} = \langle 0, 1, 3, 7, 15, 31, 63, 127, 255, 511, \ldots \rangle \).

First, the function \(m(n) = 2^n - 1 \) satisfies the initial condition

\[m(0) = 2^0 - 1 = 0 = m_0 \text{ at } n = 0. \]

Next, if \(m(n - 1) = 2^{n-1} - 1 = m_{n-1} \) for some \(n \geq 1 \), then substituting \(m(n - 1) = m_{n-1} \) into the Mersenne equation gives

\[
\begin{align*}
m(n) &= 2m(n-1) + 1 \\
&= 2(2^{n-1} - 1) + 1 \\
&= 2^n - 2 + 1 \\
&= 2^n - 1
\end{align*}
\]

Some problems are just fanciful, such as the Tower of Hanoi: Somewhere in southeast Asia, near Hanoi, there is a sect of monks who are moving 64 golden disks from one diamond needle onto another diamond needle subject to God’s laws:

1. Move only one disk at a time.

2. Never place a large disk on a smaller one.

God set the orderly, stacked golden disks on one needle and constructed two other diamond needle, which the monks would need. God decreed that when the monks complete their task, the world will end.

If the monks can move 1 disk every second, you can compute when the world will end by counting the total number of moves they must be made. Rather than trying to compute the number of moves for 64 disks all at once, start by counting the moves for small numbers. A pattern emerges. And, you can establish the pattern is correct using mathematical induction.
As God instructed, it is useful to name things: Let n be the number of disks, and let m_n be the number of moves the monks will need to take. For small values of n, the move count can be computed by examining them all.

Tower of Hanoi: Disks versus moves

<table>
<thead>
<tr>
<th>Number of disks n</th>
<th>0 1 2 3 4 5 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of moves $m(n)$</td>
<td>0 1 3 7 15 31 63</td>
</tr>
</tbody>
</table>

The trick is to discover the recurrent pattern that models the data.

What the monks cannot do is move the bottom disk until the top $(n - 1)$ are moved off of it. Once the top disks are moved off, the monks can move the bottom disk. Then, they can move the top $(n - 1)$ disks back on top of the bottom disk.

Play the animation below to convince yourself that for 3 disks the top 2 disks must be moved twice (off-of and on-to the bottom disk) and the bottom disk is moved only once. The total number of moves for 3 disks is

$$3 + 1 + 3 = 7$$

The Mersenne equation describes this general relationship.

$$m_n = m_{n-1} + 1 + m_{n-1} = 2m_{n-1} + 1$$

with initial condition $m_0 = 0$

Oh yes, when will the world end? To move 64 disks from one diamond needle to another requires

$$m(64) = 2^{64} - 1 \text{ total moves}$$

How long will this take? Let’s assume monks can move 1 disk every second. As you know, there are about π billion seconds in a century.

<table>
<thead>
<tr>
<th>1 century</th>
<th>100 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>\approx</td>
<td>36,500 days</td>
</tr>
<tr>
<td>=</td>
<td>36,500 days \times 24 hours/day $= 876,000$ hours</td>
</tr>
<tr>
<td>=</td>
<td>876,000 hours \times 60 minutes/hour $= 52,560,000$ minutes</td>
</tr>
<tr>
<td>=</td>
<td>52,560,000 minutes \times 60 seconds/minute</td>
</tr>
<tr>
<td>=</td>
<td>3,153,600,000 seconds</td>
</tr>
<tr>
<td>\approx</td>
<td>π billion seconds</td>
</tr>
</tbody>
</table>
Use the approximation

\[2^{10} = 1,024 \approx 1,000 = 10^3 \]

to make a back-of-the-envelope calculation. The monks can complete their
task in

\[
2^{64} - 1 \text{ moves} = 2^{64} - 1 \text{ seconds} \\
\approx (2^{10})^{64} \text{ seconds} \\
\approx (10^3)^{64} \text{ seconds} \\
\approx 10^{19} \text{ seconds} \\
= 10 \cdot 10^9 \cdot 10^9 \text{ seconds} \\
\approx 3\pi \cdot 10^9 \cdot 10^9 \text{ seconds}
\]

That is, the monks will finish in about

3\pi \text{ billion billion seconds} \quad \text{or} \quad 3 \text{ billion centuries}

Scientists estimate the big bang occurred about 13.75 billion years ago.
That’s about 0.1375 billion centuries. Therefore, the monks will finish their
task when the known universe is about 22 times its current age!

Annuitities

An annuity is a regular series of deposits or payments into an investment or to
pay a debt. Pretend you make a fixed payment \(P \) each period (week, month,
year, your choice) for a total of \(n \) periods.

The value of annuity increases each period by a fixed rate \(r \). If the value
is \(V \) at the start of one period, the value will be \(P + V + rV = P + (1 + r)V \)
at the start of the next period. The three terms are the regular payment \(P \), the
previous value \(V \), and the interest earned \(rV \).

That is, the value of the annuity satisfies the recurrence equation

\[
V_n = P + (1 + r)V_{n-1} \quad \text{with initial condition } V_0 = P.
\]

This equation is very much like the Mersenne equation \(m_n = 2m_{n-1} + 1 \) except
the factor is \(1 + r \) and not 2, and the shift is \(P \) and not 1.

If you follow the first few iterations you can guess the general formula for
\(V_n \).

\[
V_0 = P \\
V_1 = P + (1 + r)V_0 = P[1 + (1 + r)] \\
V_2 = P + (1 + r)V_1 = P[1 + (1 + r) + (1 + r)^2] \\
\vdots \\
V_n = P[1 + (1 + r) + (1 + r)^2 + \cdots + (1 + r)^n]
\]
14. Recursion: or is it Mathematical Induction?

That is, the value V_n is a geometric sum. By theorem 28, its value can be computed by the function

$$V(n) = P \left[\frac{(1 + r)^{n+1} - 1}{(1 + r) - 1} \right] = P \left[\frac{(1 + r)^{n+1} - 1}{r} \right]$$

Consider what happens when you make payments $P = $1000 each month for 30 years at a rate $r = 6\% / 12 = 0.5\% = 0.005$. The future value of your payments is

$$V(360) = 1000 \left(\frac{1.005^{361} - 1}{0.005} \right) \approx 20000 \cdots 5.05268808831 \approx 1,010,537.62$$

You’ve forgone the use of $360,000 over the 30 years, but on the other hand you’ve almost tripled your savings.

Fibonacci Numbers & Rabbit Populations

Overrun by rabbits, Fibonacci determined to model their growth. Fibonacci modeled the problem by letting F_n count the number of rabbit pairs at the start of month n. He assumed:

1. In the beginning there were no rabbits: $F_0 = 0$.
2. At the start of rabbit time, God created an original pair of rabbits: $F_1 = 1$.
3. After one month the pair mated: $F_2 = 1$.
4. At the start of the next month they produced a pair of offspring: $F_3 = 2$
5. Each pair repeated the same cycle: At month n every pair of rabbits alive in the previous month remains alive, and every pair alive for 2 or more months breeds another pair of rabbits.

By the way, rabbits never die.

<table>
<thead>
<tr>
<th>Rabbit time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original pair</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>First Generation</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Generation</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Generation</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth Generation</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>
The sequence that counts the number of pairs of rabbits during month \(n \) is called Fibonacci sequence. Fibonacci numbers can be computed by the recurrence

\[
F_n = F_{n-1} + F_{n-2}
\]

with initial condition \(F_0 = 0 \) and \(F_1 = 1 \). Terms in the Fibonacci sequence can be computed by the function

\[
F(n) = \frac{\varphi^n - \overline{\varphi}^n}{\sqrt{5}}
\]

where

\[
\varphi = \frac{1 + \sqrt{5}}{2} \approx 1.618033
\]

and

\[
\overline{\varphi} = \frac{1 - \sqrt{5}}{2} \approx -0.618033
\]

is its conjugate

The golden ratio is often described in terms of ratios of a unit line segment.

1 is to \(a \) as \(a \) is to \(b \)

The golden ratio can also be described in term of a unit area golden rectangle. In the diagram below, the area of the unit rectangle is \(a(a + b) = 1 \). This area is equal to the sum of two subareas: \(a^2 \) and \(ab \). That is,

\[
1 = a(a + b) = a^2 + ab
\]

\[
\rightarrow a = \frac{-b \pm \sqrt{b^2 + 4}}{2}
\]

Fibonacci is a stronger recurrence: It requires an assignment of values to two initial condition: \(F_0 = 0 \) and \(F_1 = 1 \). \(\varphi \) and \(\overline{\varphi} \) are the zeros (or roots) of the polynomial equation

\[
x^2 - x - 1 = 0
\]

In particular,

\[
\varphi^2 = \varphi + 1
\]

and

\[
\overline{\varphi}^2 = \overline{\varphi} + 1
\]

Oh! Finding the function that satisfies an equation has something to do with solving polynomial equations.

\[
\frac{1}{a} = \frac{a}{b}
\]

and \(a + b = 1 \) implies \(a^2 - a - 1 = 0 \).
When $b = 1$, the area (height \times width) of the golden rectangle is

\[(a \times (a + b)) = (-\varphi \times \varphi) \approx (0.618 \times 1.618)\]

The proof that $F(n)$ satisfies the recurrence goes like this:

1. The basis must be established for $n = 0$ and $n = 1$. $F_0 = 0$ and $F_1 = 1$ are given. At $n = 0$ the function has value 0

\[F(0) = \frac{\varphi^0 - \overline{\varphi}^0}{\sqrt{5}} = 0\]

At $n = 1$ the function has value 1

\[F(1) = \frac{\varphi^1 - \overline{\varphi}^1}{\sqrt{5}} = \frac{(1 + \sqrt{5})/2 - (1 - \sqrt{5})/2}{\sqrt{5}} = 1\]

2. The induction hypothesis has two parts: For some $n \geq 2$

\[F_{n-1} = \frac{\varphi^{n-1} - \overline{\varphi}^{n-1}}{\sqrt{5}} \quad \text{and} \quad F_{n-2} = \frac{\varphi^{n-2} - \overline{\varphi}^{n-2}}{\sqrt{5}}\]

3. Then the conclusion comes from the calculation below.

\[
F_n = F_{n-1} + F_{n-2} \\
= \frac{\varphi^{n-1} - \overline{\varphi}^{n-1}}{\sqrt{5}} + \frac{\varphi^{n-2} - \overline{\varphi}^{n-2}}{\sqrt{5}} \\
= \frac{\varphi^{n-2}(\varphi + 1) - \overline{\varphi}^{n-2}(\overline{\varphi} + 1)}{\sqrt{5}} \\
= \frac{\varphi^{n-2}(\varphi^2) - \overline{\varphi}^{n-2}(\overline{\varphi}^2)}{\sqrt{5}} \\
= \frac{\varphi^n - \overline{\varphi}^n}{\sqrt{5}}
\]

Time complexity

You’ve decided it would be worthwhile to monitor the code you’ve written. Some of it is quick, but some routines bog down when the amount of data to process becomes large. You would like to know the answer to the question: What portions of the code take the most time? The Pareto principle predicts 20% of your code will take 80% of the time.

You may have noticed that there are several ways to solve a problem, yet some seem more efficient than others. You’d like to know why.
Linear complexity

To understand complexity, start with loops. A for statement that loops \(n \) times and performs one instruction per loop has complexity \(T(n) = n \).

```java
for (k = 0; k < n; k++) { perform one instruction }
```

The count of operations, the time complexity, is the sum of terms in the Alice sequence.

\[
n = \sum_{k=0}^{n-1} 1
\]

For instance, the worst case time complexity to search a list of size \(n \) for a value \(x \) takes can take up to \(n \) comparisons.

The worst case recursion is: The time to search through \(n \) objects is the time to search through \(n - 1 \) times plus the time to perform another test for equality. The time complexity \(T(n) \), for the single loop with a fixed number of operations per loop is described by the recurrence equation.

\[
T(n) = T(n - 1) + a, \quad T(0) = 0
\] (18)

The linear function that solves equation 18 with initial condition \(T(0) = 0 \) is

\[
T(n) = an
\]

An algorithm whose run time grows no faster than some linear function of the input size \(n \) has time complexity big Oh of \(n \), written \(O(n) \).

Quadratic complexity

Doubly-nested loops have, in general, quadratic time complexity given by triangular numbers.

```java
for (k = 0; k < n; k++) {
    for (j = 0; j < k; j++) { perform one instruction }
}
```

\[
n(n - 1)/2 = \sum_{k=0}^{n-1} \sum_{j=0}^{k-1} 1 = \sum_{k=0}^{n-1} k
\]

For instance, several sorting algorithms use double loops to place objects in order.

The time complexity \(T(n) \), for a doubly-nested loop is described by the recurrence equation.

\[
T(n) = T(n - 1) + (n - 1)
\] (19)

The function that solves equation 19 with initial condition \(T(0) = 0 \) is

\[
T(n) = \frac{n(n - 1)}{2} = \binom{n}{2}
\]
An algorithm whose run time grows no faster than some quadratic function of the input size \(n \) has time complexity big \(\text{Oh} \) of \(n^2 \), written \(O(n^2) \).

Triply-nested loops occur too: For example, several matrix algorithms require three nested loops. For instance,

\[
P(n) = P(n - 1) + \frac{(n - 1)(n - 2)}{2}
\]

might describe the complexity of a triply-nested loop. The cubic polynomial that solves equation 20 with initial condition \(P(0) = 0 \) is

\[
P(n) = \frac{n(n - 1)(n - 2)}{6} = \frac{(n^3)}{6}
\]

An algorithm whose run time grows no faster than some polynomial function of degree \(d \) has time complexity big \(\text{Oh} \) of \(n^d \), written \(O(n^d) \). Algorithms that have polynomial time complexity are called tractable. These problems are accepted as “easy to solve” in a reasonable number of steps.

Binary search & logarithms

Binary search is a basic searching algorithm. The idea is to search for a key in a sorted list. By recursively discarding one-half of the list until the key is found, or the list becomes empty. The recurrence equation that describes this is

\[
b_n = b_{n/2} + 1 \quad \text{for} \quad n = 2, 4, 8, \ldots
\]

The Haskell function `binarySearch` acts on a value \(p \), on which arithmetic can be performed, and a pair of values (low, high) and returns either `Nothing` or `Just p`.

There are two terminating conditions that stop the recursion are

1. When high < low the list is empty. The function returns `Nothing`. This says \(p \) was not found between \(\text{low} \) and \(\text{high} \).

2. When \(p \) and \(\text{mid} \) are \(\text{EQ} \). The function returns `Just \(\text{mid} \)` to denote \(p \) was found between low and high.

```haskell
binarySearch :: Integral a => (a -> Ordering) -> (a, a) -> Maybe a
binarySearch p (low,high) | high < low = \Nothing
                          | otherwise =
                            let mid = (low + high) `div` 2 in
                            case p mid of
                             LT -> binarySearch p (low, mid-1)
                             GT -> binarySearch p (mid+1, high)
                             EQ -> Just mid
```

Don’t be fooled: An \(n^3 \) algorithm will take a long time even for relatively small values of \(n \). Pretend a processor can execute \(10^{10} \) instructions per seconds. Then an \(O(n^3) \) algorithms will take

\[
P(n) \approx \frac{n^3}{10^{10}} \text{ seconds.}
\]

For instance when \(n = 10^3 \) the algorithm will take about \(\frac{1}{10^{10}} \) of a second. How many instructions are needed when \(n = 10^6 \)? Express your answer in centuries.

Phone books are an overused example of binary search. When searching for someone by name, look in the middle page and either: Find what you are looking for, or search the half in which the name could lie based on alphabetical order. Does anyone really look-up names this way? Most likely not. People use other heuristics.

The code is From Rosetta Code
The logarithmic transformation $k = \log_2 n$ and its inverse $n = 2^k$, allows the renaming

$$b(n) = b(2^k) = g(k) \quad \text{and} \quad b(n/2) = b(2^{k-1}) = g(k - 1)$$

This transform the equation

$$b_n = b_{n/2} + 1 \quad \text{for} \quad n = 2, 4, 8, \ldots$$

to Gauss equation.

$$g_k = g_{k-1} + 1 \quad \text{for} \quad k = 1, 2, 3, \ldots$$

which you know has solution $g(k) = k$.

Therefore, the time complexity is described by

$$k = g(k) = b(n) = \log_2 n$$

That is, the function $b(n) = \log_2 n$ satisfies the recurrence

$$b_n = b_{n/2} + 1 \quad \text{for} \quad n = 2, 4, 8, \ldots$$

Binary search has time complexity big Oh of $g n$, written $O(\log_2 n)$.

Pass a Quiz: Recursive sequences

Take a quiz on page 346 to check your understanding. You can return to here from the quiz.

Newton’s root-finding method

Newton devised a fast method to compute roots or zeros of a function $f(x)$. A root of $f(x)$ is a value of x such that $f(x) = 0$. Newton’s method has two step.

1. Make an initial guess that x_0 is a root of $f(x)$

2. Construct a sequence using the recursion

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})} \quad \text{(21)}$$

where $f'(x)$ is the derivative of $f(x)$.

One application of Newton’s method computes square roots.
The square root of \(\sqrt{2} \) is a zero of the function \(f(x) = x^2 - 2 \). In this case, \(f'(x) = 2x \). Substituting this into equation 21 yields the recurrence equation

\[
x_n = x_{n-1} - \frac{x_{n-1}^2 - 2}{2x_{n-1}}
\]

Starting with an initial guess, say \(x_0 = 1 \), as the square root of 2, the recurrence generates the sequence of approximations

\[
\langle 1, 3, 17, 577, \ldots \rangle
\]

or in fixed-point notation

\[
\langle 1.0, 1.5, 1.4666 \ldots, 1.41421568627 \ldots \rangle
\]

Although Newton’s name is attached the method, the basic idea was known to ancient mathematicians of Mesopotamia the region of modern day Iraq and Iran. Clay tablets dated from around 1800 B.C. to 1600 B.C. have been found in Mesopotamia that show how to approximate \(\sqrt{2} \) and perform other arithmetic operations. These early mathematicians considered an isosceles right triangle with legs of length 1

\[
\text{They knew from the Pythagorean theorem theorem that}
\]

\[
i^2 + i^2 = h^2
\]

so the hypotenuse \(h \) has length \(h = \sqrt{2} \approx 1.41421356 \ldots \). The Babylonians knew how to approximate the value of \(h = \sqrt{2} \) to many decimals places. They used sexagesimal notation. It is not certain what reasoning the Babylonians used, their calculations indicate this is what they did:

- Let \(h_0 = 1 \) be an initial approximation to \(\sqrt{2} \)
- Clearly 1 is too small as the Babylonians could easily measure
If \(1 = \sqrt{2} \), then \(1 \cdot 1 = \sqrt{2} \cdot \sqrt{2} = 2 \) and \(2/1 = \sqrt{2} \)

As it is, \(2/1 \) is too large

The average of the under estimate \(1 \) and the over estimate \(2/1 \) provides a better approximation to \(\sqrt{2} \), call this

\[
 h_1 = \frac{1}{2} \left(h_0 + \frac{2}{h_0} \right) = \frac{1}{2} \left(1 + \frac{2}{1} \right) = \frac{3}{2}
\]

But \(h_1 = 3/2 \) is too large as the Babylonians could measure

If \(3/2 \) were the exact square root, then \(2/(3/2) = 4/3 \) would equal \(\sqrt{2} \)

As it is, \(4/3 \approx 1.333 \cdots \) is too small

The average of the over estimate \(3/2 \) and the under estimate \(4/3 \) will provide a better approximation

\[
 h_2 = \frac{1}{2} \left(h_1 + \frac{2}{h_1} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} \right) = \frac{17}{12} \approx 1.41166 \cdots
\]

But \(h_2 = 17/12 \) is too small

The Babylonians carried out this iteration a few more times computing the \(\sqrt{2} \) accurately to at least 9 decimal places

That is, they next computed the average of \(h_2 = 17/12 \) and \(2/h_2 = 24/17 \)

\[
 h_3 = \frac{1}{2} \left(h_2 + \frac{2}{h_2} \right) \\
 = \frac{1}{2} \left(\frac{17}{12} + \frac{24}{17} \right) \\
 = \frac{1}{2} \left(\frac{289 + 288}{17 \times 12} \right) \\
 \approx 1.41421568628 \cdots
\]

Newton generalized this idea and his method is often a very fast root-finding methods.

Harmonic numbers

Think of a string, for instance, a piano or guitar string, tied down at boundaries 0 and 1. Pluck the string to set it vibrating. The **fundamental tone** of the string is produced when it is plucked to create a single wave with wavelength \(\lambda = 1 \), so that there is one extrema: a single maximum. The **second fundamental tone** of the string is produced when it is plucked to create a wave with wavelength \(\lambda = 1/2 \). Continuing, the **third fundamental tone** of the string is produced when it is plucked to create a wave with three waves each with wavelength \(\lambda = 1/3 \). These waves are illustrated in the diagram below.
14. Recursion: or is it mathematical induction?

First harmonic: \(\sin(x) \)

Second harmonic: \(\sin(2x) \)

Third harmonic: \(\sin(3x) \)

Compound harmonic

Definition 25: Harmonic sequence

The fractions

\[
\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots
\]

form the harmonic sequence. In general,

\[
h_n = \frac{1}{n}, \quad n \in \mathbb{Z}^+
\]

is the \(n \)th number in the harmonic sequence

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_n)</td>
<td>(\frac{1}{1})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{5})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{7})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{1}{9})</td>
<td>(\frac{1}{10})</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

The harmonic sequence is different from most sequences studied in this class. It is a sequence of rational numbers \(1/n \in \mathbb{Q}, n \in \mathbb{Z}^+ \). It is not a sequence of natural numbers.

Although the fundamental tones are of fundamental interest, it is when several fundamental tones of sound (light) are blended that truly interesting events result. Adding the fractions in the harmonic sequence generates the harmonic numbers.

Definition 26: Harmonic numbers

The partial sums

\[
H_0 = 0, \quad H_1 = 1, \quad H_2 = 1 + \frac{1}{2}, \quad H_3 = 1 + \frac{1}{2} + \frac{1}{3}
\]

\[
H_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}, \quad H_5 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}, \ldots
\]

Humans can see electromagnetic waves with wavelengths in the range of about 400 to 700 nanometers. We can hear acoustic waves with frequencies (the reciprocal of wavelength) in the range of about 16 Hz to 20 kHz.
In general, harmonic numbers satisfy the initial condition \(H_0 = 0 \) and recurrence equation
\[
H_n = \sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{n}
\]
\[
= H_{n-1} + \frac{1}{n} \quad n \geq 1
\]

Here are the first few Harmonic numbers written in fractional form.

| \(n \) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ...
|---|---|---|---|---|---|---|---|---|---|---|
| \(H_n \) | 1 | $\frac{3}{2}$ | $\frac{11}{6}$ | $\frac{25}{12}$ | $\frac{137}{60}$ | 49 | $\frac{361}{170}$ | $\frac{781}{380}$ | $\frac{7129}{2520}$ | $\frac{2381}{2520}$ | ...

Harmonic recurrences & induction

The recurrence equation for harmonic numbers is
\[
H_{n+1} = H_n + \frac{1}{n+1}, \quad \text{for } n \geq 0 \text{ and } H_0 = 0.
\]

For example,
\[
\begin{align*}
H_1 &= H_0 + \frac{1}{1} = \frac{1}{1} \\
H_2 &= H_1 + \frac{1}{2} = \frac{3}{2} \\
H_3 &= H_2 + \frac{1}{3} = \frac{11}{6} \\
H_4 &= H_3 + \frac{1}{4} = \frac{25}{12}
\end{align*}
\]

One fact taught in calculus is that the harmonic numbers diverge to \(\infty \).

Theorem 34: Harmonic Numbers diverge to \(\infty \)

The \(2^n \)th Harmonic number
\[
H_{2^n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{2^n}
\]
is greater than or equal to \(1 + \frac{n}{2} \).
\[
H_{2^n} \geq 1 + \frac{n}{2}
\]

Therefore, \(H_n \to \infty \) as \(n \to \infty \).
Proof: Harmonic numbers diverge

Notice the terms of the sum are $h_k = 1/k$ for all $k = 1, 2, \ldots, 2^n$. There are three slight changes to what occurs in most induction problems:

1. We don’t know a simple formula for the sum, but we’re claiming it is greater than or equal to the value of the function $f(n) = 1 + \frac{n}{2}$.
2. The sum is over the index range from 1 to 2^n.
3. When n is replaced by $n + 1$ many new terms are added in the summation. These added terms are:
 $$a_{2^n + 1} = \frac{1}{2^n + 1}, a_{2^n + 2} = \frac{1}{2^n + 2}, \ldots, a_{2^{n+1}} = \frac{1}{2^{n+1}}$$

With these observations, the steps of induction are straightforward.

1. The basis: for $n = 0$. We have
 $$H_{2^0} = \sum_{k=1}^{2^0} \frac{1}{k} = a_1 = 1 + \frac{0}{2}$$

2. Pretend that
 $$H_{2^n} = \sum_{k=1}^{2^n} \frac{1}{k} \geq 1 + \frac{n}{2} \text{ for some } n \geq 0$$

3. Show that
 $$\sum_{k=1}^{2^{n+1}} \frac{1}{k} \geq 1 + \frac{n + 1}{2}$$

Notice that

$$H_{2^{n+1}} = \sum_{k=1}^{2^{n+1}} \frac{1}{k} = \sum_{k=1}^{2^n} \frac{1}{k} + \sum_{k=2^n + 1}^{2^{n+1}} \frac{1}{k}$$

$$\geq \left(1 + \frac{n}{2}\right) + \frac{1}{2^n + 1} + \frac{1}{2^n + 2} + \cdots + \frac{1}{2^{n+1}}$$

$$\geq 1 + \frac{n}{2} + 2^n \cdot \frac{1}{2^n + 1}$$

$$= 1 + \frac{n}{2} + \frac{1}{2}$$

$$= 1 + \frac{n + 1}{2}$$

Where we have used that there are 2^n terms in the sum $\sum_{k=2^n + 1}^{2^{n+1}} \frac{1}{k}$ and each of them is greater or equal to $\frac{1}{2^n}$.
Theorem 35: Sum of Harmonic numbers

The sum of the Harmonic numbers up to H_{n-1} is n times $H_n - 1$, that is,

$$
\sum_{k=1}^{n-1} H_k = nH_n - n
$$

Proof: Sum of Harmonic numbers

1. **The basis:** for $n = 1$, we have

$$
\sum_{k=1}^{1-1} H_k = \sum_{k=1}^{0} H_k = 0
$$

since the upper index is less than the lower index, that is the sum is empty. Also,

$$
\sum_{k=1}^{0} H_k = 1 = H_1 - 1 = 0
$$

so the identity is vacuously True (If you don’t like vacuous arguments, start the sum at $k = 0$ and recall $H_0 = 0$ by definition, or if you don’t like that either, start the induction at $n = 2$ and note that $H_1 = 2H_2 - 2 = 1$)

2. **The inductive hypothesis:** Pretend that

$$
\sum_{k=1}^{n-1} H_k = nH_n - n
$$

for some $n \geq 1$.

3. **The inductive step:** Show that

$$
\sum_{k=1}^{n} H_k = (n + 1)H_n - (n + 1)
$$

Notice that

$$
\sum_{k=0}^{n} H_k = \sum_{k=0}^{n-1} H_k + H_n
$$

$$
= (nH_n - n) + H_n
$$

$$
= (n + 1)H_n - n
$$

$$
= (n + 1)\left(H_n + \frac{1}{n+1} - \frac{1}{n+1}\right) - n
$$

$$
= (n + 1)H_{n+1} - 1 - n
$$

$$
= (n + 1)H_{n+1} - (n + 1)
$$
Asymptotic Approximation of Harmonic numbers
It can be shown that the harmonic number H_n approaches the value of the natural logarithm as n increases. Specifically,

$$H_n = \ln n + \gamma + O(1/2n)$$

where $\gamma \approx 0.5772156649\ldots$ is Euler’s constant γ.

Two dimensional recurrence equations
There are two-dimensional recurrences that are interesting and useful too. In the notes on counting subsets, you’ve seen Pascal’s identity for computing the number of subsets of a given size.

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

In the notes on counting permutations you’ve seen Stirling’s rule of the first kind for computing the number permutations with a given number of cycles.

$$[n \choose k] = (n-1) [n-1 \choose k] + [n-1 \choose k-1]$$

In the notes on counting partitions you’ve seen Stirling’s rule of the second kind for computing the number partitions of a set into a given number of subsets.

$$\{n \choose k\} = k \{n-1 \choose k\} + \{n-1 \choose k-1\}$$

Homework Questions

Use your time outside of class to solve these problems.

1. Prove the function $T(n) = 3^n - 2$ satisfies the recurrence equation

$$T_n = 3T_{n-1} + 4$$

with initial condition $T_0 = -1$.

2. Prove the function $T(n) = \lg(n)$ satisfies the recurrence equation

$$T_{2n} = T_n + 1$$

with initial condition $T_1 = 0$.

3. Use mathematical induction to prove that $s(n) = s_n = 2^n + 3^n$ solves

$$s_n = 5s_{n-1} - 6s_{n-2}$$

with initial conditions $s_0 = 2, s_1 = 5$. 2 and 3 are solutions of the polynomial equation

$$x^2 - 5x + 6 = 0$$
4 Let \(F_n \) denote a term in the Fibonacci sequence

\[
\begin{array}{cccccccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \ldots \\
 F_n & 0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & \ldots \\
\end{array}
\]

Use mathematical induction to prove that

\[
F_n \leq 2F_{n-1} \quad \text{for } n \geq 2.
\]

5 Define the Lucas numbers \(L_n \) by changing the initial conditions for the Fibonacci equation.

\[
L_n = L_{n-1} + L_{n-2}, \quad n > 1, \quad L_0 = 2, \quad L_1 = 1
\]

Prove that

\[
F_{2n} = F_nL_n
\]

where \(F_{2n} \) and \(F_n \) are Fibonacci numbers.

6 Show that the Lucas numbers \(L_n \) satisfy the equation

\[
L_n = F_{n+1} + F_{n-1}
\]

7 Prove that

\[
F_{n+k} = F_kF_{n+1} + F_{k-1}F_n
\]

8 Prove that for \(n \geq 1 \)

\[
\gcd(F_n, F_{n-1}) = 1
\]

9 Prove Cassini’s identity

\[
F_{n+1}F_{n-1} - F_n^2 = (-1)^n, \quad \text{for } n > 0
\]

where \(F_k \) is a Fibonacci number.

10 Let \(s \) and \(t \) be strings over some alphabet. Give recursive definitions for the following operations

10.1 \textbf{head}(s)\textit{ that returns the first character in }s\textit{, call it }s_0.\textit{ }

10.2 \textbf{tail}(s)\textit{ all characters in }s\textit{ after }s_0.\textit{ }

10.3 \textbf{concat} that joins \(s \) and \(t \) to form the single string \(st \).

10.4 \textbf{length}(s)\textit{ returns the number of characters in }s.\textit{ }

10.5 \textbf{reverse}(s)\textit{ that returns a string }r\textit{ formed by writing the characters of }s\textit{ from back to front. string, that is, define a function }r(s)\textit{ that reverses the characters in string }s.\textit{ }

Often, people write \textit{s}R\textit{ to denote the reversal of }s.\textit{ }

11 Quicksort can be informally described as follows:

- Place the first element in its correct location (this will take \(n \) steps on a list of size \(n \)).
- Quick sort the list to the left of where the first element landed.
- Quick sort the list to the right of where the first element landed.

Assume that we were lucky enough to always divide the list into two equal sized lists. What recurrence equation models this?
12 Morse code is a series of dots (·) and dashes (—). Pretend a dot can be
typed in 1 second while a dash takes 2 seconds to type. Find a recurrence
that describes how many messages can be typed in \(n \) seconds.

13 Suppose there is always a 1 second pause between dots and dashes in a
message. Pretend messages always begin and end with a dot or a dash.
What recurrence equation describes the number of messages than can be
sent in \(n \) seconds?

14 In how many ways can \(n \geq 1 \) be expressed as a sum of 1’s and 2’s?
Different term orders are considered different sums.

15 A domino is a rectangular tile 1 unit long and 2 units high, for instance

\[
\begin{array}{c}
\begin{array}{cc}
\bullet & \\
\bullet & \\
\bullet & \\
\bullet & \\
\end{array}
\end{array}
\]

Dominoes can be laid out to tile an \(n \times 2 \) area. For example, there are 2
ways to tile a \(2 \times 2 \) area

\[
\begin{array}{c}
\begin{array}{cc}
\bullet & \bullet \\
\bullet & \bullet \\
\end{array}
\end{array}
\quad
\begin{array}{c}
\begin{array}{cc}
\bullet & \bullet \\
\bullet & \bullet \\
\end{array}
\end{array}
\]

And 3 ways to tile a \(3 \times 2 \) area:

\[
\begin{array}{c}
\begin{array}{cc}
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \\
\bullet & \\
\end{array}
\end{array}
\quad
\begin{array}{c}
\begin{array}{cc}
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \\
\bullet & \\
\end{array}
\end{array}
\quad
\begin{array}{c}
\begin{array}{cc}
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \\
\bullet & \\
\end{array}
\end{array}
\]

Find a recurrence relation that counts the number of \(n \times 2 \) tilings.

16 Many algorithms have time complexity that can be modeled by the func-
tion \(q(n) = n \lg n \). Show that \(q(n) \) solves the recurrence relation
\[
q_n = 2q_{n/2} + n \quad \text{for } n = 2, 4, 8, \ldots
\]
with \(q_0 = 0 \).

17 Let \(n \) be a natural number greater than 0. Consider the sequence generated
by the recurrence equation
\[
x_{k+1} = \frac{1}{2} \left(x_k + \frac{n}{x_k} \right), \quad k \geq 0, \quad x_0 = 1.
\]

17.1 Let \(n = 1 \). What sequence is generated by the recurrence equation?

17.2 Let \(n = 2 \). To what number does the sequence \((1, x_1, x_2, \ldots) \) converge?

17.3 Let \(n = 2 \). To what number does the sequence \((1, x_1, x_2, \ldots) \) converge?

18 Write Stirling’s approximation from Theorem 32 using natural logarithms.

19 Consider the complexity of chess and Go. For chess, I’ve read there are
40 moves on average from a given chess position and a game is typically
about 50 moves. On the other hand, in the game of go, there are about 250
next positions and a game is typically 250 moves.

Use this information to estimate the time complexity of exploring every
possible final state in chess and go. What does this say about the potential
difficulty in developing algorithms that successfully play these games?
20 The pizza was delivered uncut. You’ll need to cut it. A cut is a straight line from one edge through to another edge: A cut need not go through the center of the pizza.

1. You’re expecting only a few friends to share the pizza with you, so you want to cut the pizza into the fewest number of pieces with \(n \) cuts.

 (a) List the fewest number of pieces you can make with 0, 1, 2, 3, 4 cuts.

 (b) Find a recurrence relation solution that describes the fewest number of pieces with \(n \) cuts.

 (c) Find a closed form solution that describes the fewest number of pieces with \(n \) cuts.

2. You’re expecting a lot of friends to share the pizza with you, so you want to cut the pizza to maximize the number of pieces.

 (a) List the maximum number of pieces you can make with 1, 2, 3, 4 cuts.

 (b) Find a recurrence relation solution that describes the maximum number of pieces with \(n \) cuts.

 (c) Find a closed form solution that describes the maximum number of pieces with \(n \) cuts.

21 Consider the sequence defined by

\[x_{n+2} + x_n = 0 \quad x_0 = 0, \quad x_1 = 1 \]

What are the first few terms in the sequence defined by this recurrence?

Why might this be called the *sine* sequence?

22 Consider the sequence defined by

\[x_{n+2} + x_n = 0 \quad x_0 = 1, \quad x_1 = 0 \]

What are the first few terms in the sequence defined by this recurrence?

Why might this be called the *cosine* sequence?
Pass a Quiz: Summative exam # 4 on counting and mathematical induction

Take a quiz on page 347 to check your understanding. You can return to here from the quiz.
15. Sorting Data: Permutations & Orders

Permutations

Ineffective Sorts

Let \(\mathbb{X} \) be a set. The set of permutations on \(\mathbb{X} \) forms a group, called the symmetric group of \(\mathbb{X} \). The group operation is function composition.

- A permutation of a permutation is a permutation, called closure.
- Function composition is associative, so permutation actions are associative.
- There is an identity permutation that doesn’t move anything.
- Every permutation has an inverse that reverses its action.

Symmetric groups play important roles in modern physics.

Recall, from the notes on permutations A permutation is a one-to-one function from a set \(\mathbb{X} \) onto itself. Since permutations are about the order of things, thinking of a permutation as mapping a sequence to a sequence may be more appropriate.

Also, recall \(n! \) permutations can be defined on an \(n \)-element set.

A permutation can be written in cycle notation. For instance, the permutation \((b, c, a) \) of \((a, b, c) \) can be written in cycle notation as

\[[1, 3, 2] \]
Think of \([1, 3, 2]\) acting on the sequence \(\langle a, b, c \rangle\) to produce a permuted sequence \(\langle b, c, a \rangle\).

\[
[1, 3, 2] \langle a, b, c \rangle = \langle b, c, a \rangle
\]

The action of the permutation is:

Move the value \(a\) in position 1 to position 3
Move the value \(b\) in position 2 to position 1
Move the value \(c\) to position 3 to position 2

The sequence \(\langle a, b, c \rangle\) can be represented in cycle notation

\[
\langle a, b, c \rangle = [1][2][3]
\]

the identity permutation.

The inverse of \([1, 3, 2]\) sorts \(\langle b, c, a \rangle\) into alphabetical order. The inverse must move the values in positions 1, 2 and 3 to positions 2, 3 and 1.

\[
[1, 2, 3] \langle b, c, a \rangle = \langle a, b, c \rangle
\]

Or, without mention of the values,

\[
[1, 2, 3][1, 3, 2] = [1][2][3]
\]

A 2-line notation can help interpret cycle notation. The top line list the objects in their natural order. The bottom line lists where these values are mapped (permuted).

\[
\begin{array}{c|cccc}
\text{Natural (Input) Order} & 1 & 2 & 3 \\
\text{Move to Position} & (3 & 1 & 2)
\end{array}
\]

\[
1 \mapsto 3 \\
2 \mapsto 1 \\
3 \mapsto 2
\]

A third notation uses a permutation matrix.

\[
P = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix}
\]

This matrix maps \([1, 2, 3]\) to \([2, 3, 1]\).

\[
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix} \begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix} = \begin{bmatrix}
2 \\
3 \\
1
\end{bmatrix}
\]

To sort \([2, 3, 1]\), use the inverse matrix

\[
P^{-1} = P^T = \begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\]
To sort is to arrange things based on a criterion or relation. If the relation is reflexive, antisymmetric, and transitive, then the things can be sorted: Ordered. Sorting is the process of computing a permutation that places objects in order. For example, to place \(\langle c, a, b \rangle \) in alphabetic order, apply the permutation

“move the first letter ’c’ to the third position”

“move the second letter ’a’ to the first position”

“move the third letter ’b’ to the second position”

By this permutation, the input ’c,’ ’a,’ ’b,’ is sorted into the natural order ’a,’ ’b,’ ’c.’

Orders

The word order is used in many ways. There are too many ways in which the word order is used for me to count: See Wikipedia’s

Total orders

Definition 27: Total order

A total or linear order < satisfies two conditions:

1. Trichotomy law: Exactly of the possibilities below is True.

 \[a < b, \quad a = b, \quad a > b \]

2. Transitive law: If \(a < b \) and \(b < c \), then \(a < c \).

Essentially, a total order allows the comparison and ordering any two object from the set under consideration. You can compare two numbers, two strings over an alphabet, or any other two object when a total order can be defined.

Partial orders

There are interesting examples where objects in a set can only be partially ordered. That is, there can be values for which the trichotomy law fails: Values \(a \) and \(b \) that cannot be compared. But, if lesser properties are employed, the values can be partially ordered.

Definition 28: Partial order

A partial order \(\leq \) satisfies three conditions:

An order could be: A religious order, a rank in the biological taxonomy, what you place with a waiter, a measure of entropy, and an arrangement of objects.

Example total orders are:

- The English letters: \(a < b < c < d < \cdots < z \)
- The Natural numbers: \(0 < 1 < 2 < 3 < 4 < \cdots \)
- The Integers: \(\cdots < -3 < -2 < -1 < 0 < 1 < 2 < 3 < \cdots \)
- More generally, the Real numbers are totally ordered.

You must be careful when comparing two floating point number.

I like to ask if “less than” (<) on the integers \(\mathbb{Z} \) is antisymmetric. Many people will say “no” because they “think”

\[(a < b) \land (b > a) \Rightarrow a = b \]

cannot be True. But, they forget that if the assumption \(r \) of a conditional is False, then the conditional \(r \Rightarrow q \) is True, not matter what. In this case,

\[(a < b) \land (b > a) \text{ is False} \]

The truth value of the conclusion \(a = b \) does not matter. The conditional

\[(a < b) \land (b > a) \Rightarrow a = b \]

is logically True.
1. **Transitive law**: For all \(a, b \) and \(c \), if \(a \leq b \) and \(b \leq c \), then \(a \leq c \).

\[
(\forall a, b, c)((a \leq b) \land (b \leq c)) \Rightarrow (a \leq c)
\]

2. **Reflexive law**: For all \(a \), \(a \leq a \).

\[
(\forall a)(a \leq a)
\]

3. **Antisymmetric law**: For all \(a \) and \(b \), if \(a \leq b \) and \(b \leq a \) then \(a = b \).

\[
((a \leq b) \land (b \leq a)) \Rightarrow a = b
\]

Divides is a partial order on the natural numbers

Divides is an interesting number theoretic idea, which induces a partial order on the natural numbers. An understanding of divides is crucial if you want to comprehend modular arithmetic, hashing, cryptography, and many other applications.

Write

\[a \mid b \]

to express \(a \) divides \(b \).

and

\[a \nmid b \]

to express \(a \) does not divide \(b \).

Definition 29: Divides

Let \(a \) and \(b \) be natural numbers. If there is a natural number \(c \) such that

\[ac = b \]

then \(a \) divides \(b \). In symbols

\[a \mid b \equiv (\exists c \in \mathbb{N})(ac = b) \]

Here’s a graph of divides for the first few natural numbers. An edge \(a \rightarrow b \) means \(a \) divides \(b \).

Transitive and reflexive edges are not shown, they can be inferred by context.
The graph shows 1 divides every number, on the other hand, 1 is the only number that divides 1. At first level of the graph are prime numbers: They have exactly two divisors; 1 and themselves. Interestingly, since every number divides 0, it is the “largest” value under this ordering.

Subset is a partial on a power set

The subset relation is another important partial order. Let \(S \) be a set and let \(2^S \) be the power set of \(S \). That is, \(2^S \) is the set of all subsets of \(S \). Let \(X, Y \) and \(\mathcal{W} \) be elements in \(2^S \). Let \(X, Y \) and \(\mathcal{W} \) be subsets of \(S \).

- The subset relation is *transitive*
 \[
 (\forall X, Y, \mathcal{W})(((X \subseteq Y) \land (Y \subseteq \mathcal{W})) \Rightarrow (X \subseteq \mathcal{W})) \quad \text{Subset is transitive.}
 \]

- Every set is a subset of itself, subset is a *reflexive relation*.
 \[
 (\forall X)(X \subseteq X) \quad \text{Subset is reflexive.}
 \]

- The subset relation is *antisymmetric*
 \[
 (\forall X, Y)(((X \subseteq Y) \land (Y \subseteq X)) \Rightarrow (X = Y)) \quad \text{Subset is antisymmetric.}
 \]

You can draw graphs showing the partial order induced by the subset relation. Start with the empty set \(\emptyset \) which is just a point \(\bullet \). The graph for a one element set \(\{0\} \) is a line segment \(\emptyset \rightarrow \{0\} \). With a two element set, the graph is a square, and with three elements you get a a cube.

Here’s one way to visualize the subset relation on a 4 element set. It’s from [\(\text{TikZ} \)ample.net](http://texample.net) and by Yury Chebiryak. Notice how a 4-bit number identifies a subset of, say, \{a, b, c, d\}: 0000 is the empty set; 1111 is the entire set 0101 is the set \{b, d\}, and so on. The edges show a Gray code cycle in the 4-cube where vertices along the cycle differ by one bit.

Sorting algorithms

There are many sorting algorithms. The video below from panthema.net shows the action of 15 sorting algorithms (5:48).
Some sorting algorithms do not require comparisons. Using the properties of the things being sorted, they act faster than $O(n \lg n)$.

There are many qualities one would like in a sorting algorithm. Perhaps the most important is time complexity, measured by the number of comparisons and swaps made when sorting the data. Some sorting algorithms require about n^2 comparisons on average. Others have average case time complexity that have $n \lg n$ behavior.

n^2 algorithms: Insertion, selection, and bubble

$n = 1000$ (one thousand) \Rightarrow about 1,000,000 (one million) steps
$n \lg n$ algorithms: Merge, heap, and quick sort

$n = 1000$ (one thousand) \Rightarrow about 20,000 (twenty thousand) steps

Pass a Quiz: Orders

Take a quiz on page 348 to check your understanding. You can return to here from the quiz.

Counting relations by property

Recall, from the earlier notes on counting relations there are $2^{\left|X \times Y\right|}$ relations from X to Y. One way to recognize this is that a relation between X and Y can be modeled by an adjacency matrix.

$$\begin{array}{cccccccc}
0 & 1 & 2 & \cdots & (m-2) & (m-1) \\
\hline
0 & & & & & \\
1 & & & & & \\
2 & & & & & \\
\vdots & & & & & \\
(n-2) & & & & & \\
(n-1) & & & & & \\
\end{array}$$

$\left|X\right| = n$ columns

Fill with 0’s and 1’s

in any way you like

And, there are 2^{nm} ways to filled such a matrix.

It is useful to count relations by way the properties they obey: Reflexivity, symmetry, antisymmetry, and transitive.

Counting reflexive relations

A relation is a subset of the Cartesian product $X \times Y = \{(x, y) : x \in X, y \in Y\}$

If $n = |X|$ and $m = |Y|$ are the count of elements in these sets, then $|X \times Y| = nm$ and $X \times Y$ has 2^{nm} subsets. That is, there are 2^{nm} relations between X and Y.

A relation \sim is the set of ordered pairs that satisfy the relation. A reflexive relation is one where $x \sim x$ for all values of x. And, a relation is an adjacency matrix. A reflexive relations is one where there is a 1 at each entry in the diagonal of the matrix.

$$\begin{array}{cccccccc}
a & b & c & d & \cdots & u \\
\hline
a & 1 & x & x & x & \cdots & x \\
b & x & 1 & x & x & \cdots & x \\
c & x & x & 1 & x & \cdots & x \\
d & x & x & x & 1 & \cdots & x \\
\vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
u & x & x & x & x & \cdots & 1 \\
\end{array}$$

The values in off-diagonal entries do not effect reflexivity.

Cardinality n is expressed $|X| = n$.
Theorem 36: Counting of Reflexive Relations

Let X be a set with cardinality n. There are $r(n) = 2^{n(n-1)}$ reflexive relations on X.

Proof: Counting reflexive relations

Let A be the adjacency matrix for a reflexive relation \sim. There are $n \times n = n^2$ entries in A, and each entries can take on one of 2 values: True (1) or False (0).

To be reflexive, the matrix A must have 1’s along its main diagonal. The off-diagonal entries of A can be either 0 or 1. The number of entries in the lower triangle of A is a triangular number

$$1 + 2 + 3 + \cdots + (n - 1) = \frac{n(n - 1)}{2}$$

For instance, there are $10 = 5(5 - 1)/2$ entries in the lower triangle of a 5×5 matrix.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

The total number of off-diagonal entries is

$$2 \times \frac{n(n - 1)}{2} = n(n - 1) = n^2 - n$$

Each off-diagonal entry can have one of two values. Therefore there are

$$r(n) = 2^{n(n-1)}$$

reflexive relations on an n element set.

Counting symmetric relations

A symmetric relation is one where $(x \sim y) \Rightarrow (y \sim x)$ for all values of x and y. When represented as an adjacency matrix, symmetry means that if there is a 1
in row x, column y, then there is a 1 in row y, column x.

\[
\begin{array}{cccccc}
& a & b & c & d & \cdots & u \\
 a & x & 0 & 1 & x & \cdots & 0 \\
b & 0 & x & 0 & x & \cdots & 0 \\
c & 1 & x & x & 1 & \cdots & 0 \\
d & x & 0 & 1 & x & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
u & 0 & 0 & 1 & 0 & \cdots & x \\
\end{array}
\]

In this case the lower triangle completely determines the upper triangle, and values along the diagonal are unconstrained.

There are

\[
1 + 2 + 3 + \cdots + (n - 1) + n = \frac{n(n + 1)}{2}
\]

, entries on or below the main diagonal. Therefore there are

\[
sr(n) = \sqrt{2^n(n+1)}
\]
symmetric relations on an n element set.

Theorem 37: Counting of Symmetric Relations

Let \mathbb{X} be a set with cardinality n. There are $s(n) = \sqrt{2^n(n+1)}$ symmetric relations that can be defined on \mathbb{X}.

Counting antisymmetric relations

Now consider the adjacency matrix A for an antisymmetric relation. An antisymmetric relation is constrained by the rule:

If $i \neq j$, then $A(i, j) = 1$ implies $A(j, i) = 0$.

Theorem 38: Count of Antisymmetric Relations

Let \mathbb{X} be a set with cardinality n. There are

\[
a(n) = 2^n \cdot 3^{n(n-1)/2} = \left(2 \sqrt{3}^{n-1} \right)^n
\]
symmetric relations on \mathbb{X}.

Proof: Counting antisymmetric relations

To be antisymmetric, the matrix A can not have 1’s in symmetric off-diagonal entries: if 1 is in row i, column j then 0 is in row j, column i, unless $i = j$.
There are \(n(n - 1)/2 \) entries in the lower triangle of \(A \). There are 3 possible assignments to each lower triangle entry \(a(i, j) \), \(i > j \) and its symmetric partner \(a(j, i) \).

1. \(a(i, j) = 0 \) and \(a(j, i) = 0 \)
2. \(a(i, j) = 0 \) and \(a(j, i) = 1 \)
3. \(a(i, j) = 1 \) and \(a(j, i) = 0 \)

Therefore, there are \(3^{n(n-1)/2} \) ways to fill off-diagonal entries in an antisymmetric matrix \(A \).

To completely fill in \(A \), the diagonal entries must be set to 0 or 1. It does not matter which value is chosen, because the diagonal is not involved in antisymmetry. The diagonal can be filled in \(2^2 \) ways. Therefore there are

\[
a(n) = 2^n 3^{n(n-1)/2} = \left(2 \sqrt{3^{n-1}}\right)^n
\]

antisymmetric relations on an \(n \) element set.

Counting transitive relations

There is no simple formula \(t(n) \) that counts the number of transitive relations on an \(n \) element set \(X \). However, these counts can be computed. The Online Encyclopedia of Integer Sequences details this sequence of counts transitive relations. The first few terms in the sequence are

\[\langle 1, 2, 13, 171, 3994, 9415189, 878222530, 122207703623, 24890747921947, \ldots \rangle\]

There is 1 transitive relation on the empty set \(\emptyset \). It is the empty relation.

Both matrices \([0]\) and \([1]\) represent a transitive relation on a 1-element set \(\{0\} \).

You can verify that each of the 13 adjacency matrices below represents a transitive relation.

\[
\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix}
\]
Counting partial orders

There is no simple formula \(p(n) \) that counts the number of partial orders on an \(n \) element set \(X \). However, these counts can be computed. The Online Encyclopedia of Integer Sequences details this sequence of counts partial orders. The first few terms in the sequence are

\[(1, 1, 3, 19, 219, 4231, 130023, 6129859, 431723379, \ldots)\]

There is 1 partial order on the empty set \(\emptyset \). It is the empty relation.

Only \([1]\) is the adjacency matrix representation of a partial order on a 1-element set \(\{0\} \).

You can verify that each of the 3 adjacency matrices below represents partial orders.

\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} \quad \begin{bmatrix}
1 & 0 \\
1 & 1
\end{bmatrix} \quad \begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix}
\]

Pass a Quiz: Counting orders by their properties

Take a quiz on page 348 to check your understanding. You can return to here from the quiz.

Counting permutation by cycles

Recall, from the earlier notes on permutations there are \(n! \) permutations on an \(n \)-element set. Also, recall a permutation \(P \) can be represented in cycle notation.

For instance, the permutation \(\langle a, c, d, b \rangle \) of the natural order of these letters can be written in cycle notation as

\[\langle a \rangle \langle b, d, c \rangle\]

Stirling’s numbers of the first kind count the number of \(k \)-cycle permutations of \(n \) objects.

The first figure below show the 6 permutations of \(\langle 0, 1, 2 \rangle \) organized by the number of cycles in the permutation: 1-cycle, 2-cycles, or 3-cycles. The first figure below show the 24 permutations of \(\langle 0, 1, 2, 3 \rangle \) organized by the number of cycles in the permutation: 1-cycle, 2-cycles, 3-cycles, or 4-cycles. The permutations are color coded. Notice how each permutation of \(\langle 0, 1, 2 \rangle \) generates 4 permutations of \(\langle 0, 1, 2, 3 \rangle \).

The permutations on \(\{0, 1, 2, 3\} \) can be defined recursively from the permutations on \(\{0, 1, 2\} \). That is, for instance, to build all 2-cycle permutations of \(\{0, 1, 2, 3\} \) use the 1 and 2-cycle permutations of \(\{0, 1, 2\} \).

1. Append the cycle \([3]\) to each 1-cycle permutation of \(\{0, 1, 2\} \)

\[\{0, 1, 2\} \mapsto \{0, 1, 2\}[3] \]

\[\{0, 2, 1\} \mapsto \{0, 2, 1\}[3] \]
The $6 = 3!$ Permutations on 3 things by cycle

<table>
<thead>
<tr>
<th>1-cycle</th>
<th>2-cycles</th>
<th>3-cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0, 1, 2]</td>
<td>[0][1, 2]</td>
<td>[0][1][2]</td>
</tr>
<tr>
<td>[0, 2, 1]</td>
<td>[1][0, 2]</td>
<td>[2][0, 1]</td>
</tr>
</tbody>
</table>

Figure 10: Cyclic notation for the $3! = 6$ permutations of \{0, 1, 2\}.

The $4! = 24$ Permutations on 4 things by cycle

<table>
<thead>
<tr>
<th>1-cycle</th>
<th>2-cycles</th>
<th>3-cycles</th>
<th>4-cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0, 1, 2, 3]</td>
<td>[0, 1, 2][3]</td>
<td>[0][1, 2][3]</td>
<td>[0][1][2][3]</td>
</tr>
<tr>
<td>[0, 1, 3, 2]</td>
<td>[0, 2, 1][3]</td>
<td>[1][0, 2][3]</td>
<td></td>
</tr>
<tr>
<td>[0, 3, 1, 2]</td>
<td>[0][1, 2, 3]</td>
<td>[2][0, 1][3]</td>
<td></td>
</tr>
<tr>
<td>[0, 2, 1, 3]</td>
<td>[0][1, 3, 2]</td>
<td>[0][1][2, 3]</td>
<td></td>
</tr>
<tr>
<td>[0, 2, 3, 1]</td>
<td>[0][3, 1, 2]</td>
<td>[0][1, 3][2]</td>
<td></td>
</tr>
<tr>
<td>[0, 3, 2, 1]</td>
<td>[1][0, 2, 3]</td>
<td>[0, 3][1][2]</td>
<td></td>
</tr>
<tr>
<td>[1][0, 3, 2]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1, 3][0, 2]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2][0, 1, 3]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2][0, 3, 1]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2, 3][0, 1]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 11: Cyclic notation for the $4! = 24$ permutations of \{0, 1, 2, 3\}.
2. Insert new element 3 in three positions in each 2-cycle permutations of \{0, 1, 2\}

\[
\begin{align*}
\{0, 1\}[2] &\rightarrow \{0, 1\}[2, 3] \\
\{0, 1\}[2] &\rightarrow \{0, 1\}[1, 3] \\
\{0, 1\}[2] &\rightarrow \{0, 3, 1\}[2] \\
\{0, 2\}[1] &\rightarrow \{0, 2\}[1, 3] \\
\{0, 2\}[1] &\rightarrow \{0, 2\}[1, 3] \\
\{0, 2\}[1] &\rightarrow \{0, 3, 2\}[1] \\
\{1, 2\}[0] &\rightarrow \{1, 2\}[0, 3] \\
\{1, 2\}[0] &\rightarrow \{1, 2\}[0, 3] \\
\{1, 2\}[0] &\rightarrow \{1, 3, 2\}[0] \\
\end{align*}
\]

Using \(\binom{4}{2} \) to name the count of 2-cycle permutations of a 4-element set, write

\[
\binom{4}{2} = \binom{3}{2} + \binom{3}{1} = 3 \cdot 3 + 3 = 11
\]

These eleven permutations are shown in figure 11.

Recall the theorem about Stirling’s numbers of the first kind. The symbol \(\binom{n}{k} \) counts the number \(k \)-cycle permutations on \(n \) things. Stirling numbers of the first kind satisfy the boundary conditions

\[
\begin{align*}
\binom{n}{0} &= 0, \ (n = 1, \ldots) \quad \binom{n}{n} = 1, \ (n = 0, 1, 2, \ldots) \\
\end{align*}
\]

and the two-dimensional recurrence equation

\[
\binom{n}{k} = (n - 1) \binom{n - 1}{k} + \binom{n - 1}{k - 1}
\]

Homework Questions

Use your time outside of class to solve these problems.

1 Recall, the listing of relations on a two-element set as adjacency matrices on page 193: There are \(2^{2^2} = 2^4 = 16 \)

1.1 Use Theorem 36 to determine how many are reflexive. Identify them from the list.

1.2 Use Theorem 37 to determine how many are symmetric. Identify them from the list.

1.3 Use Theorem 38 to determine how many are antisymmetric. Identify them from the list.

1.4 Which of these adjacency matrices represent partial orders?
2 “Please Excuse My Dear Aunt Sally” is a mnemonic to help people remember the precedence order to arithmetic operations. What does PEMDAS mean?

3 Programming languages support numerous operations: Arithmetic, comparison, logical, and other categories. For your favorite programming language, what are the basic categories and how is precedence (order of operation) defined. If you can’t choose a programming language use C or Haskell.

4 Packet switching is a network communication idea where a long message is transmitted as a collection of shorter messages called packets. Packets can arrive at their destination in almost any order.
 Pretend a sequence of packets arrives in the order \(\langle 4, 2, 1, 0, 3 \rangle\). What permutation will sort the packets into their sorted order? Write your answer using cyclic notation.

5 Consider the rules for Rock–Paper–Scissors–Lizard–Spock where “\(x\) beats \(y\)” is given colorful names.
 - Scissors cuts paper
 - Paper covers rock
 - Rock crushes lizard
 - Lizard poisons Spock
 - Spock smashes scissors
 - Scissors decapitates lizard
 - Lizard eats paper
 - Paper disproves Spock
 - Spock vaporizes rock
 - Rock crushes scissors

 The graph below shows what beats what.

 Is the game transitive? Is it antisymmetric?

6 Verify that the three adjacency matrices not listed in 22 above represent relations that are not transitive.
7 Verify that the three adjacency matrices listed in 23 above represent partial orders.

8 Show that it is not possible to have a non-trivial cycle in a partial order.
 That is, there cannot exist different elements a, b, c such that $a \leq b$
 and $b \leq c$ and $c \leq a$.

9 $\text{canfool}(p, t)$ is a relation between people p and q (see problem 4 from
 the homework questions on logic for control). Ambiguity is common
 about people. Answer these questions from your point of view.

9.1 Is $\text{canfool}(p, t)$ reflexive? What does your answer mean?

9.2 Is $\text{canfool}(p, t)$ symmetric? What does your answer mean?

9.3 Is $\text{canfool}(p, t)$ antisymmetric? What does your answer mean?

9.4 Is $\text{canfool}(p, t)$ transitive? What does your answer mean?

10 I got this problem from reading Brian Hayes’ article “How to Count”
 (Hayes, 2001). The transition matrix for a four-state (two-bit) binary
 counter is

 \[
 \begin{array}{c|cccc}
 & 00 & 01 & 10 & 11 \\
 \hline
 00 & 0 & 1 & 0 & 0 \\
 01 & 0 & 0 & 1 & 0 \\
 10 & 0 & 0 & 0 & 1 \\
 11 & 1 & 0 & 0 & 0 \\
 \end{array}
 \]

 The matrix shows by rows:
 - If the current count is 00, then adding 1 gives a count of 01.
 - If the current count is 01, then adding 1 gives a count of 10.
 - If the current count is 10, then adding 1 gives a count of 11.
 - If the current count is 10, then adding 1 gives a count of 00.

 Consider the matrix as an adjacency matrix for a relation \triangleright between
 the 4 counters $a, b, c, d \in \mathbb{B}$. Is the \triangleright relation between states reflexive?

11 I play Scrabble and Words with Friends. Players have 7 tiles in their rack.
 Each tile contains a letter worth a certain number of points or a 0 point
 blank.

11.1 Pretend all 7 tiles hold different letters. How many different permuta-
 tions are there?

11.2 Pretend two of the letters are identical and the other 5 are all different.
 How many different permutations are there?

11.3 As you play the game, the normal alphabetical order
 \[
 (A, B, C, D, E, F, G)
 \]
 is permuted as you search for words. Use cycle notation to write the
 permutations below of the normal order. How many cycles are in each
 permutation?
11.3.1 \(\langle A, B, C, D, E, F, G \rangle\)
11.3.2 \(\langle G, F, E, D, C, B, A \rangle\)
11.3.3 \(\langle D, C, B, A, G, F, E \rangle\)

11.4 Given the permutations below, written in cycle notation, list the letters in the order they appear in the permutation.
11.4.1 \([A, B, C, D, E, F, G]\)
11.4.2 \([A, G, B] [D, F, C] [E]\)
11.4.3 \([D, C] [B, A, G] [F, E]\)

11.5 The table below shows the distribution of the 100 tiles in Scrabble.

<table>
<thead>
<tr>
<th>Points</th>
<th>Tiles and their occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(_)</td>
</tr>
<tr>
<td>1</td>
<td>(L, S, U, N, R, T, O, A, I, E)</td>
</tr>
<tr>
<td>2</td>
<td>(G, D)</td>
</tr>
<tr>
<td>3</td>
<td>(B, C, M, P)</td>
</tr>
<tr>
<td>4</td>
<td>(F, H, V, W, Y)</td>
</tr>
<tr>
<td>5</td>
<td>(K)</td>
</tr>
<tr>
<td>8</td>
<td>(J, X)</td>
</tr>
<tr>
<td>10</td>
<td>(Q, Z)</td>
</tr>
</tbody>
</table>

11.6 Pretend all of the tiles are different, for example, there are two different \(B\)'s: \(B_1\) and \(B_2\). In how many can you draw 7 tiles?

11.7 In how many ways can you draw \textit{ALGEBRA}? Rule out the use of a blank \(_\).

Consider the in-order (left, root, right) tree traversal below. What permutation converts it to the pre-order (root, left, right) traversal?

\[
\begin{array}{c}
| 7 | \\
| \downarrow | \\
| \downarrow | \\
| 5 | 13 |
\end{array}
\quad\text{in-order}\quad\begin{array}{c}
| 7 | \\
| \downarrow | \\
| \downarrow | \\
| 5 | 13 |
\end{array}
\quad\text{pre-order}
\]

\[
\begin{array}{c}
| 7 | \\
| \downarrow | \\
| \downarrow | \\
| 2 | 3 |
\end{array}
\quad\begin{array}{c}
| 7 | \\
| \downarrow | \\
| \downarrow | \\
| 2 | 3 |
\end{array}
\]
16. **Equivalences: How to partition a set**

If a body gives off the energy L in the form of radiation, its mass diminishes by L/c^2.

Albert Einstein, in the paper “Does the inertia of a body depend upon its energy-content?” September 27, 1905

Relations which possess these [equivalence] properties are an important kind, and it is worthwhile to note that similarity is one of this kind of relations.

Bertrand Russell, Principles of Mathematics, 1903

Testing input/output behavior

Pretend that you’ve managed to write and compile a program that you think will run on your computer. You need to test that it computes correct results. Although you’ve been testing your work throughout development, you must now show that it passes all test cases. A black-box test focuses on the input/output behavior of software. Such a test starts with a known behavior and determines if the software duplicates it.

A first-level black-box test partitions the input space into valid and invalid values. For instance, suppose valid input to your program P are a pair of integers (a, b) chosen from -99 to 99. You can partition the integers into two sets:

2. Invalid input: $|a| > 99$ or $|b| > 99$ (ignoring non-integral input)

In software testing it is useful to identify boundaries between valid and invalid input. You can refine the partition given above into:

1. Valid input:
 (a) Boundaries: $n = -99, 99$
 (b) Interior values $n = -98, \ldots, 98$
2. Invalid input:
 (a) Boundaries: $n = -100, 100$

Russell is referring to the transitive, symmetric, and reflexive properties of a relation. If a relation possesses all of these, it is an equivalence.

The testing example is borrowed from (Kaner et al., 1999). How many possible tests could be run?
(b) Exterior values \(n < -100 \) or \(n > 100 \)

This partitioning of input defines an equivalence relation on the integers. Output partition testing may be possible too. But these are topics best learned in a study of software testing. Some basic equivalence relations are described below.

Arithmetic expressions

Have you ever had a computer graded exam mark your answer wrong because you typed in \(1/2 \) instead of \(0.5 \)? Worst yet, did your third grade teacher mark you down because you wrote \(1/\sqrt{2} \) instead of \(\sqrt{2}/2 \)? The equality of some arithmetic expressions are easy to prove. Others are harder, for instance, a formula involving \(\pi \) is

\[
\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \sum_{k=1}^{\infty} \frac{1}{k^2}
\]

In any event, whether easy or hard to prove, equivalence of arithmetic expressions partition all arithmetic expressions into classes where each expression in a class is equivalent to all other expressions in the class.

Boolean expressions

There are several equivalent Boolean expressions for True.

\[
\text{True} \equiv p \lor \neg p \equiv (p \land (p \Rightarrow q)) \Rightarrow q
\]

Expressions that are always True, such as modus ponens, are used in proofs. Another useful equivalence is the connection between conditional and disjunction statements.

\[
(p \Rightarrow q) \equiv (\neg p \lor q)
\]

In any event, this idea of equivalence between Boolean expressions partitions all Boolean expressions into classes where each expression in a class is equivalent to all others in the class.

Congruence modulo \(m \)

\(\mathbb{Z}_m \) is the set integers \(\mod m \) or modular integers. Each modular integer is an equivalence class ordinary integers.

\[
\mathbb{Z}_m = \{0, 1, 2, 3, \ldots, (m - 1)\}
\]

The modular number \(k \mod m \) represents the set of numbers that have remainder \(k \) when divided by \(m \).

\[
k \mod m = \{k, k \pm m, k \pm 2m, k \pm 3m, k \pm 4m, \ldots\}
\]

For instance,

\[
3 \mod 5 = \{3, 3 \pm 5, 3 \pm 10, 3 \pm 15, 3 \pm 20, \ldots\}
\]

Congruence mod 2 partitions the integers into the "evens" and "odds."

\[
0 = \{0, \pm 2, \pm 4, \pm 6, \pm 10, \ldots\}
\]

\[
1 = \{1, 1 \pm 2, 1 \pm 4, 1 \pm 6, 1 \pm 10, \ldots\}
\]

Some people use syntactic sugar such as \([0]_2\) and \([1]_2\) to denote the sets of even and odd integers.

Modulo 3 partitions the integers into three sets determined by their remainders when divided by 3.

\[
0 = \{0, \pm 3, \pm 6, \pm 9, \pm 12, \pm 15, \ldots\}
\]

\[
1 = \{1, 1 \pm 3, 1 \pm 6, 1 \pm 9, 1 \pm 12, 1 \pm 15, \ldots\}
\]

\[
2 = \{2, 2 \pm 3, 2 \pm 6, 2 \pm 9, 2 \pm 12, 2 \pm 15, \ldots\}
\]
Definition 30: Congruence mod \(m \)

Let \(a \) and \(b \) be integers \((a, b \in \mathbb{Z})\) and let \(m \) be a natural number. Then

\[
a \equiv b \pmod{m} \quad \text{if and only if} \quad a - b \quad \text{is a multiple of} \quad m.
\]

To say “\(a - b \) is a multiple of \(m \)” is the same as:

- There is an integer \(c \) such that \((a - b) = cm\).
- \(m \) divides \(a - b \), in mathematical notation \(a \mid (a - b) \).
- The remainders of \(a \) and \(b \), when divided by \(m \), are equal, that is \(\text{mod } m = b \mod m \).

Fractions & Projective spaces

In third grade you started to learn about fractions \(\frac{a}{b} \), provided \(b \neq 0 \). You were taught that a fractional value could be represented in many different ways. For instance,

\[
\frac{2}{3} = \frac{4}{6} = \frac{6}{9} = \frac{8}{12} = \frac{10}{15}
\]

Equality is an equivalence relation. Equality of fractions is tested by cross-multiplication. That is,

\[
\frac{a}{b} = \frac{c}{d} \quad \text{if} \quad ad = cb.
\]

A neat idea is to treat \(\frac{a}{b} \) as a point \((a, b)\) in two-dimensional projective space. The idea behind projective space is that \((a, b) \equiv (\lambda a, \lambda b)\) for all non-zero values of \(\lambda \). \(\forall \lambda \neq 0\)((a, b) \equiv (\lambda a, \lambda b)) \]

That is, all points (except the origin \((0, 0)\)) along the line defined by the origin \((0, 0)\) and \((a, b)\) are equivalent. However, the study of projective geometry is beyond the scope of these notes.

Definition 31: Homogeneity of points

Let \((a, b)\) and \((c, d)\) be two ordered pairs of integers, neither of which is the origin \((0, 0)\). Then,

\[
(a, b) \propto (c, d) \quad \text{if} \quad ad = bc.
\]
Cardinality & equinumerosity

Cardinality establishes an equivalence on the collection of all sets. For instance, when sets have the same cardinality they can be considered equivalent. The set of integers mod 5 can be considered indistinguishable from some of the SpongeBob SquarePants cast.

\[\mathbb{Z}_5 = \{0, 1, 2, 3, 4\} \equiv \{\text{Sneezy}, \text{Patruem}, \text{Europe}, \text{Scoot}, \text{Goonmole}\} = \text{SBSP} \]

By cardinality, the natural numbers, the integers, and the rational numbers are indistinguishable.

\[\mathbb{N} \equiv \mathbb{Z} \equiv \mathbb{Q} \text{ because } |\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| \]

Pass a Quiz: Basics on equivalences

Take a quiz on page 348 to check your understanding. You can return to here from the quiz.

Definition of equivalence

Definition 32: Equivalence relation

An equivalence \(\equiv \) satisfies three conditions:

1. **Reflexive law**: For all \(a \), \(a \equiv a \).
 \[(\forall a)(a \equiv a) \]

2. **Symmetric law**: For all \(a \) and \(b \), if \(a \equiv b \), then \(b \equiv a \).
 \[(\forall a, b,)(a \equiv b) \Rightarrow (b \equiv a) \]

3. **Transitive law**: For all \(a \), \(b \) and \(c \), if \(a \equiv b \) and \(b \equiv c \), then \(a \equiv c \).
 \[(\forall a, b, c)(((a \equiv b) \land (b \equiv c)) \Rightarrow (a \equiv c)) \]

Like the warning in the induction chapter, to pass the class there are two basic relations you must be able to demonstrate are equivalences.
1. Congruence mod m is an equivalence: It is reflexive, symmetric, and transitive.

2. Homogeneity of points is an equivalence: It is reflexive, symmetric, and transitive.

Theorem 39: Congruence mod m is an equivalence

Let a, b be integers, and let $m \in \mathbb{N}$ be a natural number. Then

$$a \equiv b \pmod{m}$$

is an equivalence relation.

Proof: Congruence mod m is an equivalence

You must show congruence mod m is reflexive, symmetric, and transitive.

- **Congruence is reflexive.** $a - a$ is a multiple of m.

 $$a - a = 0 \cdot m \Rightarrow a \equiv a \pmod{m}$$

- **Congruence is symmetric.** If $a - b$ is a multiple of m, then $b - a$ is a multiple of m.

 $$a - b = c \cdot m \Rightarrow b - a = -c \cdot m$$

 That is,

 $$a \equiv b \pmod{m} \Rightarrow b \equiv a \pmod{m}$$

- **Congruence is transitive.** If both $a - b$ and $b - c$ are multiples of m, then $(a - b) + (b - c) = a - c$ is a multiple of m. That is,

 $$(a \equiv b \pmod{m} \land b \equiv c \pmod{m}) \Rightarrow a \equiv c \pmod{m}$$

Congruence mod m partitions the integers into m equivalence classes. For instance, congruence mod 5 partitions the integers into 5 equivalence classes.

$0 = \{0, \pm 5, \pm 10, \pm 15, \pm 20, \ldots, \pm 5n, \ldots\}$

$1 = \{1 \pm 5, 1 \pm 10, 1 \pm 15, 1 \pm 20, \ldots, 1 \pm 5n, \ldots\}$

$2 = \{2 \pm 5, 2 \pm 10, 2 \pm 15, 2 \pm 20, \ldots, 2 \pm 5n, \ldots\}$

$3 = \{3 \pm 5, 3 \pm 10, 3 \pm 15, 3 \pm 20, \ldots, 3 \pm 5n, \ldots\}$

$4 = \{4 \pm 5, 4 \pm 10, 4 \pm 15, 4 \pm 20, \ldots, 4 \pm 5n, \ldots\}$

The adjacency matrix for congruence mod 3 on the digits is shown below. A permutation has been applied to the natural order to show blocks of equivalence classes.
lent digits.

<table>
<thead>
<tr>
<th>Congruence mod 3 on D</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>1</th>
<th>4</th>
<th>7</th>
<th>2</th>
<th>5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Theorem 40: Homogeneity of points

Let \((a, b)\) and \((c, d)\) ordered pairs of integers. Then

\[(a, b) \propto (c, d)\]

is an equivalence where \((a, b) \propto (c, d)\) means \(ad = cb\).

Proof: Homogeneity of points

You must show homogeneity is reflexive, symmetric, and transitive.

- **Homogeneity is reflexive.** \((a, b) \propto (a, b)\). That is,
 \[ab = ba\]

- **Homogeneity is symmetric.** If \((a, b) \propto (c, d)\), then \((c, d) \propto (a, b)\).
 That is,
 \[(ad = bc) \Rightarrow (cb = da)\]

- **Homogeneity is transitive.** If both \((a, b) \propto (c, d)\) and \((c, d) \propto (e, f)\), then \((a, b) \propto (e, f)\). That is, suppose
 \[(ad = bc) \land (cf = ed)\]

 Assume \(f \neq 0\) and multiply both sides of \(ad = bc\) by \(f\) to get
 \[ad f = bcf = b(ed)\] or \[af = eb, \text{ provided } d \neq 0.\]

 What if \(d = 0\) when \(f \neq 0\)? In this case, \(0 = ed = cf\) at least one of \(c\) or \(f\) must be zero. By assumption, it must be \(c = 0\). But, \(c\) cannot be 0 either because \((c, d) = (0, 0)\) is not a point in projective space. Therefore \(d = 0\) and \(f \neq 0\) leads to a contradiction.

 What if \(f = 0\)? Since \(0 = cf = ed\) it must be that \(d = 0\). But then \(0 = ad = cb\) and it must be that \(b = 0\). Therefore,
 \[af = eb\] is True, that is \((a, b) \propto (e, f)\).
Partitions of a set

A set can be partitioned into disjoint subsets.

Definition 33: Disjoint sets

Sets X and Y are disjoint if they have an empty intersection.

$$X \cap Y = \emptyset$$

Definition 34: Partition of a set

Let $\mathcal{A} = \{X_k : k = 0, 1, \ldots, (n - 1)\}$ be a collection of subsets of U. The collection is a partition of U if two properties hold:

1. The sets are pairwise disjoint

$$X_i \cap X_j = \emptyset \quad \text{whenever } i \neq j.$$

2. The sets cover U

$$\bigcup_{k=0}^{n-1} X_k = U$$

Theorem 41: Partitions and equivalences are equivalent

If \equiv is an equivalence on U, then the equivalence classes of \equiv partition U.

If \mathcal{A} is a partition of U, then \equiv is an equivalence relation, where $a \equiv b$ if and only if both a and b are members of the same subset of the partition.

Proof: Partitions and equivalences are equivalent

TDB

Simple proof, need to write it
For small cardinality sets it is possible to list all partitions.

Partitions of a set into subsets

<table>
<thead>
<tr>
<th>Set</th>
<th>1 subsets</th>
<th>2 subsets</th>
<th>3 subsets</th>
<th>4 subsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>{0}</td>
<td>{{0}}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{0, 1}</td>
<td>{{0, 1}}</td>
<td>{{0}, {1}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{0, 1, 2}</td>
<td>{{0, 1, 2}}</td>
<td>{{0}, {1, 2}}</td>
<td>{{0}, {1}, {2}}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>{{1}, {0, 2}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>{{2}, {0, 1}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{0, 1, 2, 3}</td>
<td>{{0, 1, 2, 3}}</td>
<td>{{0, 1, 2}, {3}}</td>
<td>{{0}, {1, 2}, {3}}</td>
<td>{{0}, {1}, {2}, {3}}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{{0}, {1, 2}}</td>
<td>{{0}, {1}, {2}}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>{{1}, {0, 2}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>{{2}, {0, 1}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>{{1}, {0, 2}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>{{0}, {1, 3}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>{{2}, {0, 1}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>{{1}, {0, 2}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>{{0}, {1}, {3}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>{{2}, {0, 1}}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The number ways to partition an \(n\)-element set into \(k\) subsets is a Stirling’s numbers of the second kind, named by \(\left\{ \begin{array}{c} n \\ k \end{array} \right\}\). Stirling’s numbers of the second kind can be computed by the recurrence:

\[
\left\{ \begin{array}{c} n \\ k \end{array} \right\} = k \left\{ \begin{array}{c} n-1 \\ k \end{array} \right\} + \left\{ \begin{array}{c} n-1 \\ k-1 \end{array} \right\}
\]

with boundary conditions:

\[
\left\{ \begin{array}{c} n \\ 0 \end{array} \right\} = 0 \quad \text{for } n > 0 \quad \text{and} \quad \left\{ \begin{array}{c} n \\ n \end{array} \right\} = 1, \quad \text{for } n \geq 0
\]

Check the following arithmetic to verify the values in table to the right.

\[
\left\{ \begin{array}{c} 4 \\ 3 \end{array} \right\} = 3 \left\{ \begin{array}{c} 3 \\ 3 \end{array} \right\} + \left\{ \begin{array}{c} 3 \\ 2 \end{array} \right\} = 3 \cdot 1 + 3
\]

\[
\left\{ \begin{array}{c} 5 \\ 3 \end{array} \right\} = 3 \left\{ \begin{array}{c} 4 \\ 3 \end{array} \right\} + \left\{ \begin{array}{c} 4 \\ 2 \end{array} \right\} = 3 \cdot 6 + 7
\]

\[
\left\{ \begin{array}{c} 7 \\ 5 \end{array} \right\} = 5 \left\{ \begin{array}{c} 6 \\ 5 \end{array} \right\} + \left\{ \begin{array}{c} 6 \\ 4 \end{array} \right\} = 5 \cdot 15 + 65
\]

The notation \(\left\{ \begin{array}{c} n \\ m \end{array} \right\}\) is said “n subset m.” The first few Stirling’s numbers of the second kind are shown in the table below.
Here are some color-coded examples of partitions. Let $\mathcal{X} = \{0, 1, 2\}$ so that $n = |\mathcal{X}| = 3$. In this case there are 5 different equivalence relations (partitions) on \mathcal{X}.

<table>
<thead>
<tr>
<th>Stirling Numbers of the Second Kind $\left{ \binom{n}{k} \right}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subset k</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

When $\mathcal{X}' = \{0, 1, 2, 3\}$ and $n = 4$ there are 15 different equivalence relations (partitions) that can be defined on \mathcal{X}'.

<table>
<thead>
<tr>
<th>Partitions with 1-subset</th>
<th>Partitions with 2-subsets</th>
<th>Partitions with 3-subsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>${0, 1, 2}$</td>
<td>${0}, {1, 2}$</td>
<td>${0}, {1}, {2}$</td>
</tr>
<tr>
<td>${1}, {0, 2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>${2}, {0, 1}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If you study the partitions above, you’ll discover how to compute \(\binom{4}{k} \) from \(\binom{3}{k} \) and \(\binom{3}{k-1} \).

Consider the seven \(k = 2 \)-subset partitions of \(\{0, 1, 2, 3\} \). They were constructed from the 1-subset and 2-subset partitions of \(\{0, 1, 2\} \).

- The union of \(\{3\} \) with the 1-subset partition \(\{0, 1, 2\} \) of \(\{0, 1, 2\} \) forms a 2-subset partition of \(\{0, 1, 2, 3\} \).

\[
\{0, 1, 2\} \rightarrow \{0, 1, 2\} \cup \{3\} = \{0, 1, 2, 3\}
\]

- The union of \(\{3\} \) with each set in a 2-subset partition of \(\{0, 1, 2\} \) forms six more 2-subset partitions of \(\{0, 1, 2, 3\} \).

\[
\begin{align*}
\{0, 1, 2\} & \rightarrow \{0, 3\} \cup \{1, 2\} \\
& \rightarrow \{0\} \cup \{1, 2, 3\} \\
\{0, 1\} & \rightarrow \{0, 3\} \cup \{1, 2\} \\
& \rightarrow \{1\} \cup \{0, 2, 3\} \\
\{0, 2\} & \rightarrow \{0, 3\} \cup \{1, 2\} \\
& \rightarrow \{2\} \cup \{0, 1, 3\}
\end{align*}
\]

This construction is general. It leads to the Stirling’s rule of the second kind.
Theorem 42: Stirling’s rule of the second kind

Let \(\binom{n}{k} \) be the number of partitions of an \(n \)-element set into \(k \)-subsets. Then,

\[
\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}
\]

Proof: Stirling’s rule of the second kind

Let \(X = \{x_0, x_1, \ldots, x_{n-1}\} \) and \(X' = \{x_0, x_1, \ldots, x_{n-1}, x_n\} \) be sets containing \(n \) and \((n + 1) \) elements. There are two ways to construct a \(k \)-subset partition of \(X' \).

1. Every partition \(\mathcal{A} \) of \(X \) into \((k - 1) \) subsets generates a partition of \(X' \) into \(k \) subsets. The construction is: Include (union) the singleton \(\{x_n\} \) with the partition \(\mathcal{A} \) creating a \(k \) subset partition of \(X' \). The function that computes the number of \((k - 1) \) subset partitions of \(X \) is named \(\binom{n-1}{k-1} \).

2. Every partition \(\mathcal{A} \) of \(X \) into \(k \) subsets generates \(k \) partitions of \(X' \) into \(k \) subsets. The construction is: Include (union) the singleton \(\{x_n\} \) with each of the \(k \) subsets in \(\mathcal{A} \). That is, each of the \(\binom{n-1}{k} \) partitions of \(X \) generates \(k \) partitions of \(X' \) into \(k \) subsets.

Therefore,

\[
\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}
\]

Homework Questions

Use your time outside of class to solve these problems.

1. Consider the \(16 = 2^{2^2} \) relations on the bits \(\mathbb{B} = \{0, 1\} \). These are listed on page 193.
 Which of them are equivalence relations?

2. What does \(a \equiv b \pmod{1} \) mean?

3. What does \(a \equiv b \pmod{0} \) mean?

4. Consider two types of natural numbers: Odious and evil numbers. Odious numbers have an odd number of 1’s in their binary expansion. Evil numbers have an even number of 1’s in their binary expansion. Show that Odious and evil numbers partition the natural numbers.

5. Show the relations below are equivalences

 5.1 Congruence mod \(m \): \(a \equiv b \pmod{m} \) for \(a, b \in \mathbb{Z} \) and \(m \in \mathbb{N}, m > 0 \).

 5.2 Homogeneity of points: \((a, b) \propto (c, d) \), for \(a, b, c, d \in \mathbb{Z} \).
5.3 Parallel lines: $\ell_1 \parallel \ell_2$ for planar lines.

6 There are five equivalence relations on $X = \{a, b, c\}$. What are they?

7 A candy machine takes nickels, dimes and quarters. When 50¢ is deposited a candy bar is dispensed along with change if necessary. The diagram below shows the transitions from state-to-state as money is put in the machine.

Say that two paths p_0 and p_1 in the transition graph are path equivalent they start in the same state s and end in the same state t. For instance,

$$p_0 : 5 \xrightarrow{25} 30 \xrightarrow{10} 40$$

is equivalent to

$$p_1 : 5 \xrightarrow{10} 15 \xrightarrow{10} 25 \xrightarrow{10} 35 \xrightarrow{5} 40$$

Prove path equivalence is an equivalence relation.

8 Let $f : X \rightarrow Y$ be a function. Let $a, b \in X$, and write $a \equiv b$ if $f(a) = f(b)$. Show that \equiv is an equivalence relation.

9 Let m and a be integers. Write $m \perp a$ if 1 is the only integer that divides both m and a. If $m \perp a$, say m and a are relatively prime. Is this relation reflexive, symmetric, antisymmetric, or transitive?

10 Consider the set of all people in the world whose first name is written using the English alphabet. Pretend you group these people based on the first letter of their first name: All people whose name starts “A…” are placed in one set; All people whose name starts “B…” are placed in another set, and so on. (Notice these are sets of people, not sets of names.) Does this partition the group of people? Is this an equivalence relation on the people? Explain your answer.
Pass a Quiz: Summative exam # 5 on relations: orders and equivalences

Take a quiz on page 349 to check your understanding. You can return to here from the quiz.
17. Modular arithmetic: Randomness and cryptology

Random numbers should not be generated with a method chosen at random.

Donald Knuth

Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.

It is often useful to generate a sequence \vec{R} of random numbers. Random numbers are used in cryptography, computer simulations of phenomena, evaluation of integrals, sampling a population, and many other applications.

Random Numbers

Modular recurrences are a common way to generate pseudo-random numbers. Let

$$\vec{R} = \langle r_0, r_1, r_2, r_3, \ldots \rangle$$

be a sequence of numbers generated by a recurrence equation of the form

$$r_n = (ar_{n-1} + b) \mod m.$$

The value r_0 is called the seed or initial condition. The modulus m and parameters a and b are (usually) non-zero natural numbers. A “random” sequence of this type will repeat after m or fewer iterations. For instance, consider the recurrence

$$r_n = (3r_{n-1} + 1) \mod 5 \quad \text{with} \quad r_0 = 0.$$

Convince yourself this recurrence generates the sequence

$$\vec{R} = \langle 0, 1, 4, 3, 0, \ldots \rangle$$

which has period 4.
Cryptology

Caesar ciphers are constructed by shifting each letter \(k \) places to the right, for some parameter \(k \). For example, the Caesar cipher \(k = 5 \) on the uppercase English alphabet \(\mathbb{E} = \{A, B, C, \ldots, X, Y, Z\} \) is

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
A & B & C & D & E & F & G & H & I & J & K & L & M \\
F & G & H & I & J & K & L & M & N & O & P & Q & R \\
\end{array}
\]

numerical index clear text coded text

\[
\begin{array}{cccccccccccccc}
N & O & P & Q & R & S & T & U & V & W & X & Y & Z \\
S & T & U & V & W & X & Y & Z & A & B & C & D & E \\
\end{array}
\]

numerical index clear text coded text

Given an index \(n \) pointing to a letter \(x \) and a shift \(k \), encode \(x \) by using the letter at position \(n + k \mod 26 \). The encryption function is

\[
e(n, k) = (n + k) \mod 26
\]

And to decrypt a letter compute

\[
d(n, k) = (n - k) \mod 26
\]

A Caesar cipher is easy to break. A brute force approach simply searches \(25 \) possible shifts to decode a message.

The Haskell code below, from Rosetta Code, implements a Caesar cipher.

```
import Data.Char (ord, chr)
import Data.Ix (inRange)

caesar :: Int -> String -> String
caesar k = map f
  where
    f c |
      | inRange ('a','z') c = tr 'a' k c
      | inRange ('A','Z') c = tr 'A' k c
      | otherwise = c

unCaesar :: Int -> String -> String
unCaesar k = caesar (-k)
```

For instance, the word “CAFE” can be written as the number “2054”. The encoding of “CAFE” is “HFKJ”

\[
e(2, 5) = (2 + 5) \mod 26 = 7 \quad = H
\]

\[
e(0, 5) = (0 + 5) \mod 26 = 5 \quad = F
\]

\[
e(5, 5) = (5 + 5) \mod 26 = 10 \quad = K
\]

\[
e(4, 5) = (4 + 5) \mod 26 = 9 \quad = J
\]
--- char addition
tr :: Char -> Int -> Char -> Char
tr base offset char = chr (ord base + (ord char - ord base + offset)) 'mod' 26

Affine Ciphers

An affine map is a function of the form

\[y = ax + b. \]

An affine cipher on the uppercase English alphabet encodes \(x \) as \(y = (ax + b) \) \(\mod m \). That is, letting \(m = 26 \), the encoding function is

\[y = e(x, a, b) = (ax + b) \mod 26 \]

for some parameters \(a \) and \(b \).

To decode a message, you must solve the equation below for \(x \)

\[y = (ax + b) \mod 26 \]

From basic algebra you know how to find \(x \): Subtract \(b \) from both sides. Then multiply both sides by the reciprocal of \(a \), which in basic algebra is defined by the equation

\[\frac{1}{a} \cdot a = 1 \]

Also, you know the reciprocal can be written exponentially, which is better notation here.

\[\frac{1}{a} = a^{-1} \] for \(a \neq 0 \).

To solve the equation

\[y = ax + b \]

you must compute

\[x = a^{-1}(y - b) \mod 26 \]

One problem is: Not every value of \(a \neq 0 \) will have a reciprocal (a multiplicative inverse) \(a^{-1} \mod 26 \).

For instance, 13 does not have an inverse \(\mod 26 \) The equation \(13x = (y - b) \mod 26 \) only has a solution when \(y - b = 0 \) or \(13 \mod 26 \). In these cases, there are many solutions.

\[13x = 0 \mod 26 \] is True for \(x = 0, 2, 4, \ldots, 24 \).

And,

\[13x = 13 \mod 26 \] is True for \(x = 1, 3, 5, \ldots, 25 \).

On the other hand, \(3x = (y - b) \mod 26 \) has a unique solution for each value of \(y - b \) from 0 to 25.

Pass a Quiz: Basic cryptography concepts

Take a quiz on page 351 to check your understanding. You can return to here from the quiz.
Modular arithmetic

Recall from the notes on arithmetic, given a positive integers \(m \), the modular integers are values in the set

\[
\mathbb{Z}_m = \{0, 1, 2, 3, \ldots, (m - 1)\}
\]

Arithmetic on modular integers is similar to, but different from, the arithmetic you learned in third grade. When the modulus \(m = p \) is a prime number, the modular integers \(\mathbb{Z}_p = \{0, 1, 2, 3, \ldots, (p - 1)\} \) form a field: Addition, subtraction, multiplication and division all well-defined and closed operations that obey the traditional arithmetic laws outlined in the notes on numerical calculations on page 35. Let’s start with addition.

Modular addition

Definition 35: Addition modulo \(m \)

Let \(a, b \in \mathbb{Z}_m \). Addition modulo \(m \) is defined by

\[
(a + b) \mod m = \begin{cases}
 a + b & \text{if } a + b < m \\
 a + b - m & \text{if } a + b \geq m
\end{cases}
\]

For instance, here are examples of addition modulo 12 and 17.

(7 + 3) mod 12 = 10
(8 + 11) mod 12 = 19 − 12 = 7
(7 + 3) mod 17 = 10
(8 + 11) mod 17 = 19 − 17 = 2

Consider sums of numbers in the set \(\mathbb{Z}_m = \{0, 1, 2, \ldots, (m - 1)\} \). The largest sum is \((m - 1) + (m - 1) = 2m - 2\). The definition guarantees the sum \(a + b \) of any two modular integers will again be a modular integer. If \(a + b < m \), then \((a + b) \mod m = a + b \in \mathbb{Z}_m \), else if \(a + b \geq m \), then

\[
(a + b) \mod m = a + b - m \leq (2m - 2) - m = m - 2 \in \mathbb{Z}_m
\]

Here’s the mod 9 addition table. See how values of sums cycle from row-to-row and column-to-column. Also notice the \(0 \) in the table: These

Suppose you work for 8 hours starting at 9 o’clock. Your work ends at 9 + 8 = 17 o’clock, which may be a fine answer in cultures were a 24 hour clock is use. But, today, in America, we would say, work was over at 17 − 12 = 5 o’clock.
identify additive inverse pairs: A number and its negative.

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Recall, from the quotient-remainder theorem when an integer a is divided by a (positive) integer m, a quotient q and remainder r are computed. Moreover, the remainder lies between 0 and $(m - 1)$: $0 \leq r \leq (m - 1)$. Recall, from the notes on functions $r = a \mod m$ is the remainder when a is divided by m. Therefore, integers modulo m can be thought of as the set of possible remainders upon division by m.

For small values of a and m, you can compute r in your head. For instance,

$$15 \mod 11 = 4 \quad \text{since } 15 = 11 + 4$$

For harder instances, you can compute r using the function

$$r = r(a, m) \rightarrow a - m \left\lfloor \frac{a}{m} \right\rfloor$$

For instance, the remainder when -30 is divided by 13 is

$$-30 \mod 13 = -30 - 13 \left\lfloor -\frac{30}{13} \right\rfloor = -30 - 13(-3) = 9$$

Notice -30 and 9 are 39 units apart: Adding $39 = 3(13)$ to -30 jumps the value to 9.

Theorem 43: Modular addition on the integers

Let a, b, c, d be integers. If $a = b \mod m$ and $c = d \mod m$, then

$$(a + c) = (b + d) \mod m$$

Proof: Modular addition on the integers

The statements $a = b \mod m$ and $c = d \mod m$ mean

$$(a - b) \quad \text{and} \quad (c - d) \quad \text{are multiples of } m.$$
That is,
\[(a - b) = em \text{ for some integer } e.\]
And,
\[(c - d) = fm \text{ for some integer } f.\]
Therefore,
\[(a + c) - (b + d) = (a - b) + (c - d) = em + fm = (e + f)m.\]
That is, \((a + c) - (b + d)\) is a multiple of \(m\), or \((a + c) = (b + d) \mod m\).

There’s not really a subtraction operation in arithmetic: There’s just addition of an additive inverse.

Definition 36: Additive inverse (negative) modulo \(m\)

Let \(a \in \mathbb{Z}_m = \{0, 1, 2, \ldots, (m - 1)\}\) be an integer \(\mod m\). If \(a = 0\), then the additive inverse of \(a\) is \(0\):

\[0 + 0 = 0\]

Otherwise, the additive inverse of \(a\) is \(m - a\):

\[a + (m - a) = m = 0 \mod m\]

For instance, in mod 11 or mod 17 arithmetic you can write identities like:

\[5 - 7 = 5 + (11 - 7) = 9 \mod 11\]
\[-15 - 16 = (17 - 15) + (17 - 16) = 3 \mod 17\]

For every modulus \(m\), for every modular integer \(a \in \mathbb{Z}_m\) there is an additive inverse.

Modular multiplication

Definition 37: Multiplication modulo \(m\)

Let \(a, b \in \mathbb{Z}_m\). Multiplication modulo \(m\) is defined by

\[(a \cdot b) \mod m = a \cdot b - km \text{ where } k = \left\lfloor \frac{a \cdot b}{m} \right\rfloor\]

For a small modulus \(m\), you can multiply \(\mod m\) by hand. The mod 9
multiplication table is given below.

<table>
<thead>
<tr>
<th>×</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

The $\textcolor{red}{1}$ numbers in the matrix identify multiplicative inverse pairs: A number and its reciprocal.

$$2 \cdot 5 = 10 = 1 \mod 9, \quad 4 \cdot 7 = 28 = 1 \mod 9, \quad 8 \cdot 8 = 64 = 1 \mod 9$$

Using exponential notation, the mod 9 multiplicative inverse of 2 is 5, the multiplicative inverse of 4 is 7, and the multiplicative inverse of 8 is 8.

$$2^{-1} = 5, \quad 5^{-1} = 2, \quad 4^{-1} = 7, \quad 7^{-1} = 4, \quad 8^{-1} = 8$$

On the other hand 0, 3 and 6 have no reciprocals:

$$3x \neq 1 \quad \text{and} \quad 6x \neq 1 \quad \text{for any value of } x.$$

There’s not really a division operation in arithmetic: There’s just multiplication by a multiplicative inverse, when one exists.

Definition 38: Multiplicative inverse (reciprocal) modulo m

Let $a, b \in \mathbb{Z}_m = \{0, 1, 2, \ldots, (m - 1)\}$ be integers mod m. If $a \cdot b = 1 \mod m$, then multiplicative inverse of a is b. That is,

$$(a \cdot b = 1 \mod m) \Rightarrow a^{-1} = b \quad \text{and} \quad b^{-1} = a$$

Below, in the notes on linear congruence equations, you will find a and b are reciprocals if and only if they are relatively prime: $\gcd(a, b) = 1$ or $a \perp b$.

Theorem 44: Modular multiplication on the integers

Let a, b, c, d be integers. If $a = b \mod m$ and $c = d \mod m$, then

$$ac = bd \mod m$$

Caution! The multiplicative inverse of a is *not* the fraction $\frac{1}{a}$: There are no fractional modular integers. *Not* every modular integer will have a multiplicative inverse: 0 has no reciprocal and other numbers can fail to have multiplicative inverses too.
Proof: Modular multiplication on the integers

By the assumption \((a - b) = em\) and \((c - d) = fm\) for some integers \(e\) and \(f\). Therefore,

\[
ac - bd = ac - bc + bc - bd
= c(a - b) + b(c - d)
= cem + bfm
= (ce + bf)m
\]

That is, \(ac - bd\) is a multiple of \(m\), or

\[ac = bd \mod m\]

For instance, in mod 17 or mod 18 arithmetic you can write identities like:

\[5 \cdot 7 = 35 = 1 \mod 17\] or \[5 \cdot 7 = 35 = 17 \mod 18\]

If \(m = p\) is a prime number, then every non-zero modular integer \(a \in \mathbb{Z}_p\) has a multiplicative inverse. Otherwise, if \(m\) is not prime, some modular integers will not have a reciprocal.

Linear congruence equations

You can use modular arithmetic to solve linear congruence equations of the form.

\[ax = b \mod m\]

To solve this equation you need to find the reciprocal of \(a \mod m\). For instance, the mod 9 multiplication table on page 297 can be used to find reciprocals when they exist. Although enlightening, creating a multiplication table is clearly not an efficient way to compute inverses.

Pass a Quiz: Modular arithmetic

Take a quiz on page 351 to check your understanding. You can return to here from the quiz.

The Euclidean algorithm for computing the greatest common divisor

The Euclidean algorithm computes the greatest common divisor of two natural numbers: That is, given \(a\) and \(m\), it computes the value of the function \(\text{gcd}(a, m)\).

For small numbers you can compute \(\text{gcd}(a, m)\) in your head or with paper & pencil. For instance, 14 divides 28 and 42, and 14 is the largest divisor of them both. Therefore,

\[14 = \text{gcd}(42, 28)\]

Unlike basic algebra where, for \(a \neq 0\), \(ax + b = y\) always has a solution \(x = a^{-1}(y - b)\), in modular algebra, there may be:

- Exactly one solution \(x\)
- Several solutions \(x_k, k = 0, \ldots, (n - 1)\).
- No solutions at all

You can solve the equation

\[2x = 7 \mod 9\]

by multiplying both sides by 5

\[x = (5 \cdot 2)x = (5 \cdot 7) \mod 9 = 35 \mod 9 = 8 \mod 9\]

And check,

\[2 \cdot 8 = 16 = 7 \mod 9\]

We need a modern approach for computing reciprocals, so let’s go back to Euclid.
One way to compute \(\gcd(a, m) \) is to find the prime factorization of \(m \) and \(a \).

\[
42 = 2 \cdot 3 \cdot 7 \quad \text{and} \quad 28 = 2^2 \cdot 7
\]

You can see that \(2 \cdot 7 = 14 \) will divide both 42 and 28, but no larger number will.

Definition 39: Greatest common divisor

The natural number \(g \) is the greatest common divisor of \(a \) and \(m \) if two conditions hold:

- \(g \) divides both \(m \) and \(a \) (\(g \mid m \) and \(g \mid a \)).
- If \(d \) divides both \(m \) and \(a \), then \(d \) divides \(g \) (\(d \leq g \)).

Here’s a basic recurrence for the greatest common divisor that leads to an efficient algorithm for computing \(\gcd(a, m) \).

Theorem 45: Greatest common divisor recurrence

The greatest common divisor satisfies the recurrence

\[
(a \geq m) \Rightarrow [\gcd(a, m) = \gcd(m, a \mod m)]
\]

With terminating condition

\[
\gcd(a, 0) = a
\]

Proof: Greatest common divisor recurrence

Let \(a \) divided by \(m \) give quotient \(q \) and remainder \(r \).

\[
a = mq + r, \quad 0 \leq r < m
\]

If \(d \) divides both \(a \) and \(m \), then \(d \) also divides

\[
r = a - mq = a \mod m
\]

That is, \(d \) is a common divisor of \(m \) and \(a \mod m \). On the other hand, if \(d \) divides both \(m \) and \(a \mod m \), then \(d \) also divides

\[
a = mq + r = mq + a \mod m
\]

Therefore, the set of common divisors of \(a \) and \(m \) is identical to the set of common divisors of \(m \) and \(a \mod m \), and their greatest divisors must be equal.

Assuming \(m \geq a \), the Haskell function that implements this recursion is:

\[
\begin{align*}
gcd & :: \text{Integral} \ a \Rightarrow a \to a \to a \\
gcd a 0 &= a \\
gcd a m &= gcd m (a \mod m)
\end{align*}
\]

For small numbers you can compute the greatest common divisor by paper & pencil. Here’s an example computation of \(\gcd(73, 17) \).

Computing a prime factorization can be so hard that it is used in some cryptographic algorithm, for example the RSA scheme.

This is the Euclidean algorithm, although Euclid did not use the same notation.

See the \(m \) and \(r \) values shift down and left (southwest) at each step.
The last non-zero remainder is the greatest common divisor. In this case, \(\gcd(73, 17) = 1 \).

Here’s another example that shows \(4 = \gcd(92, 52) \).

Here are some examples of the Euclidean algorithm with data generated randomly each time the notes are compiled.

<table>
<thead>
<tr>
<th>Dividend</th>
<th>Divisor</th>
<th>Quotient</th>
<th>Remainder</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>38</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>38</td>
<td>27</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>27</td>
<td>11</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dividend</th>
<th>Divisor</th>
<th>Quotient</th>
<th>Remainder</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>333</td>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td>333</td>
<td>65</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>65</td>
<td>8</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

The last non-zero remainder is the greatest common divisor. In this case, \(4 = \gcd(92, 52) \).

Theorem 46: Lamé’s Theorem

Let \(a, m \in \mathbb{Z}^+ \) with \(a \geq m \). Let \(n \) be the number of divisions in Euclidean algorithm when computing \(\gcd(a, m) \). Then

\[
n - 1 \leq 3 \lg m
\]

Proof: Lamé’s Theorem

Let \(r_0 = a \) and \(r_1 = m \). Euclid’s algorithm computes

\[
\begin{align*}
r_0 &= r_1 q_1 + r_2 & 0 \leq r_2 < r_1 \\
r_1 &= r_2 q_2 + r_3 & 0 \leq r_3 < r_2 \\
&\vdots \\
r_{n-2} &= r_{n-3} q_{n-2} + r_{n-1} & 0 \leq r_{n-1} < r_{n-2} \\
r_{n-1} &= r_n q_n
\end{align*}
\]
using n divisions to compute $r_n = \gcd(a, m)$. Note that

- $q_i \geq 1, i = 1, 2, \ldots, (n - 1)$
- $(r_n < r_{n-1}) \Rightarrow (q_n \geq 2)$

Let F_i denote the i^{th} Fibonacci number. Then

\[
\begin{align*}
 r_n &\geq 1 = F_2 \\
 r_{n-1} &\geq r_n q_n \geq 2r_n \geq 2 = F_3 \\
 r_{n-2} &\geq r_{n-1} + r_n \geq F_3 + F_2 = F_4 \\
 & \vdots \\
 r_3 &\geq r_2 + r_3 \geq F_{n-1} + F_{n-2} = F_n \\
 r_1 &\geq r_2 + r_3 \geq F_n + F_{n-1} = F_{n+1}
\end{align*}
\]

Using the growth rate of the Fibonacci numbers $F_{n+1} \approx \phi^{n-1}$, we find

\[
m = r_1 \geq F_{n+1} > \phi^{n-1}
\]

Take the logarithm base ϕ of both sides and use the change of base formula for logarithms to derive the inequality

\[
\log_\phi m = \frac{\log m}{\log \phi} > n - 1
\]

Since $(\log \phi)^{-1} < 3$ we have

\[
3 \log m > \frac{\log m}{\log \phi} > n - 1
\]

Another way to state the result is that if m can be represented in k bits, then the number of divisions in Euclid’s algorithm is less than 3 times the number of bits in m’s binary representation.

Bézout’s identity provides the link between the greatest common divisor and solving linear congruential generator.

Theorem 47: Bézout’s identity

Let $a > 0$ and $m \geq 0$. Let $g = \gcd(a, m)$. Then

\[
g = at + ms \quad \text{for some integers } t \text{ and } s.
\]

That is, the greatest common divisor $\gcd(a, m)$ can be written as a linear combination of a and m.
Proof: Bezout’s identity

Let \(L = \{ax + my > 0 : x, y \in \mathbb{Z}\} \) be the set of all positive linear combinations of \(a \) and \(m \), and let

\[
d = \min \{ax + my > 0 : x, y \in \mathbb{Z}\}
\]

be the minimum value in \(L \), Let \(t \) and \(s \) be values of \(x \) and \(y \) that give the minimum value \(d \). That is,

\[
d = at + ms > 0
\]

Let \(a \) divided by \(d \) give quotient \(q \) and remainder \(r \).

\[
a = dq + r, \quad 0 \leq r < d
\]

Then

\[
r = a - dq = a(1 - tq) + m(sq) \in \{ax + my \geq 0 : x, y \in \mathbb{Z}\}
\]

and \(0 \leq r < d \).

But since \(d \) is the smallest positive linear combination, \(r \) must be 0 and \(d \) divides \(a \).

A similar argument shows \(d \) divides \(m \). That is, \(d \) is a common divisor of \(a \) and \(m \).

Finally, if \(c \) is any common divisor of \(a \) and \(m \), then \(c \) divides \(d = at + ms \). That is, \(d \) is the greatest common divisor of \(a \) and \(m \).

Extended Euclidean algorithm

Given \(a \) and \(m \), the extension of the Euclidean algorithm computes the values of \(t \) and \(s \) from Bézout’s identity

\[
g = \gcd(a, m) = at + ms
\]

A little matrix algebra

Computing \(t \) and \(s \) means computing 2 values, which means a set of 2 equations. Matrix notation simplifies writing systems of equations. So, let’s learn a little bit about 2 \(\times \) 2 matrices. The matrix

\[
A = \begin{bmatrix} x & y \\ z & w \end{bmatrix}
\]

has determinant \(xw - yz \).

The identity matrix is

\[
I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

and its determinant is \(\det I = 1 \).

Also, there is this result:
Lemma 1: A magic table step

Let matrix B be formed from matrix $A = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$ and a quotient q using the matrix product:

$$B = \begin{bmatrix} x & y \\ z & w \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & q \end{bmatrix} = \begin{bmatrix} y & x + qy \\ w & z + qw \end{bmatrix}$$

Then

$$\det B = y(z + qw) - w(x + qy)$$
$$= (zy + qwy) - (xw + qyw)$$
$$= -(xw - zy)$$
$$= -\det A$$

That is, the determinants have equal magnitude, but differ in sign.

Executing the extension to the Euclidean algorithm

Let’s first pretend that $\gcd(a, m) = 1$. By Bézout’s identity there exists integers t and s such that

$$at + ms = 1 \quad at - 1 = ms \quad \text{or} \quad at = 1 \mod m.$$

That is,

$$t = a^{-1} \mod m \quad \text{read "} t \text{ is the multiplicative inverse of } a \mod m."$$

If you can compute t, then you can solve the equation below for x.

$$ax = b \mod m \quad x = tb \mod m$$

I’ve found the most simple way explain the computations of $a^{-1} = t$ is by using a magic table.

The magic table uses the quotients from the Euclidean algorithm to compute t and s such that

$$at + ms = \gcd(a, m)$$

Let’s use the example from page 300: $\gcd(73, 17) = 1$ with quotients $\langle 4, 3, 2, 2 \rangle$. Set up the magic table as below: The identity matrix on the left; the quotients, written in reverse order of their computation, above a top rule; and determinants below a bottom rule.

Let the column labeled q be the nth column for $n = 3, 4, \ldots$, and call it column$_n$. The values in column$_n$ are computed using the construction in Lemma 1. That is, by the recurrence

$$\text{column}_n = q \cdot \text{column}_{(n-1)} + \text{column}_{(n-2)}$$
The third column, under the first quotient 2, is computed by
\[
\text{third column} = 2 \cdot \text{second column} + \text{first column}
\]
That is,

\[
\begin{align*}
1 &= 2 \cdot 0 + 1 \\
2 &= 2 \cdot 1 + 0
\end{align*}
\]

The fourth column, under the second quotient 2, is computed by
\[
\text{fourth column} = 2 \cdot \text{third column} + \text{second column}
\]
That is,

\[
\begin{align*}
2 &= 2 \cdot 1 + 0 \\
5 &= 2 \cdot 2 + 1
\end{align*}
\]

The fifth column, under the quotient 3, is computed by
\[
\text{fifth column} = 3 \cdot \text{fourth column} + \text{third column}
\]
That is,

\[
\begin{align*}
7 &= 3 \cdot 2 + 1 \\
17 &= 3 \cdot 5 + 2
\end{align*}
\]

The sixth (last) column, under the quotient 4, is computed by
\[
\text{sixth column} = 4 \cdot \text{fifth column} + \text{fourth column}
\]
That is,

\[
\begin{align*}
30 &= 4 \cdot 7 + 2 \\
73 &= 4 \cdot 17 + 5
\end{align*}
\]

The last determinant is
\[
\det \begin{vmatrix} 7 & 30 \\ 17 & 73 \end{vmatrix} = 73 \cdot 7 - 17 \cdot 30 = 1
\]
There are several interpretations of the equation

\[
7 \cdot 73 - 30 \cdot 17 = 1
\]

- Take mod 7 of both sides:

\[
1 = (7 \cdot 73 - 30 \cdot 17) \mod 7 = -30 \cdot 17 \mod 7
\]

That is, \(-30 = 17^{-1}\) and \(17 = (-30)^{-1} \mod 7\). But, \(17 = 3 \mod 7\) and \(-30 = 5 \mod 7\), so that,

\[
5 = 3^{-1} \quad \text{and} \quad 3 = 5^{-1} \mod 7
\]

- Take mod 73 of both sides:

\[
1 = (7 \cdot 73 - 30 \cdot 17) \mod 73 = -30 \cdot 17 \mod 73
\]

That is, \(-30 = 17^{-1}\) and \(17 = (-30)^{-1} \mod 73\). But, \(-30 = 43 \mod 73\), so that,

\[
43 = 17^{-1} \quad \text{and} \quad 17 = 43^{-1} \mod 73
\]

- Take mod 30 of both sides:

\[
1 = (7 \cdot 73 - 30 \cdot 17) \mod 30 = 7 \cdot 73 \mod 30
\]

That is, \(7 = 73^{-1}\) and \(73 = 7^{-1} \mod 30\). But, \(73 = 13 \mod 30\), so that,

\[
7 = 13^{-1} \quad \text{and} \quad 13 = 7^{-1} \mod 30
\]

- Take mod 17 of both sides:

\[
1 = (7 \cdot 73 - 30 \cdot 17) \mod 17 = 7 \cdot 73 \mod 17
\]

That is, \(7 = 73^{-1}\) and \(73 = 7^{-1} \mod 17\). But \(73 = 5 \mod 17\), so that,

\[
7 = 5^{-1} \quad \text{and} \quad 5 = 7^{-1} \mod 17
\]

For this example

\[
73 \cdot 7 - 17 \cdot 30 = +1
\]

Using the information derived above, you can solve linear congruence equations. For instance,

\[
3x = 4 \mod 7 \quad x = 3^4 \cdot 4 \mod 7 = 6 \mod 7
\]
\[
7x = 11 \mod 17 \quad x = 7^4 \cdot 11 \mod 17 = 4 \mod 17
\]
\[
13x = 8 \mod 30 \quad x = 13^4 \cdot 8 \mod 30 = 26 \mod 30
\]
\[
17x = 2 \mod 73 \quad x = 17^4 \cdot 2 \mod 73 = 13 \mod 73
\]

Next, let’s walk through the computation for example from page 300: \(\gcd(92, 52) = 4\) with quotients \((1, 1, 3, 3)\) and remainders \((40, 12, 4, 0)\). Set up the magic table as below:
For this example, the last determinant is

\[92 \cdot 4 - 52 \cdot 7 = +4\]

Since 92 and 54 are not relatively prime, equations of the form \(54x = b \mod 92\) may or may not have solutions.

Pass a Quiz: The Euclidean algorithm and its extension

Take a quiz on page 351 to check your understanding. You can return to here from the quiz.

Why does the magic table work?

I’ve been asked many times how the magic table works. I usually wave my hand and say: See me outside of class. No one ever does. But, to avoid humiliation, I’ve decided to write an explanation. Let’s rename \(a\) and \(m\) by \(a = r_{-1}\) and \(m = r_0\)

Then, the sequence of equations from the Euclidean algorithm is:

\[
\begin{align*}
\text{Dividend} & = \text{Divisor} \cdot \text{Quotient} + \text{Remainder} \\
\begin{array}{cccc}
\text{a} & = & \text{m} & \cdot & \text{q} & \cdot & \text{ } & \text{ } & \text{ } & \text{r} \\
\hline
r_{-1} & = & r_0 & \cdot & q_1 & + & r_1 \\
r_0 & = & r_1 & \cdot & q_2 & + & r_2 \\
\vdots & : & \vdots & : & \vdots & : & \vdots & : & \vdots \\
r_{k-2} & = & r_{k-1} & \cdot & q_k & + & r_k \\
\vdots & : & \vdots & : & \vdots & & \vdots & & \vdots \\
r_{n-2} & = & r_{n-1} & \cdot & q_n & + & r_n \\
\end{array}
\end{align*}
\]

Assume the algorithm halts at the \(n^{th}\) step when \(r_n = 0\) and the last non-zero remainder is \(r_{n-1} = g = \gcd(a, m)\). In this case, \(r_{n-2} = gq_n\).

Look at the general equation for \(r_{k-2}\). Write it as

\[r_{k-2} = r_k + r_{k-1} \cdot q_k\]
And consider the general magic table:

<table>
<thead>
<tr>
<th>q_n</th>
<th>q_{n-1}</th>
<th>\ldots</th>
<th>q_2</th>
<th>q_1</th>
<th>Quotients</th>
<th>Determinants</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_n</td>
<td>x_{n-1}</td>
<td>x_{n-2}</td>
<td>x_{n-3}</td>
<td>\ldots</td>
<td>x_0</td>
<td>x_{-1}</td>
</tr>
<tr>
<td>r_n</td>
<td>r_{n-1}</td>
<td>r_{n-2}</td>
<td>r_{n-3}</td>
<td>\ldots</td>
<td>r_0</td>
<td>r_{-1}</td>
</tr>
<tr>
<td>$+g$</td>
<td>$-g$</td>
<td>$+g$</td>
<td>\cdots</td>
<td>$(-1)^{n-1}g$</td>
<td>$(-1)^ng$</td>
<td>Determinants</td>
</tr>
</tbody>
</table>

The first 2×2 matrix in the magic table is

$$\begin{bmatrix} x_n & x_{n-1} \\ r_n & r_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & g \end{bmatrix}$$
which has determinant g.

Successive columns are computed by the recurrences

$$x_{k-2} = x_k + x_{k-1}q_k$$
$$r_{k-2} = r_k + r_{k-1}q_k$$

for $k = n, n-1, \ldots, 2, 1$.

The recurrence for the second row in the magic table computes the remainders. By definition, the second and first remainders are $r_0 = a$ and $r_m = m$.

The recurrence for the first row in the magic table computes coefficients x_k and x_{k-1} such that

$$\det \begin{bmatrix} x_k & x_{k-1} \\ r_k & r_{k-1} \end{bmatrix} = (-1)^{n-k}g$$

For $k = 0$ this gives

$$\det \begin{bmatrix} x_0 & x_{-1} \\ r_0 & r_{-1} \end{bmatrix} = r_{-1}x_0 - r_0x_{-1} = ax_0 - mx_{-1} = (-1)^ng$$

That is, the parameters t and s from from Bézout’s identity

$$g = \gcd(a, m) = at + ms$$

are

- $t = -x_{-1}$ and $s = x_0$ if n is even
- $t = x_{-1}$ and $s = -x_0$ if n is odd.

Solving linear congruence equations

Now let’s use these results to solve linear congruence equations. Consider

$$7x = 12 \mod 17$$

You’ve computed 5 as the multiplicative inverse of 7. Therefore,

$$x = (5 \cdot 7)x = (5 \cdot 12) \mod 17 = 60 \mod 17 = 9 \mod 17$$

Change the equation to

$$7x = 12 \mod 30$$
You know 13 is the inverse of 7 mod 30. Therefore,
\[x = (13 \cdot 7) \mod 30 = 156 \mod 30 = 6 \mod 30 \]

Check: 7 \cdot 6 = 42 = 12 \mod 30.

Here is another example: Solve \(10x = 5 \mod 37 \). The steps in the Euclidean algorithm are

<table>
<thead>
<tr>
<th>Dividend</th>
<th>Divisor</th>
<th>Quotient</th>
<th>Remainder</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>10</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

The magic table is

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
</tbody>
</table>

The last two columns give the determinant

\[37 \cdot 3 - 10 \cdot 11 = 111 - 110 = 1 \]

The inverse of 10 mod 37 is \(-11 = 26 \mod 37\). And, the solution of

\[10x = 5 \mod 37 \]

is \(x = 26 \cdot 5 = 19 \mod 37 \)

Euler’s totient function

The RSA encryption algorithm involves the Euler’s totient function.

Definition 40: Euler’s totient function

Let \(n \) be a positive integer. Euler’s totient function \(\phi(n) \) is the number of positive integers between 1 and \(n \) that are relatively prime to \(n \). That is, \(\phi(n) \) is the cardinality of the set

\[\{ k : (1 \leq k \leq n) \land (\gcd(n, k) = 1) \} \]

You can compute \(\phi(n) \) for small values of \(n \).

\[\phi(1) = 1 \text{ since } \gcd(1, 1) = 1 \]
\[\phi(2) = 1 \text{ since } \gcd(2, 1) = 1 \]
\[\phi(3) = 2 \text{ since } \gcd(3, 1) = 1 \text{ and } \gcd(3, 2) = 1 \]
\[\phi(4) = 2 \text{ since } \gcd(4, 1) = 1 \text{ and } \gcd(4, 3) = 1 \]
\[\phi(5) = 4 \text{ since } \gcd(5, k) = 1 \text{ for } k = 1, 2, 3, 4 \]
\[\phi(6) = 2 \text{ since } \gcd(6, 1) = 1 \text{ and } \gcd(6, 5) = 1 \]

Recall relatively prime for a pair of integers means 1 is their greatest common divisor.
Discrete logarithms

If

\[a = b^x \mod m \]

Then \(x \) is the (base \(b \)) discrete logarithm of \(a \mod m \).

Include material on the discrete logarithm.

Homework Questions

Use your time outside of class to solve these problems.

1. Let \(\langle r_0, r_1, r_2, \ldots \rangle \) be a sequence of numbers defined by the recurrence equation

\[r_n = (ar_{n-1} + b) \mod m \]

where \(m = 73, a = 17 \) and \(b = 37 \).

Let \(r_0 = 1 \) be the seed. Compute \(r_1 \) and \(r_2 \).

2. HAL is a well known Caesar cipher encoding from 2001: A Space Odyssey. Decode HAL.

3. Encode the word discrete using a Caesar cipher with shift 3.

4. When \(n \) eggs in a basket are removed 5 at a time none remain. When the eggs are removed 3 at a time 1 remains. When removed 4 at at time 2 remain. How many eggs are in the basket? That is, compute the value of \(n \) that satisfies the three equations

\[n = 0 \mod 5 \]
\[n = 1 \mod 3 \]
\[n = 2 \mod 4 \]

5. Use the Euclidean algorithm to compute the greatest common divisors of the following pairs.

5.1 \(\gcd(3, 5) \)
5.2 \(\gcd(7, 30) \)
5.3 \(\gcd(35, 65) \)

6. Use the extended Euclidean algorithm to compute multiplicative inverses of the following numbers.

6.1 \(3 \mod 5 \)
6.2 \(7 \mod 30 \)
6.3 \(35 \mod 65 \) (In this case, there is no inverse of 35 mod 65.

7. Solve these linear recurrence equations. They may have one, none, or many solutions.
7.1 \(3x = 4 \mod 5\)
7.2 \(7x = 4 \mod 30\)
7.3 \(35x = 4 \mod 65\)

8. You can determine if a number \(n\) is divisible by 2: Pretend \(n = (n)_{10}\) is written in decimal. What test can you use to see if \(n\) is even? What is the test if \((n)_{2}\) is written in binary? What is the test if \((n)_{3}\) is written in base 3?

9. How can you used the digits in \(n = (n)_{10}\) to determine if \(n\) has 3 as a prime factor?

10. Here are some interesting years. Why are they interesting and what are their prime factorization? What is the Euler totient value of the years?

10.1 −571 (List the prime factors of \(|−571|\) and compute \(\phi(571)\))
10.2 570
10.3 1054
10.4 1066

11. *Casting out nines* is a similar trick used to check arithmetic for errors. Let

\[
n = (n)_{10} = \sum_{k=0}^{m-1} d_k 10^k
\]

Show that

\[
n \equiv \mod 9 = \left(\sum_{k=0}^{m-1} d_k \right) \mod 9
\]
Pass a Quiz: Summative exam # 6 on time complexity and modular numbers

Take a quiz on page 352 to check your understanding. You can return to here from the quiz.
18. *Proofs by contradiction: From Euclid to Turing*

Recall the notes on Boolean logic: When an assumption \(p \) is False, the implication

\[
\neg p \Rightarrow q = \text{False} \Rightarrow q
\]

is True regardless of whether \(q \) is False or True.

A proof by contradiction (*reductio ad absurdum*) is one method to show a proposition \(p \) is True. Here are the steps:

- Assume \(p \) is False.
- Prove that, for some proposition \(q \),

\[
\neg p \Rightarrow q \quad \text{and} \quad \neg p \Rightarrow \neg q
\]

are both True. But this cannot be: You’ve assumed \(p \) is False, so \(\neg p \Rightarrow q \) is of the form True \(\Rightarrow q \). Similarly, \(\neg p \Rightarrow \neg q \) is of the form True \(\Rightarrow \neg q \). And, one of these two conditions must be False. Therefore, \(p \) must be True.

Classical Examples

In Euclid’s *Elements* there are many famous results. Two of them are:

1. The prime numbers are unbounded.
2. \(\sqrt{2} \) is not rational.
Theorem 48: Infinitely many primes

There are infinitely many prime numbers.

Proof: Infinitely many primes

To prove there are infinitely many primes, assume the opposite: There are only a finite number of primes.

\((\exists p \in \mathbb{P})(\forall q \in \mathbb{P})(q \leq p)\)

If there are only a finite number of primes, you list them:

\[p_0 < p_1 < \cdots < p_{n-1} \]

Consider the product \((p_0p_1\cdots p_{n-1})\) plus 1, call it \(q\)

\[q = (p_0p_1\cdots p_{n-1}) + 1. \]

The number \(q\) is either prime or it is not prime.

- If \(q\) is prime, it is not on our list because it is larger than \(p_{n-1}\).
- If \(q\) is not a prime number, then there is a prime \(p\) that divides \(q\). But \(p\) cannot be any of the primes \(p_0, p_1, \ldots, p_{n-1}\) because then \(p\) would divide 1.

In both cases our list of primes is incomplete.

Next, let’s establish the other classic result that \(\sqrt{2}\) is irrational. Start with a corollary

Corollary 2: Even and oddness of squares

\(a^2\) is even if and only if \(a\) is even. \(a^2\) is odd if and only if \(a\) is odd.

Proof: Even and oddness of squares

If \(a\) is even, then \(a = 2k\) for some integer \(k\) and \(a^2 = 4k^2\) is even. If \(a\) is odd, then \(a = 2k + 1\) for some integer \(k\) and \(a^2 = (2k + 1)^2\) =
4k^2 + 4k + 1 is odd.

Now to the theorem.

Theorem 49: Irrationality of \(\sqrt{2} \)

The \(\sqrt{2} \) is not rational.

Proof: Irrationality of \(\sqrt{2} \)

Assume the \(\sqrt{2} \) is rational. Then \(\sqrt{2} \) can be written as a common fractions

\[
\sqrt{2} = \frac{a}{b}
\]

where \(a, b \in \mathbb{Z} \) and \(b \neq 0 \).

Moreover, you can assume that \(a/b \) is in “lowest terms,” that is, all common factors (other than 1) have been removed so that \(\gcd(a, b) = 1 \).

Then follow the sequence of equations

\[
\begin{align*}
\sqrt{2} &= \frac{a}{b} \\
\sqrt{2}b &= a \\
2b^2 &= a^2
\end{align*}
\]

The last equation implies that \(a \) is even. Therefore \(a^2 = 4k^2 \) for some integer \(k \) and

\[
\begin{align*}
2b^2 &= 4k^2 \\
b^2 &= 2k^2
\end{align*}
\]

Which implies \(b \) is even.

The conclusion that both \(a \) and \(b \) are even contradicts the assumption that \(\gcd(a, b) = 1 \), and this establishes that \(\sqrt{2} \) is not rational.

Modern Results

Two recently discovered concepts are:

1. **Cantor** proved that the real numbers are uncountable.
2. **Turing** showed there can be no test \(H \) that decides if program \(P \) will halt on input \(x \).

Cantor’s Diagonalization Argument

Let

\[
\vec{s} = \langle s_k : s_k \in \mathbb{B}, k \in \mathbb{N} \rangle
\]
be a sequence of bits. For instance,
\[\overrightarrow{x} = (0, 1, 1, 0, 0, 0, 1, \ldots) \]

Let \(S \) be the set of all such sequences \(\overrightarrow{x} \).
\[S = \{ \overrightarrow{x} = (s_k : s_k \in \mathbb{B}, k \in \mathbb{N}) \} \]

Theorem 50: Cantor’s diagonal argument

The set \(S \) of all infinite sequences of bits is **uncountable**.

Proof: Cantor’s diagonal argument

Let’s assume that set \(S \) is countable. That is, there is some one-to-one function \(f \) from the natural numbers \(\mathbb{N} \) onto \(S \).

\[\exists f : \mathbb{N} \rightarrow S \left((\text{onto } f) \land (\text{one-to-one } f) \right) \]

If this is the case, then \(f \) can be applied to each natural number providing list all infinite binary sequences in \(S \).

For instance, the function \(f \) might map the numbers of the sequences

\[\overrightarrow{s}_0 = (0, 0, 0, 0, 0, 0, \ldots) \]
\[\overrightarrow{s}_1 = (1, 1, 1, 1, 1, \ldots) \]
\[\overrightarrow{s}_2 = (0, 1, 0, 0, 1, \ldots) \]
\[\overrightarrow{s}_3 = (1, 0, 0, 0, 1, \ldots) \]
\[\overrightarrow{s}_4 = (0, 1, 1, 0, 1, \ldots) \]
\[\overrightarrow{s}_5 = (0, 0, 1, 0, 0, \ldots) \]
\[\vdots \]

From any enumeration, construct a sequence of bits using the values along the diagonal: Call this sequence \(\overrightarrow{s} \). In our example,
\[\overrightarrow{s} = (0, 1, 0, 0, 1, 0, \ldots) \]

Next, flip each bit in \(s \) to get the “diagonal number”
\[\overrightarrow{d} = (1, 0, 1, 1, 0, 1, \ldots) \]

The sequence \(\overrightarrow{d} \) cannot be in the enumerated list.
\[(\forall k \in \mathbb{N}) (\overrightarrow{d} \neq \overrightarrow{s}_k) \]

For each \(k \), the \(k \)-th bit in \(\overrightarrow{d} \) is the complement of the \(k \)-th bit in \(\overrightarrow{s}_k \), so the two sequences cannot be equal.
Pass a Quiz: Proofs by contraction

Take a quiz on page 352 to check your understanding. You can return to here from the quiz.

Turing machines

Alan Turing was interested in the question:

“What can and cannot be computed?”

He devised a very simple model of an abstract computing machine. He showed it could be used to compute many things. In fact, a fundamental theory, right or wrong, underlying today’s computer science is that

“Everything computable is computable by Turing machines.”

This statement is a simplified version of the Church-Turing thesis. It classifies problems: Those that have an algorithmic computable solution and those that don’t.

A Turing machine is deceptively simple. Informally, a Turing machine consists of a infinitely long paper tape of cells. Each cell can hold one symbol from a finite alphabet Σ of symbols. The machine’s tape head reads a symbol from the tape, considers what it knows (its state). Based on this information the machine decides to:

- Leave the tape cell unchanged or write a another symbol onto the cell.
- Stay in the same state or transition to a another state.
- Move the tape head one cell left or right.

Control of the machine is accomplished with a transition function that programs what the machine should do when it reads symbol s while in state q: Update the tape, update the state, move the tape head.

Basic operation are easy to program. You can multiply a binary number n by 2 by appending a 0 to the tails of n.

$$2 \begin{array}{c} 1010 \ 1100 \end{array}_2 = \begin{array}{c} 1 \ 0101 \ 1000 \end{array}_2 \quad (2 \cdot 172 = 344)$$

Example: Multiply by 2

Pretend that the input tape holds a binary number, say $\begin{array}{c} 1001 \ 0011 \end{array}_2$ (147) and you want to multiply it by 2. A Turing machine “program” that does this can be described by: Scan the tape from left-to-right copying bits until the first blank cell is found. Change the blank cell to 0 and halt.

Decimal multiplication by 10 appends a zero, e.g., $314 \times 10 = 3140$. Binary multiplication by 2 appends a zero, e.g., $13 \times 2 = (1101)_2 \times 2 = (11010)_2 = 26$. The story goes that Turing did a thought experiment: “What do I do when I compute?” He wrote the results of his experiment down and formalized it using mathematical ideas.
More formally, let \(s \) be the start state and let \(h \) be the halt state. Let \(b \) be a bit or a blank \(\sqcup \), and let \(L \) and \(R \) denote moving the tape head left or right. Then, the transition function for the binary multiply by 2 machine is:

\[
\delta(s, b) = \begin{cases}
(s, b, R) & \text{if } b \in \{0, 1\} \text{ copy all bits} \\
(h, \sqcup, L) & \text{if } b = \sqcup \text{ append 0 after scanning all bits}
\end{cases}
\]

The Halting Problem

The halting problem is a decision problem: Given a program \(P \) and input \(x \), does \(P \) halt on \(x \)?

This question has a “yes” or “no” answer. The halting problem is decidable if there is a program \(H \) that answers the question for every program-input pair \((P, x)\). Otherwise, the halting problem is undecidable.

To show the halting problem is undecidable, assume the opposite: Pretend a program \(H \) exists that decides the halting problem. This assumption can be visualized as black-box \(H \) that accepts input \((P, x)\) as input and answers “yes” or “no.”

If the program \(H \) exists, it can used as a subroutine other programs. Let’s construct a, somewhat strange, program \(D \). The diagonal program \(D \):

1. Accepts a program \(P \) as input
2. Runs the halting program \(H \) on \((P, P)\)
3. And,
 - If \(P(P) \) halts, then \(D(P) \) does not halt
 - If \(P(P) \) does not halt, then \(D(P) \) halts

Consider running program \(D \) on input \(D \):
There are two cases:

1. If \(D(D) \) halts, then \(D \) runs to infinity.

2. If \(D(D) \) does not halt, then \(D \) halts on input \(D \).

Both cases are contradictions. Therefore, the assumption that a halting machine \(H \) exists must be false.

The Universal Turing machine

The Busy Beaver Sequence

Terms in the busy beaver sequence are the maximal number of 1’s that an \(n \)-state Turing machine can print on an initially blank tape before halting. Only the first few terms of the busy beaver sequence are known:

\[
\begin{array}{c|cccccc}
 n & 1 & 2 & 3 & 4 & 5 & \ldots \\
\beta_n & 1 & 4 & 6 & 13 & \ldots \\
\end{array}
\]

Terms in the busy beaver sequence grow faster than any computable function.

Paradoxes

Let \(\mathcal{A} \) be the set of all adjectives in the English language: Words such as red, yellow, short, long polysyllabic, monosyllabic, composite, archaic, good, hot, ambiguous, fearful, and so on belong in \(\mathcal{A} \).

Some of these words can be used to describe themselves. For example,

- *short* is short, so *short* is autonymous.
- *polysyllabic* is polysyllabic, so *polysyllabic* is autonymous.

Call all adjectives that describe themselves *autonymous*. On the other hand

- *long* is not long, so *long* is not autonymous.
- *monosyllabic* is not monosyllabic, so *monosyllabic* is not autonymous.

Adjectives that are not autonymous are called *heteronymous*.

Now let’s consider the words *autonymous* and *heteronymous*. Both are adjectives so they are either autonymous or heteronymous. The word *autonymous* literal translates as “‘self-naming.”
autonomous is autonomous, so autonomous is autonomous.

No problems here. But what about the word heteronymous? Heteronymous? translates as “different-naming.” We have two possibilities

If heteronymous is heteronymous, then heteronymous is autonomous!

or

If heteronymous is autonomous, then heteronymous is heteronymous!

The above example is a form of Russell’s paradox.

A set X is normal if it is not a member of itself: $X \notin X$.
A set X is abnormal if it is a member of itself: $X \in X$.

Let A be the set of all normal sets.

$A = \{ X : X \notin X \}$

If A is normal, then $A \in A$ which means $A \notin A$. If A is abnormal, then $A \notin A$ which means $A \in A$.

Curry’s paradox is also quite confounding. Consider the proposition p:

$p =$ “If this statement is True, then China borders Germany.”

The proposition is a conditional of the form “If s, then b.” Where $s =$ "this statement is True " and $b =$ "China borders German". Note that $s = p$.

Boolean logic tells us

• p is True if $s = \neg p$ is False: The statement is True if the statement is False!

• p is False if s is True and b is False: The statement is False if the statement is True.

• p is also True if s is True and b is True: The statement is True if China borders Germany, which is False.

Homework Questions

Use your time outside of class to solve these problems.

1 Show that

1.1 $a^2 \equiv 0 \mod 3$ if and only if $a \equiv 0 \mod 3$.
1.2 $a^2 \equiv 1 \mod 3$ if and only if $a \equiv 1 \mod 3$ or $a \equiv 2 \mod 3$.
1.3 $a^2 \equiv 2 \mod 3$ has no solutions.

2 Show the $\sqrt{3}$ is not a rational number.

3 Show the $\sqrt{5}$ is not a rational number.

4 Where does the similar proof that $\sqrt{4}$ is not a rational number fail.
5 Prove of disprove: The product of the first n primes plus 1 is a prime number. For example, $2 + 1 = 3$ is prime, $2 \cdot 3 + 1 = 7$ is prime, $2 \cdot 3 \cdot 5 + 1 = 31$ is prime, and so on.

6 Consider the (recursive) statement: “This statement has no proof” Is the statement True or False?

7 A real number r is called sensible if there exist positive integers a and b such that $\sqrt{a/b} = r$. For example, setting $a = 2$ and $b = 1$ shows that $\sqrt{2}$ is sensible. Prove that $\sqrt{2}$ is not sensible. Let a and b be positive integers, and let $g = \gcd(a, b)$.

8 Prove that $g = \gcd(a, m)$ divides the linear combination $at + ms$ for every pair of integers (t, s).

9 Prove that

$$g = \min\{as + bt > 0 : s, t \in \mathbb{Z}\}$$

That is, g is smallest positive linear combination of a and b.

10 A Virus tester is a program V that accepts as input another program P and input x. If running P on x will introduce a virus, the V responds “yes.” Otherwise V responds “no.” Show that a virus tester cannot exist.

11 Devise a Turing machine that performs unary addition.

\[\text{This problem came from the MIT course 6.042J/18.062J, by Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld}\]
Quizzes

Quiz(zes) on Preliminaries

Preliminary quiz

Test your readiness for this course.

1. Evaluate each expression without using a calculator.
 1.1 \((\frac{2}{3})^{-2}\)
 1.2 \(16^{-3/4}\)

2. Simplify \(3 \cdot 3^{n-1}\).

3. What is the quotient and remainder when 73 is divided by 37?

4. Simplify the algebraic expression
 \[\frac{n(n-1)}{2} + n\]

5. Simplify the algebraic expression
 \[(2^n - 1) + 2^n\]

6. Compute the roots of the quadratic equation
 \[x^2 - x - 1 = 0\]

7. If \(n = \log m\), what is an expression for \(m\) itself?

8. Convince me that each equation below is either: always True, always False or sometimes True and sometimes False.
 8.1 \(\sqrt{x^2 + y^2} = x + y\).
 8.2 \(\frac{1}{x-y} = \frac{1}{x} - \frac{1}{y}\).
 8.3 \[\frac{(n-1)(n-2)(n-3)}{6} + \frac{(n-1)(n-2)}{2} = \frac{n(n-1)(n-2)}{6}\].

Check your answers on page 355.
Back to the notes on page 23.
Quiz(zes) on Computers and Arithmetic

Basic computer concepts

1. Pretend the memory address register of a computer is 64-bits wide. What is the maximum size of the address space? Approximately how big is this when written in decimal notation?

2. The Internet Protocol (IP) is used to route traffic on the Internet. IPv6 uses 128-bit (16-byte) addresses.

 2.1 What is the size of this address space?

 2.2 Approximate your answer in decimal.

 2.3 I just looked and the world population is 7,318,869,740 (and it grew by 92 as I wrote this). Let’s just say, there are about 7.3 billion people on earth. Are there enough IPv6 addresses for them? For you?

Check your answers on page 356.
Back to the notes on page 30.

Basic number concepts

1. Using 3 digits the largest natural number that can be written is $999 = 10^3 - 1$.

 Generalize: Using n digits what is the largest natural number that can be written?

2. Using 8 bits the largest natural number that can be written is $(11111111)_2 = 2^8 - 1$.

 Generalize: Using n bits what is the largest natural number that can be written?

3. Generalize: Using an m numeral alphabet (e.g., $m = 10$ for decimal/digits, and $m = 2$ for binary/bits), what is the largest natural number that can be written using n numerals?

4. Pretend you can use up to 64-bits to write a number.

 4.1 What is the largest number that can be written?

 4.2 How many different numbers can be written?

Check your answers on page 356.
Back to the notes on page 48.
Quiz(zes) on Logic

Boolean logic basics

1. Fill in the truth tables:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Input</th>
<th>Output</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>¬p</td>
<td>p</td>
<td>q</td>
<td>p</td>
<td>q</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>q</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>⇒q</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>⊕q</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>≡q</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Construct a truth table for the Boolean function

\[B(p, q) = p ∧ (p ⇒ q) \]

What is a more simple expression for the function?

3. Construct a truth table for the Boolean function

\[B(p, q) = ¬q ∧ (p ⇒ q) \]

What is a more simple expression for the function?

Check your answers on page 357.
Back to the notes on page 58.

Boolean functions

1. How many truth assignments can be made on

 1.1 One Boolean variable \(p \)?
 1.2 Two Boolean variables \(p \) and \(q \)?
 1.3 Three Boolean variables \(p \), \(q \) and \(r \)?
 1.4 \(n \) Boolean variables?

2. How many Boolean functions can be defined on

 2.1 One Boolean variable \(p \)?
 2.2 Two Boolean variables \(p \) and \(q \)?
 2.3 Three Boolean variables \(p \), \(q \) and \(r \)?
 2.4 \(n \) Boolean variables?
3 Given the truth table below, find a Boolean function \(B(p, q, r) = y \) that computes it.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

4 Construct a truth table to prove that

\[
[(p \Rightarrow q) \land (\neg p \Rightarrow r)] \Rightarrow (q \lor r)
\]

is a tautology: It is known as resolution.

Check your answers on page 358.
Back to the notes on page 67.

Quiz(zes) on Sets

Basics set concepts

1 Describe the following sets. List a representative sample of elements establishing a pattern. Give a function that computes the elements.

1.1 The set of even integers.
1.2 The set of odd integers.
1.3 The set of integers that have a remainder of 2 when divided by 3.

2 Both \(\emptyset \) and \(\{ \emptyset \} \) are used to denote the empty set.

2.1 Is \(\emptyset = \{\emptyset\} \)? That is, using the alternate notation, is \(\{\} = \{\}\)?
2.2 Is \(\emptyset \in \{\emptyset\}\)?
2.3 Is \(\emptyset \in \emptyset \)?
2.4 Is \(\emptyset \subseteq \emptyset \)?

3 Let \(S \) be the set of students in a class. Let \(F \) and \(M \) be the subsets of female and male students. Are the following statements True or False? Explain your answer.

3.1 \(M \in S \)
3.2 \(S \subseteq M \)
3.3 \(F \subseteq S \)
3.4 $F \cap M = \{0\}$

3.5 F and M partition \mathcal{S}

Check your answers on page 361.
Back to the notes on page 74.

Set operations

1 Using the three sets

$X = \{1, 2, 3, 4, 5\} \quad Y = \{0, 2, 4, 6, 8\} \quad V = \{0, 3, 5, 7, 9\}$

over the universe of digits $U = D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, compute the following:

1.1 $X \cup Y$
1.2 $X \cap \neg V$
1.3 $(X \cup Y) \cap V$
1.4 $X \cup (Y \cap V)$
1.5 Is $(X \cup Y) \cap V = X \cup (Y \cap V)$
1.6 $\neg(X \cup Y) \cap V$
1.7 $(\neg X \cap \neg Y) \cap V$
1.8 Is $\neg(X \cup Y) \cap V = (\neg X \cap \neg Y) \cap V$

Check your answers on page 362.
Back to the notes on page 76.
Venn diagrams

1 Shade the Venn diagram to indicate the given region.

1.1 $X \cap \neg Y$.

1.2 $X \cup \neg Y$.

1.3 $X \cap Y \cap V$.

1.4 $\neg X \cap Y \cap V$.

1.5 $(\neg X \cap \neg Y) \cup \neg V$.

1.6 $\neg X \cap (\neg Y \cup \neg V)$.

Check your answers on page 364.
Back to the notes on page 80.

Quiz(zes) on Predicates

Basic predicate logic

1 Let $P = \{2, 3, 5, 7, 11, 13, 17, 19, \ldots\}$ be the set of prime numbers. Let $p, q \in P$ be prime numbers.

1.1 Is the predicate $p < q$ True or False or undecidable?

1.2 Is the quantified expression below True or false?

 For every prime p there is a larger prime q. Or, the prime numbers are unbounded.

1.3 Negate the expression in problem (1.2).

1.4 Is the quantified expression below True or false? There is a prime q that larger than every other prime number.

1.5 What does the expression in problem (1.4) mean?

1.6 Negate the expression in problem (1.4).
Predicates: Logic for control

1. Let \(x\) and \(y\) be integers \((x, y \in \mathbb{Z})\). Is the statement: “There is an \(x\) such that \(x + y = 1\)” True or False or undecidable? Explain your answer.
 Written mathematically the statement is:
 \[
 (\exists x \in \mathbb{Z})(x + y = 1)
 \]
 (24)

2. Is the statement: “For every \(y\), there is an \(x\) such that \(x + y = 1\)” True or False or undecidable? Written mathematically,
 \[
 (\forall y \in \mathbb{Z})(\exists x \in \mathbb{Z})(x + y = 1)
 \]
 (25)

 Explain your answer.

3. Is statement: “There is an \(x\) such that for every \(y\), \(x + y = 1\)” True or False or undecidable? Written mathematically,
 \[
 (\exists x \in \mathbb{Z})(\forall y \in \mathbb{Z})(x + y = 1)
 \]
 (26)

 Explain your answer.

4. Now, let’s restrict \(x\) and \(y\) be natural numbers \((x, y \in \mathbb{N})\).

 4.1 Is the statement: “There is an \(x\) such that \(x + y = 1\)” True or False or undecidable? Written mathematically,
 \[
 (\exists x \in \mathbb{N})(x + y = 1)
 \]
 (27)

 4.2 Is the statement: “There is an \(x\) such that for every \(y\), \(x + y = 1\)” True or False or undecidable? Written mathematically,
 \[
 (\exists x \in \mathbb{N})(\forall y \in \mathbb{N})(x + y = 1)
 \]
 (28)

 Explain your answer.
Summative exam #1

1 (10 pts) Fill in the truth table for De Morgan’s first law: If \(p \) and \(q \) are not both True, then one of \(p \) or \(q \) is False. Conversely, if one of \(p \) or \(q \) is False, then not both of them are True.

\[\neg(p \land q) \equiv \neg p \lor \neg q \]

De Morgan’s First Law

<table>
<thead>
<tr>
<th>Cases</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(q)</td>
</tr>
</tbody>
</table>

2 (10 pts) Construct a truth table for the Boolean expression.

\[[(p \to q) \land (\neg p \to r)] \to (q \lor r) \]

3 (10 pts) Given the truth table below, find a Boolean expression that computes it.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row</td>
<td>A B C D</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>3</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>4</td>
<td>0 1 1 1</td>
</tr>
<tr>
<td>5</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>6</td>
<td>1 0 1 1</td>
</tr>
<tr>
<td>7</td>
<td>1 1 0 1</td>
</tr>
<tr>
<td>8</td>
<td>1 1 1 1</td>
</tr>
</tbody>
</table>

4 (10 pts) The Internet Protocol (IP) is used to route traffic on the Internet. IPv6 uses 128-bits (16-bytes) to name addresses. What is the size of Internet version 6 space?

5 (10 pts) Using \(n \) digits what is the largest natural number that can be written? Using \(n \) bits what is the largest natural number that can be written?

6 (10 pts) How many bits does it take to write the number 73? How many bits does it take to write the number \(n \)?

7 (30 pts) Let \(n, m \in \mathbb{N} \) be natural numbers. Write the following statements using mathematical notation.

7.1 There is an \(n \in \mathbb{N} \) such that \(m = n/2 \).
7.2 For all $m \in \mathbb{N}$, there is an $n \in \mathbb{N}$ such that $n/2 = m$.

7.3 There is an $n \in \mathbb{N}$ such that for all $m \in \mathbb{N}$, $m = n/2$.

Which of these three statements are True, False, or undecidable.

8 (10 pts) Okay, I have to know, who can solve my favorite quadratic equation?

$$x^2 - x - 1 = 0$$

The roots are interesting numbers, for 10 extra points, tell me about the roots.

Check your answers on page 367.
Back to the notes on page 100.
Quiz(zes) on Functions

Function Basics

1 Write, in English, an explanation of what it means to say: \(f : X \to Y \) is a function from \(X \) to \(Y \).

2 Use predicate logic to write what it means to say: \(f : X \to Y \) is a function from \(X \) to \(Y \).

3 Write, in English and in predicate logic, statements that describe what it means to say: \(f : X \to Y \) is an onto function from \(X \) to \(Y \).

4 Write explanations in English and predicate logic of what it means to say \(f : X \to Y \) is a one-to-one function.

5 Do you know your conic sections? Which conics define functions from \(X \) to \(Y \)?

5.1 The parabola: \(ax^2 + y = 0 \)

5.2 The ellipse: \(\left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 = 1 \)

5.3 The hyperbola: \(\left(\frac{x}{a} \right)^2 - \left(\frac{y}{b} \right)^2 = 1 \)

Check your answers on page 370.
Back to the notes on page 104.

The Pigeonhole Principle

1 Suppose there are twelve people who must do 25 jobs.

1.1 Is it possible to define an onto function that maps people to jobs? If so, explain how.

1.2 Is it possible to define an onto function from jobs to people? If so, explain how.

1.3 Is it possible to define a one-to-one function from people to jobs? If so, explain how.

1.4 Is it possible to define a one-to-one function from jobs to people? If so, explain how.

2 A bridge hand is 13 cards from a standard deck of 52 cards.

2.1 Why must there be at least 4 cards of some suit in a bridge hand?

2.2 Why is there some suit with only 3 cards in a bridge hand?

Check your answers on page 371.
Back to the notes on page 111.
Examples Functions

1. Draw a graph of the following polynomial functions.
 - \(y = 4 \)
 - \(y = 4x - 3 \)
 - \(y = x^2 - x - 1 \)

2. Compute the following values.
 2.1 \(\log(\sqrt[3]{16}) \)
 2.2 \(\log(\sqrt{8}) \)
 2.3 \(\log \sqrt[3]{2} \)
 2.4 \(\log_{16} \sqrt[3]{2} \)
 2.5 \(\log(2^n) \)

3. Draw a graph of the following logarithms or exponential functions.
 - \(y = 2^x \)
 - \(y = \log x \)

4. Identify which of the following is a permutation of the digits
 \(\mathbb{D} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \)
 For those that are, describe them using cycle notation.
 - \((3, 4, 5, 9, 8, 7) \)
 - \((5, 4, 3, 2, 1, 0, 6, 7, 9, 8) \)
 - \((5, 5, 4, 3, 1, 1, 0, 6, 7, 8, 9) \)

 Check your answers on page 372.
 Back to the notes on page 119.

Quiz(zes) on Horner’s Rule

Horner’s rule

1. Use Horner’s rule to evaluate the polynomials at the indicated value of \(x \).
 How many multiplications and additions were required in each case?
 - \(p(x) = -7x^2 + 28x + 7 \) at \(x = 3 \).
 - \(p(x) = 4x^4 + 5x^2 - 3x + 2 \) at \(x = 2 \).
 - \(p(x) = 3x^3 - x^3 + 4x^2 + x + 1 \) at \(x = -2 \).

 Check your answers on page 373.
 Back to the notes on page 130.
Horner’s rule for conversion to decimal

Use Horner’s rule to convert the following natural numbers (unsigned integers) into decimal notation.

1. \((0000\ 1001)_2\)
2. \((1\ 1\ 1\ 1\ 1\ 1\ 1)_2\)
3. \((0\ 1\ 0\ 0\ 1\ 1\ 0\ 0)_2\)
4. \((747)_8\)
5. \((123)_4\)
6. \((BAD)_{16}\)

Check your answers on page 374.
Back to the notes on page 133.

Remaindering to convert from decimal to another base

1. Use repeated remaindering to convert the following decimal numbers to their representation in the indicated base.

 1.1 Convert 76 to binary:
 1.2 Convert 137 to binary:
 1.3 Convert 177 to octal:

2. Conversion between binary, octal, and hexadecimal can be done by grouping or ungrouping bits.

 2.1 Group the bits you computed in question (1.1) and (1.2) three at a time to write 76 and 137 in octal.
 2.2 Group the bits you computed in question (1.1) and (1.2) four at a time to write 76 and 137 in hexadecimal.

Check your answers on page 375.
Back to the notes on page 136.

Quiz(zes) on Sequences

Sequence basics

1. What is the sum of the first \(n\) terms of the Alice sequence? How are the sequence of these sums related to the Gauss sequence?

2. What is the sum of the first \(n\) terms of the Gauss sequence? How are the sequence of these sums related to the Triangular sequence?

3. Consider the sequence of even natural numbers

 \(\langle 0,\ 2,\ 4,\ 6,\ 8,\ldots \rangle\)
3.1 What function \(e(n) \) maps the natural numbers to the even natural numbers?

3.2 What is the recursive-initial value form for the even natural numbers?

4 Consider the sequence of natural numbers that have a remainder of 1 when divided by 3

\[\{1, 4, 7, 10, 13, \ldots \} \]

4.1 What function maps the natural numbers to these numbers?

4.2 What is the recursive-initial value form for these numbers?

5 The half-life sequence is the decreasing sequence

\[\left\{ 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \right\} \]

5.1 What function maps the natural numbers to these numbers?

5.2 What is the recursive-initial value form for these numbers?

Check your answers on page 377.
Back to the notes on page 144.

Differences

1 Given the sequences below, what is the function for a term in the sequence and what function computes the difference of the sequence?

1.1 The quadratic sequence

\[\vec{R} = \{0, 1, 4, 9, 16, \ldots\} \]

1.2 The cubic sequence

\[\vec{R} = \{0, 1, 8, 27, 64, \ldots\} \]

1.3 The ratio sequence

\[\vec{R} = \{1, r, r^2, r^3, r^4, \ldots\} \]

1.4 The logarithm sequence

\[\vec{L} = \{\lg 1, \lg 2, \lg 3, \lg 4, \lg 5, \ldots\} \]

1.5 The sine sequence

\[\vec{S} = \{\sin 0, \sin 1, \sin 2, \sin 3, \sin 4, \ldots\} \]

Check your answers on page 378.
Back to the notes on page 145.
Sums

1 Consider the general sum

\[\sum_{k=0}^{n-1} l_k \]

1.1 What is the lower limit?
1.2 What is the upper limit?
1.3 What terms are being summed?

2 What are the functions that compute the following sums?

2.1 The sum of terms in the Alice sequence

\[\sum_{k=0}^{n-1} 1 \]

Note that 1 = \((k + 1) - k\).

2.2 The sum of terms in the Gauss sequence

\[\sum_{k=0}^{n-1} k \]

Note that \(k = [(k + 1)k - k(k - 1)]/2\).

2.3 The sum of terms in the Doubling sequence

\[\sum_{k=0}^{n-1} 2^k \]

Note that \(2^k = 2^{k+1} - 2^k\).

Check your answers on page 379.
Back to the notes on page 147.

Fundamental Theorem

1 Use the fact that

\[\Delta x^{m+1} = (m + 1)x^m \]

and the fundamental theorem of the sum & difference calculus to find a simple formula for

\[\sum_{k=0}^{n-1} k^m \]

2 What is a simple formula for the sum

\[\sum_{k=1}^{n} \lg \left(\frac{k + 1}{k} \right) \]

Check your answers on page 380.
Back to the notes on page 148.

Recall from the notes on Horner’s rule
falling factorial powers are defined by

\[x^n = x(x - 1)(x - 2) \cdots (x - m + 1) \]

and it was shown that

\[\Delta x^m = m x^{m-1} \]

Sums of ordinary powers are more complex.

\[\sum_{k=0}^{n-1} k^0 = n \]
\[\sum_{k=0}^{n-1} k^1 = \frac{1}{2} n^2 - \frac{1}{2} n \]
\[\sum_{k=0}^{n-1} k^2 = \frac{1}{3} (n-1)^3 - \frac{2}{2} (n-1)^2 + \frac{1}{6} (n-1) \]

and lead to the study of Bernoulli numbers.
Summative exam #2

1 (10 pts) Write an English statement to explain that \(f : X \to Y \) is an onto function. Using the notation of predicate logic, write the definition that \(f : X \to Y \) is an onto function from \(X \) to \(Y \).

2 (20 pts) By drawing arrows from points in \(X \) to points in \(Y \) show how to construct examples of the following types, or explain why no such example can be drawn.

2.1 Draw a picture of a graph that is not a function.

2.2 Draw a picture of a function that is onto.

2.3 Draw a picture of a function that is onto.

2.4 Draw a picture of a function that is one-to-one.

3 (10 pts) Use Horner’s rule to evaluate the polynomial

\[
p(x) = 3x^5 - 20x^3 - 60x - 7
\]

and \(x = 3 \).

4 (10 pts) Use Horner’s rule to convert the binary number \((1110 1101)_2\) to decimal notation.

5 (10 pts) Use repeated remaindering to convert the decimal number \((87)_{10}\) to binary notation.

6 (10 pts) What decimal numbers do the hexadecimal numbers \(A, B, C, D, E, \) and \(F \) represent.

7 (10 pts) Part (a) is simple arithmetic to help you guess the general answer in part (b).

7.1 Verify that the sum on the left is equal to the expression on the right.
7.1.1 \[1 + 2 = \frac{2^3}{2} \]
7.1.2 \[1 + 2 + 3 = \frac{3^4}{2} \]
7.1.3 \[1 + 2 + 3 + 4 = \frac{4^5}{2} \]
7.2 Compute the value of the Gauss sum

\[1 + 2 + 3 + 4 + 5 + \cdots + 98 + 99 + 100 \]

8 (10 pts) Part (a) is simple arithmetic to help you guess the general answer in part (b).

8.1 Verify that the sum on the left is equal to the expression on the right.

8.1.1 \[1 + 2 = 2^2 - 1 \]
8.1.2 \[1 + 2 + 4 = 2^3 - 1 \]
8.1.3 \[1 + 2 + 4 + 8 = 2^4 - 1 \]
8.2 Compute the value of the Mersenne sum (you are expected to leave your answer in exponential form).

\[1 + 2 + 4 + 8 + 16 + \cdots + 2^{98} + 2^{99} + 2^{100} \]

9 (10 pts) I once gave a 20 question True/False exam.

9.1 In how many ways can you answer the questions (pretend you answer each question True or False)?

9.2 If you decide to leave some questions blank, in how many ways can you answer the questions?

Check your answers on page 382.
Back to the notes on page 151.
Quiz(zes) on Machine Numbers

Machine Number Basics
1. What is the largest unsigned natural number on:
 1.1 A 16-bit computer?
 1.2 A 32-bit computer?
 1.3 A 64-bit computer?

2. What is the decimal value of the following ten’s complement numbers?
 Assume the word length is 4.
 2.1 \((3084)_{10c}\)
 2.2 \((8034)_{10c}\)

3. Pad the following ten’s complement numbers to be 5 digits long.
 3.1 \((384)_{10c}\)
 3.2 \((834)_{10c}\)

Check your answers on page 385.
Back to the notes on page 155.

Two’s Complement Notation
1. Using two’s complement notation what range of integers from most negative to most positive can be represented using
 1.1 2 bits?
 1.2 8 bits?
 1.3 32 bits?
 1.4 64 bits?

2. Negate the two’s complement integers below.
 2.1 \((0100\ 1100)_{2c}\)
 2.2 \((1100\ 0000)_{2c}\)
 2.3 \((1010\ 0100)_{2c}\)
 2.4 \((0000\ 0000)_{2c}\)

3. Convert the following two’s complement integers into decimal notation.
 3.1 \((0100\ 1100)_{2c}\)
 3.2 \((1011\ 0100)_{2c}\)
 3.3 \((1010\ 1010)_{2c}\)
 3.4 \((0010\ 1000)_{2c}\)

4. Convert the signed decimal integers below into two’s complement notation.
4.1 +76.
4.2 −76.
4.3 −137.
4.4 +177.

Check your answers on page 385.
Back to the notes on page 163.

Floating Point Notation

1 One rule for a number \(m \) written in biased notation is that \(m \) should be a natural number. What is the minimum value for a bias \(b \) to represent the range of integers shown below?

1.1 \(-127 \leq n \leq 128\).
1.2 \(-511 \leq n \leq 512\).
1.3 \(-49 \leq n \leq 50\).

1.4 \(s \leq n \leq t \), where \(s \) and \(t \) are integers with \(s \leq t \).

2 One guideline for biased notation is numbers represented should be about half-and-half positive-and-negative. Given the ranges of biased numbers below, what values of the bias \(b \) satisfies this guideline?

2.1 \(0 \leq n_{\text{bias}=3} \leq 255 \).
2.2 \(0 \leq n_{\text{bias}=7} \leq 1023 \).
2.3 \(0 \leq n_{\text{bias}=9} \leq 99 \).

2.4 \(s \leq n_{\text{bias}=3} \leq t \), where \(s \) and \(t \) are integers with \(s \leq t \).

3 Convert the biased numbers below to decimal integers.

3.1 \((6)_{\text{bias}=3}\).
3.2 \((76)_{\text{bias}=126}\).
3.3 \((137)_{\text{bias}=126}\).
3.4 \((177)_{\text{bias}=254}\).

4 The following binary strings are floating point numbers where the first (leftmost) bit is a sign bit, the next three bits are exponent bits written in biased notation with bias \(b = 3 \), and the last four bits are fraction bits. These floating point are normalized. What are decimal values of these floating point numbers?

4.1 \((1 \ 001 \ 1000)_{fp}\).
4.2 \((0101 \ 1011)_{fp}\).
4.3 \((1111 \ 1111)_{fp}\).
4.4 \((0000 \ 0001)_{fp}\).

5 Using the 8 bit float point format, explain why \(17/128 \) is the smallest positive floating point number and why \(16/128 = 1/8 \) is not.

Check your answers on page 388.
Back to the notes on page 168.
Quiz(zes) on Names

Naming Basics

1. Using the binary alphabet, how many things can you name with fixed-length strings of the given length?

 1.1 1 bit?
 1.2 2 bits?
 1.3 3 bits?
 1.4 n bits?

2. Using the binary alphabet, how many things can you name with non-empty, variable-length strings?

 2.1 1 or fewer bits?
 2.2 2 or fewer bits?
 2.3 3 or fewer bits?
 2.4 n or fewer bits?

3. Using the English alphabet, how many things can you name with fixed-length strings of the given length?

 3.1 1 character?
 3.2 2 characters?
 3.3 3 characters?
 3.4 n characters?

4. Using the English alphabet, how many things can you name with non-empty, variable-length strings of the given length?

 4.1 1 or fewer characters?
 4.2 2 or fewer characters?
 4.3 3 or fewer characters?
 4.4 n or fewer characters?

Check your answers on page 391.
Back to the notes on page 179.

Naming Numbers

For instance, using the binary alphabet, you can name

- 1 or 2 things using 1 bit: (0) or (0 and 1).
- 3 or 4 things using 2 bits: (00, 01, 10) or (00, 01, 10, 11)
• 5 through 8 things using 3 bits: To name the things, choose 5 through 8 elements from the set
\[\{000, 001, 010, 011, 100, 101, 110, 111\} \]

Using the English alphabet, you can name

• 1 through 26 things using 1 letter: a through z.

• 27 through \(26^2 = 676\) things using 2 letters: To name the things, choose 27 through 676 elements from the set
\[\{aa, ab, ac, \ldots, zz, zy, zz\} \]

• 677 through \(26^3 = 17,576\) things using 3 letters: To name the things, choose 677 through 17,576 elements from the set
\[\{aaa, aab, aac, \ldots, zzx, zzy, zzz\} \]

Check your answers on page 393.
Back to the notes on page 174.
Summative exam #3

1. (20 pts) The sum $1 + 2 + 4 + \ldots + 2^{n-1}$ of powers of 2 numbers called geometric. What function (formula) computes the value of the sum

$$1 + 2 + 4 + \ldots + 2^{n-1} = \sum_{k=0}^{n-1} 2^k$$

2. (10 pts) Convert the two’s complement number $(1001 0100)_2$ into decimal notation.

3. (10 pts) Convert the decimal integer -37 into two’s complement notation.

4. Using the ideas explained in class, answer the following questions about the floating point number $(0 010 1101)_{fp}$.
 4.1 (5 pts) Is the value of the number positive or negative?
 4.2 (5 pts) What is the (decimal) value of the exponent?
 4.3 (5 pts) What is the decimal value of the fractional part?
 4.4 (5 pts) What is the (decimal) value of the normalized floating point number $(0 010 1101)_{fp}$?

5. (10 pts) The ASCII character set lies first in the Unicode alphabet: A block known as Basic Latin. The largest (last) Latin-1 value $(7F)_{16}$ represents the “delete” character. What is the decimal value of $(7F)_{16}$?

6. The octal alphabet is $O = \{0, 1, 2, 3, 4, 5, 6, 7\}$.
 6.1 (10 pts) How many octal numerals are needed to write 73?
 6.2 (5 pts) How many octal strings with fixed-length n are there?
 6.3 (5 pts) How many non-empty, variable-length octal strings of length n or less are there?

7. Consider the arithmetic sequence

$$\vec{X} = \langle 3, 7, 11, 15, \ldots, 4n - 1, 4n + 3, \ldots \rangle$$

and the quadratic sequence

$$\vec{Y} = \langle 0, 3, 10, 21, 36, \ldots, 2n^2 + n, \ldots \rangle$$

7.1 (5 pts) What is the difference sequence $\Delta \vec{Y}$ of \vec{Y} and how is it related to \vec{X}?

7.2 (5 pts) What is the function (formula) that computes the sum

$$\sum_{k=0}^{n-1} (4k + 3)$$

Check your answers on page 394.
Back to the notes on page 182.
Quiz(zes) on Counting

Counting Truth Assignments and Boolean Functions

1. How many truth assignments are there on 2, 4, 8, 16 and \(n \) Boolean variables?

2. How many Boolean functions are there on 2, 4, 8, 16 and \(n \) Boolean variables?

3. In implementing Boolean logic, there are situations where we don’t care what the value of an input or output is. That is, one of 3 values (False, True, and Don’t Care) can be on an input or output line.

 3.1 For input don’t cares, but only False and True output, how many Boolean functions on \(n \) variables are there?

 3.2 For output don’t cares, but only False and True input, how many Boolean functions on \(n \) variables are there?

 3.3 For both input and output don’t cares, how many Boolean functions on \(n \) variables are there?

Check your answers on page 398.

Back to the notes on page 187.

Counting Functions

1. Use theorem to show there are \(2^2 \) \(n \) Boolean functions on \(n \) Boolean variables.

2. How many functions \(f : \mathbb{X} \rightarrow \mathbb{Y} \) can be defined when the domain and co-domain have the following sizes?

 2.1 \(|\mathbb{X}| = 2, |\mathbb{Y}| = 4 \)

 2.2 \(|\mathbb{X}| = 4, |\mathbb{Y}| = 2 \)

 2.3 \(|\mathbb{X}| = 4, |\mathbb{Y}| = 8 \)

 2.4 \(|\mathbb{X}| = 8, |\mathbb{Y}| = 4 \)

Check your answers on page 398.

Back to the notes on page 191.

Counting Subsets

1. In how many ways can you choose 5 elements from the bits \(\mathbb{B} \)?

2. In how many ways can you choose 5 elements from the octal numerals \(\mathbb{O} \)?

3. In how many ways can you choose 5 elements from the set of digits \(\mathbb{D} \)?

4. In how many ways can you choose 5 elements from the set of hexadecimal digits \(\mathbb{H} \)?

5. Let \(\mathbb{X} \) be an \(n \)-element set. How many subsets does \(\mathbb{X} \) have?
6 Why does the sum of values in row n of Pascal’s triangle sum to 2^n?

7 Let \mathbb{X} be an n-element set. Suppose there are i subsets of \mathbb{X} with k-elements and j subsets of \mathbb{X} with $k-1$ elements. Let y be an element that is not in \mathbb{X}. How many k-element subsets of $\mathbb{X} \cup \{y\}$ are there.

Check your answers on page 399.
Back to the notes on page 204.

Counting Relations

1 How many relations $x \sim y$ can be defined between elements $x \in \mathbb{X}$ and $y \in \mathbb{Y}$ when the domain and co-domain have the following sizes?

1.1 $|\mathbb{X}| = 2$, $|\mathbb{Y}| = 4$
1.2 $|\mathbb{X}| = 4$, $|\mathbb{Y}| = 2$
1.3 $|\mathbb{X}| = 4$, $|\mathbb{Y}| = 8$
1.4 $|\mathbb{X}| = 8$, $|\mathbb{Y}| = 4$
1.5 $|\mathbb{X}| = n$, $|\mathbb{Y}| = m$

2 Pretend you have 40 Facebook friends. In how many different ways can they “like” each other?

Check your answers on page 400.
Back to the notes on page 195.

Counting Permutations Cycles and Partitions

1 Use the recurrence relation

Check your answers on page 401.
Back to the notes on page 208.

Quiz(zes) on Induction

Basic induction problems

1 Write a function f that maps each integer n to some integer that has a remainder of 3 when divided by 4.

2 Use mathematical induction to prove:

$$\sum_{k=0}^{n-1} (4k + 3) = n(2n + 1)$$

3 Use mathematical induction to prove the largest n-numeral octal number is $8^n - 1$.

Check your answers on page 402.
Back to the notes on page 227.
Basic problems on recursion

1. Consider binary strings without consecutive 1’s. For instance,
 \[\varepsilon, 0, 1, 00, 01, 10, 000, 001, 010, 100, 101, \ldots \]

 Let be \(s \) a string without consecutive 1’s.

 • how you can extend \(s \) to a string without consecutive 1 by appending a single bit.

 Check your answers on page 402.
 Back to the notes on page 236.

Basic problems on recursion

1. Show that the linear function \(f(n) = 4n + 3 \) satisfies the recurrence
 \[f_n = f_{n-1} + 4 \quad \text{with base case} \quad f_0 = 3 \]

2. Show that the quadratic function \(s(n) = n^2 \) satisfies the recurrence
 \[s_n = s_{n-1} + (2n - 1) \quad \text{with base case} \quad s_0 = 0 \]

3. What well-known list of natural numbers has partial sums equal to \(s(n) = n^2 \)?

 Check your answers on page 403.
 Back to the notes on page 248.
Summative exam #4

1. (10 pts) How many truth assignments and how many Boolean functions can be defined on \(n \) Boolean variables?

2. The following questions are about a set characters from the animated television series SpongeBob SquarePants. The set is called SBSP and the characters are: SpongeBob, Patrick, Squidward, Gary the Snail, and Captain Krabs. Let SP be the set without SpongeBob.

\[
\text{SBSP} = \left\{ \text{SpongeBob, Patrick, Squidward, Gary the Snail, Captain Krabs} \right\} \quad \text{SP} = \left\{ \text{Patrick, Squidward, Gary the Snail, Captain Krabs} \right\}
\]

2.1 (10 pts) How many functions can be defined from SBSP to SP?

2.2 (10 pts) Is there a one-to-one function from SBSP to SP? Explain your answer.

2.3 (10 pts) Is there an onto function from SBSP to SP? Explain your answer.

2.4 (10 pts) In how many ways can you arrange (permute) the characters in SBSP?

2.5 (10 pts) How many relations can be defined between SBSP and SP?

2.6 (10 pts) How many subsets does SBSP have?

2.7 (10 pts) How many subsets of SBSP contain 3 characters? Give your answer as a natural number.

3. (10 pts) Use mathematical induction to prove:

\[
0 + 1 + 2 + 3 + \cdots + (n-1) = \frac{n(n-1)}{2}
\]

4. (10 pts) Use mathematical induction to prove:

\[
1 + 2 + 4 + \cdots + 2^{n-1} = 2^n - 1
\]

Check your answers on page 405.
Back to the notes on page 259.
Quiz(zes) on Orders

Order Basics
1 Prove that divides on the natural numbers is a partial order.
2 Prove that subset on the power set of set is a partial order.
3 All other qualities being equal, would you chose to use a sorting algorithm whose running time behaved like n^2 or one that behaved like $n \lg n$? Explain your answer.

Check your answers on page 408.
Back to the notes on page 267.

Counting orders by their properties
1 How many reflexive relations can be defined on sets with cardinality 2, 8, 10, 16, and n?
2 How many antisymmetric relations can be defined on sets with cardinality 2, 8, 10, 16, and n?

Check your answers on page 408.
Back to the notes on page 271.

Quiz(zes) on Equivalences

Basics about equivalences
1 Let X, Y and V be subsets of a universal set U. Demonstrate the following equivalences by filling in the given truth tables.

1.1 The identity law for intersection: $X \cap U = X$

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \in X$</td>
<td>$x \in U$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1.2 De Morgan’s laws for the set complement of a union: $\neg(X \cup Y) = \neg X \cap \neg Y$

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \in X$</td>
<td>$x \in Y$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
1.3 The Currying law for sets: \((\neg X \cup Y) \cap (X \cup Y) \subseteq (Y \lor Y)\)

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \in X)</td>
<td>(x \in Y)</td>
</tr>
<tr>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>0 1</td>
<td>0 1</td>
</tr>
<tr>
<td>1 0</td>
<td>0 1</td>
</tr>
<tr>
<td>1 1</td>
<td>1 1</td>
</tr>
</tbody>
</table>

2 Consider the set of integers
\[\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \ldots\} \]
and the set of natural numbers
\[\mathbb{N} = \{0, 1, 2, 3, 4, 5, \ldots\} \]

Let \(a, b \in \mathbb{Z}\) and let \(n \in \mathbb{N}\). If \(n\) divides \(a - b\), write
\[a \equiv b \pmod{n} \]
and say \(a\) is congruent to \(b\) modulo \(n\).

3 Show that congruence modulo \(n\) is an equivalence relation.

Check your answers on page 409.
Back to the notes on page 280.

Summative exam #5

1 (10 pts) Show that the function \(t(n) = n(n - 1)/2\) satisfies the recurrence equation and initial condition
\[t_n = t_{n-1} + (n - 1), \quad t_0 = 0 \]

2 (10 pts) Prove that \(t(n) = n \lg n\) satisfies the recurrence
\[t_{2n} = 2t_n + 2n, \quad t_1 = 0, \quad \text{for } n = 1, 2, 4, 8, \ldots \]

3 (35 pts) Consider the divides relation \(a \mid b\) on the set of natural numbers.

3.1 Does 7 divide 38? Explain your answer.
3.2 Is divides reflexive?
3.3 Is divides antisymmetric? Explain your answer.
3.4 Is divides symmetric? Explain your answer.
3.5 Is divides transitive? Explain your answer.
3.6 Is divides an equivalence? Explain your answer.
3.7 Is divides a partial order? Explain your answer.

4 (35 pts) Consider congruence mod m relation $(a \equiv b \pmod{m})$ on the set of integers.

4.1 What does it mean to say that a is congruent to b mod m?

4.2 Is $a \equiv a \pmod{m}$ for every integer a? Explain your answer.

4.3 If $a \equiv b \pmod{m}$ is $b \equiv a \pmod{m}$ for every pair of integers a and b? Explain your answer.

4.4 If $a \equiv b \pmod{m}$ and $b \equiv a \pmod{m}$ does $a = b$ for every pair of integers a and b? Explain your answer.

4.5 If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ is $a \equiv c \pmod{m}$ for every triple of integers a, b and c? Explain your answer.

4.6 Is congruence mod m an equivalence? Explain your answer.

4.7 Is congruence mod m a partial order? Explain your answer.

5 (10 pts) What function $f(n)$ satisfies the recurrence $f_n = 2f_{n-1} + 1$ and initial condition $f_0 = 0$? Listing the first few terms generated by the recurrence should help you identify $f(n)$.

Check your answers on page 410.
Back to the notes on page 289.
Quiz(zes) on Modular Numbers

Basic cryptography concepts

1. Consider the modular recurrence equation

\[r_n = (4r_{n-1} + 2) \mod 7. \]

with seed \(r_0 = 1 \).

1.1 What sequence is generated?

1.2 What is the period of the sequence?

2. Pretend you use a Caesar cipher with shift \(k = 6 \) to send and receive messages.

2.1 What is the encryption of “mrwatsoncomehere?”

2.2 What is decryption of the message “igxvkjoks?”

3. Pretend you use an affine cipher

\[(5x + 7) \mod 26 \]

to send and receive messages. Encrypt the message “soitgoes”

Check your answers on page 414.
Back to the notes on page 293.

Modular arithmetic

1. Verify the following:

1.1 Verify that 2 is the remainder when 37 is divided by 7. Conclude that 37 can be reduced to 2 mod 7: \(37 = 2 \mod 2 \).

1.2 Verify that 5 is the (smallest non-negative) remainder when \(-37\) is divided by 7. Conclude that \(-37\) can be reduced to 5 mod 7.

1.3 Do you see how you can use \(-37 + 37 = 0\) together with \(37 = 2 \mod 7\) to deduce that \(-37 = 5 \mod 7\)?

2. Verify the given value of \(x \) satisfies the linear congruence.

2.1 \(x = 5 \) satisfies \(3x = 1 \mod 7\), that is \(3^{-1} = 5 \mod 7 \).

2.2 \(x = 5 \) satisfies \(5x = 1 \mod 8\), that is \(5^{-1} = 5 \mod 8 \).

Check your answers on page 414.
Back to the notes on page 298.
The Euclidean algorithm and its extension

1 Given the factorization of numbers below, identify their greatest common divisor.

1.1 \(a = 210 = 2 \cdot 3 \cdot 5 \cdot 7 \) and \(m = 495 = 3^2 \cdot 5 \cdot 11 \)
1.2 \(a = 147 = 3 \cdot 7^2 \) and \(m = 392 = 2^3 \cdot 7^2 \)

2 Use the Euclidean algorithm to compute the greatest common divisor of the numbers below. Identify the sequence of quotients and remainders that are generated.

2.1 \(\gcd(m, a) = \gcd(37, 17) \)
2.2 \(\gcd(m, a) = \gcd(165, 42) \)

Check your answers on page 415.
Back to the notes on page 306.

Quiz(zes) on Proofs

Proofs by contradiction

1 Mimic Euclid’s proof that \(\sqrt{2} \) is irrational to show that \(\sqrt{3} \) is irrational.

2 Prove there is no largest composite number.

Check your answers on page 416.
Back to the notes on page 317.

Summative exam #6

1 (12 pts) Consider the modular recurrence equation
\[
r_n = (4r_{n-1} + 2) \mod 9.
\]
with seed \(r_0 = 0 \). What are the values of \(r_1, r_2, \) and \(r_3 \)?

2 (12 pts) Consider \(-37\) divided by \(5\).

2.1 What is the quotient \(q \) and smallest non-negative remainder \(r \)?
2.2 Reduce \(-37 \mod 5\) and \(37 \mod 5\) to modular integers in \(\mathbb{Z}_5\).

3 (10 pts) Verify the following.

3.1 Show that \(x = 4 \) satisfies \(3x = 1 \mod 11 \).
3.2 What is \(3^{-1} \mod 11 \)?

4 (12 pts) Use the Euclidean algorithm to compute the greatest common divisor of 19 and 43.
5 (12 pts) Find parameters s and t such that

$$43s + 19t = \gcd(43, 19)$$

6 (10 pts) Compute the value of x that solves the linear congruence equation

$$19x = 4 \mod 43$$

7 (12 pts) Use a proof by contradiction to show that $\sqrt[3]{2}$, the cube root of 2, is irrational.

8 (10 pts) What function $f(n)$ satisfies the recurrence $f_n = f_{n-1} + (n - 1)$ and initial condition $f_0 = 0$? Listing the first few terms generated by the recurrence should help you identify $f(n)$.

9 (10 pts) Let $\mathcal{X} = \{a, b, c, d\}$.

9.1 Is $\{\{a, b\}, \{c, d\}\}$ a partition of \mathcal{X}? Explain your answer.

9.2 Is $\{\{a, b, c\}, \{c, d\}\}$ a partition of \mathcal{X}? Explain your answer.

Check your answers on page 416.
Back to the notes on page 311.
Keys

Keys to Quiz(zes) on Preliminaries

Preliminary quiz (Key)

1 Evaluate each expression without using a calculator.

 1.1 $\left(\frac{2}{3}\right)^{-2}$

 1.2 $16^{-3/4}$

2 Simplify $3 \cdot 3^{n-1}$.

3 What is the quotient and remainder when 73 is divided by 37?

4 Simplify the algebraic expression

 $$\frac{n(n - 1)}{2} + n$$

5 Simplify the algebraic expression

 $$(2^n - 1) + 2^n$$

6 Compute the roots of the quadratic equation

 $$x^2 - x - 1 = 0$$

7 If $n = \log m$, what is an expression for m itself?

8 Convince me that each equation below is either: always True, always False or sometimes True and sometimes False.

 8.1 $\sqrt{x^2 + y^2} = x + y$.

Test your readiness for this course.

Answer: I can’t give answers because I need to test if you are ready.
8.2 \(\frac{1}{x-1} = \frac{1}{x} - \frac{1}{y} \).

8.3 \(\frac{(n-1)(n-2)(n-3)}{6} + \frac{(n-1)(n-2)}{2} = \frac{n(n-1)(n-2)}{6} \).

Back to the quiz on page 323.
Back to the notes on page 23.

Keys to Quiz(zes) on Computers and Arithmetic

Basic computer concepts (Key)

1 Pretend the memory address register of a computer is 64-bits wide. What is the maximum size of the address space? Approximately how big is this when written in decimal notation?

Answer: The size of the address space is \(2^{64} \approx 10^{19.2} \) about 18 quintillion words. Note the operating system may partition memory restricting addressable memory. Well, at least, that is a goal of security.

2 The Internet Protocol (IP) is used to route traffic on the Internet. IPv6 uses 128-bit (16-byte) addresses.

2.1 What is the size of this address space?

Answer: The Internet space has \(2^{128} \) addresses.

2.2 Approximate your answer in decimal.

Answer:

\[
2^{128} = (2^{10})^{12.8} \approx (10^3)^{12.8} = 10^{38.4}
\]

2.3 I just looked and the world population is 7,318,869,740 (and it grew by 92 as I wrote this). Let’s just say, there are about 7.3 billion people on earth. Are there enough IPv6 addresses for them? For you?

Answer: There are about

\[
\frac{10^{38.4}}{7.3 \times 10^9} = \frac{10^{29.4}}{7.3} \approx 1.37 \times 10^{28.4}
\]

IPv6 addresses per person. That seems like enough for me.

Back to the quiz on page 324.
Back to the notes on page 30.

Basic number concepts (Key)

1 Using 3 digits the largest natural number that can be written is 999 = \(10^3 - 1 \).

Generalize: Using \(n \) digits what is the largest natural number that can be written?

Answer: The largest decimal number that can written using \(n \) digits is \(10^n - 1 \).
2 Using 8 bits the largest natural number that can be written is \((11111111)_2 = 2^8 - 1\).

Generalize: Using \(n\) bits what is the largest natural number that can be written?

Answer: The largest binary number that can written using \(n\) bits is \(2^n - 1\).

3 Generalize: Using an \(m\) numeral alphabet (e.g., \(m = 10\) for decimal/digits, and \(m = 2\) for binary/bits), what is the largest natural number that can be written using \(n\) numerals?

Answer: The largest \(n\) numeral number that can written using an \(m\) numeral alphabet is \(m^n - 1\).

4 Pretend you can use up to 64-bits to write a number.

4.1 What is the largest number that can be written?

Answer: The largest number that can be written is a sequence of 64 bits all set to 1: This represents the decimal number

\[2^{64} - 1 = 18,446,744,073,709,551,615 \approx 1.8 \times 10^{19}\]

4.2 How many different numbers can be written?

Answer: There are

\[2^{64} = 18,446,744,073,709,551,616\]

different numbers that can be written.

Back to the quiz on page 324.
Back to the notes on page 48.

Keys to Quiz(zes) on Logic

Boolean logic basics (Key)

1 Fill in the truth tables: Answer:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Input</th>
<th>Output</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>(\neg P)</td>
<td>(P)</td>
<td>(Q)</td>
<td>(P \land Q)</td>
<td>(P)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Input</th>
<th>Output</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>(Q)</td>
<td>(P \Rightarrow Q)</td>
<td>(P)</td>
<td>(Q)</td>
<td>(P \oplus Q)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
2 Construct a truth table for the Boolean function

\[B(p, q) = p \land (p \Rightarrow q) \]

What is a more simple expression for the function?

Answer: The column in crimson displays the output.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The expression \(p \land (p \Rightarrow q) \) is equivalent (can be reduced) to \(p \land q \).

3 Construct a truth table for the Boolean function

\[B(p, q) = \neg q \land (p \Rightarrow q) \]

What is a more simple expression for the function?

Answer: The column in crimson displays the output.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The function is equivalent (can be reduced) to \(\neg(p \lor q) \equiv \neg p \land \neg q \).

Back to the quiz on page 325.
Back to the notes on page 58.

Boolean functions (Key)

1 How many truth assignments can be made on

1.1 One Boolean variable \(p \)?

Answer: There are \(2 = 2^1 \) truth assignments: False and True.

1.2 Two Boolean variables \(p \) and \(q \)?

Answer: There are \(4 = 2^2 \) truth assignments:

\{False, False\}, \{False, True\}, \{True, False\}, \{True, True\}

1.3 Three Boolean variables \(p \), \(q \) and \(r \)?

Answer: There are \(8 = 2^3 \) truth assignments.
1.4 \textit{n Boolean} variables?

\textbf{Answer:} There are \(2^n\) truth assignments.

2 How many Boolean functions can be defined on

2.1 One Boolean variable \(p\)?

\textbf{Answer:} There are \(4 = 2^2\) Boolean functions

1. \(B(p) = \text{False}\)
2. \(B(p) = \text{True}\)
3. \(B(p) = p\)
4. \(B(p) = \neg p\)

2.2 Two Boolean variables \(p\) and \(q\)?

\textbf{Answer:} There are 16 different Boolean functions (expressions) on two variables.

There are four basic conjunctions: \(p \land q, p \land \neg q, \neg p \land q, \neg p \land \neg q\). They can be \(\lor\)-ed together to create 16 different functions.

1. There are the \(4 = \binom{4}{1}\) basic conjunctions.
2. There are \(6 = \binom{4}{2}\) different ways to \(\lor\) the basic conjunctions together.
 (a) \((p \land q) \lor (p \land \neg q) \mapsto p\)
 (b) \((p \land q) \lor (\neg p \land q) \mapsto q\)
 (c) \((p \land q) \lor (\neg p \land \neg q) \mapsto p \equiv q\)
 (d) \((p \land \neg q) \lor (\neg p \land q) \mapsto p \oplus q\)
 (e) \((p \land \neg q) \lor (\neg p \land \neg q) \mapsto \neg q\)
 (f) \((\neg p \land q) \lor (\neg p \land \neg q) \mapsto \neg p\)

3. There are \(4 = \binom{4}{3}\) different ways to \(\lor\) three of the basic conjunctions together. You can verify these four functions are
 (a) \(\neg p \lor q\), which can be written as \(p \Rightarrow q\)
 (b) \(p \lor \neg q\), which can be written as \(q \Rightarrow p\)
 (c) \(p \lor q\), which can be written as \(\neg p \Rightarrow q\), or its contrapositive \(\neg q \Rightarrow p\)
 (d) \(\neg p \lor \neg q\), which can be written as \(p \Rightarrow \neg q\), or its contrapositive \(q \Rightarrow \neg p\)

4. And, there is \(1 = \binom{4}{4}\) way to \(\lor\) all four of the basic conjunctions together. The result can be reduced to \text{True}.

But this is only \(4 + 6 + 4 + 1 = 15\) different functions (expressions). There were supposed to be 16 expressions! The missing one is \text{False}, which can counted by not selecting any of the basic conjunctions, and there is \(1 = \binom{4}{0}\) way to do this.

2.3 Three Boolean variables \(p, q\) and \(r\)?

\textbf{Answer:} Generalize: There are \(8 = 2^3\) truth assignments on 3 Boolean variables. Each truth assignment can be mapped to one of two values: \text{True} or \text{False}. Therefore, are \(256 = 2^8 = 2^3\) three variable Boolean functions.
2.4 n Boolean variables?

Answer: There are 2^n variable Boolean functions.

3. Given the truth table below, find a Boolean function $B(p, q, r) = y$ that computes it.

<table>
<thead>
<tr>
<th>Row</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0 1 0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0 1 1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1 0 0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1 0 1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1 1 0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1 1 1</td>
<td>1</td>
</tr>
</tbody>
</table>

Answer: Taking the row where the output y is 1 form AND-clauses of the input to make the row True.

$$y = (\neg p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land q \land \neg r) \lor (p \land q \land r)$$

Alternatively, take the row where the output y is 0 form OR-clauses of the input to make the row False.

$$y = (p \lor q \lor r) \land (p \lor q \lor \neg r) \land (p \lor \neg q \lor r) \land (\neg p \lor q \lor r)$$

4. Construct a truth table to prove that

$$[(p \rightarrow q) \land (\neg p \rightarrow r)] \rightarrow (q \lor r)$$

is a tautology: It is known as resolution.

Answer:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p \land q \land r$</td>
<td>$(p \rightarrow q) \land (\neg p \rightarrow r) \Rightarrow (q \lor r)$</td>
</tr>
<tr>
<td>0 0 0</td>
<td>1 0 0 1 0</td>
</tr>
<tr>
<td>0 0 1</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>0 1 0</td>
<td>1 0 0 1 1</td>
</tr>
<tr>
<td>0 1 1</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>1 0 0</td>
<td>0 0 1 1 0</td>
</tr>
<tr>
<td>1 0 1</td>
<td>0 0 1 1 1</td>
</tr>
<tr>
<td>1 1 0</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>1 1 1</td>
<td>1 1 1 1 1</td>
</tr>
</tbody>
</table>

Back to the quiz on page 325.

Back to the notes on page 67.
Keys to Quiz(zes) on Sets

Basics set concepts (Key)

1 Describe the following sets. List a representative sample of elements establishing a pattern. Give a function that computes the elements.

1.1 The set of even integers.

 Answer: The set of even integers is
 \[\{ \ldots, -4, -2, 0, 2, 4, \ldots \} \]

 Common names for the even integers are \(2\mathbb{Z}, [0]_2 \) or \(0 \pmod{2} \). The function that computes the elements is
 \[f : \mathbb{Z} \to \mathbb{Z} \quad \text{where} \quad f(n) = 2n. \]

1.2 The set of odd integers.

 Answer: The set of odd integers is
 \[\{ \ldots, -5, -3, -1, 1, 3, 5, \ldots \} \]

 Common names for the odd integers are \([1]_2 \) or \(1 \pmod{2} \). The function that computes the elements is
 \[f : \mathbb{Z} \to \mathbb{Z} \quad \text{where} \quad f(n) = 2n + 1. \]

1.3 The set of integers that have a remainder of 2 when divided by 3.

 Answer: The remainder 2 on divide by 3 set is
 \[\{ \ldots, -7, -4, -1, 2, 5, 8, \ldots \} \]

 Common names for these integers are \([2]_3 \) and \(2 \pmod{3} \). The function that computes the elements is
 \[f : \mathbb{Z} \to \mathbb{Z} \quad \text{where} \quad f(n) = 3n + 2. \]

2 Both \(\emptyset \) and \{ \} are used to denote the empty set.

2.1 Is \(\emptyset = \{\emptyset\} \)? That is, using the alternate notation, is \(\{\} = \{\{}\} \)?

 Answer: No, the empty set is not the same as the set containing the empty set.

2.2 Is \(\emptyset \in \{\emptyset\} \)?

 Answer: Yes, the empty set is a member of the set containing the empty set.

2.3 Is \(\emptyset \in \emptyset \)?

 Answer: No, the empty set is not a member of itself.
2.4 Is $\emptyset \subseteq \emptyset$?

Answer: Yes, every element in the empty set is a member of the empty set: The statement $x \in \emptyset \Rightarrow x \in \emptyset$ is True because the assumption $x \in \emptyset$ is False.

3 Let \mathbb{S} be the set of students in a class. Let \mathbb{F} and \mathbb{M} be the subsets of female and male students. Are the following statements True or False? Explain your answer.

3.1 $\mathbb{M} \in \mathbb{S}$

Answer: False, the symbol \in means “is a member of.” \mathbb{M} is subset of \mathbb{S} ($\mathbb{M} \subseteq \mathbb{S}$), but it is not an element of \mathbb{S}.

3.2 $\mathbb{S} \subseteq \mathbb{M}$

Answer: In general this would be False. It would only be True if there were no female students in the class.

3.3 $\mathbb{F} \subseteq \mathbb{S}$

Answer: This is True: every female student is a student.

3.4 $\mathbb{F} \cap \mathbb{M} = \{\emptyset\}$

Answer: False, the intersection is \emptyset, not the set containing the empty set.

3.5 \mathbb{F} and \mathbb{M} partition \mathbb{S}

Answer: A partition cuts \mathbb{S} up into disjoint subsets that cover \mathbb{S}. Assigning gender is a biological/medical decision. Under the common interpretation female/male would partition the set of students.

Back to the quiz on page 326.
Back to the notes on page 74.

Set operations (Key)

1 Using the three sets

$$\mathbb{X} = \{1, 2, 3, 4, 5\} \quad \mathbb{Y} = \{0, 2, 4, 6, 8\} \quad \mathbb{V} = \{0, 3, 5, 7, 9\}$$

over the universe of digits $\mathbb{U} = \mathbb{D} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, compute the following:

1.1 $\mathbb{X} \cup \mathbb{Y}$

Answer: $\mathbb{X} \cup \mathbb{Y} = \{0, 1, 2, 3, 4, 5, 6, 8\}$

1.2 $\mathbb{X} \cap \neg \mathbb{V}$

Answer: $\mathbb{X} \cap \neg \mathbb{V} = \{1, 2, 4\}$

1.3 $(\mathbb{X} \cup \mathbb{Y}) \cap \mathbb{V}$

Answer: $(\mathbb{X} \cup \mathbb{Y}) \cap \mathbb{V} = \{0, 3, 5\}$

1.4 $\mathbb{X} \cup (\mathbb{Y} \cap \mathbb{V})$

Answer: $\mathbb{X} \cup (\mathbb{Y} \cap \mathbb{V}) = \{0, 1, 2, 3, 4, 5\}$
1.5 Is \((X \cup Y) \cap V = X \cup (Y \cap V)\)

\textbf{Answer:} Well no, as you see if you computed the two expressions correctly. The upshot is: The order in which set operations matters, just as the order of addition and multiplication matters in arithmetic.

1.6 \(\neg(X \cup Y) \cap V\)

\textbf{Answer:} \(\neg(X \cup Y) \cap V = \{7, 9\}\)

1.7 \((\neg X \cap \neg Y) \cap V\)

\textbf{Answer:} \((\neg X \cap \neg Y) \cap V = \{7, 9\}\)

1.8 Is \(\neg(X \cup Y) \cap V = (\neg X \cap \neg Y) \cap V\)

\textbf{Answer:} Well yes, this is an application of De Morgan’s laws.

Back to the quiz on page 327.
Back to the notes on page 76.
Venn diagrams (Key)

1 Shade the Venn diagram to indicate the given region.

1.1 $X \cap \neg Y$.
Answer:

1.2 $X \cup \neg Y$.
Answer:

1.3 $X \cap Y \cap V$.
Answer:

1.4 $\neg X \cap Y \cap V$.
Answer:

1.5 $(\neg X \cap \neg Y) \cup \neg V$.
Answer:

1.6 $\neg X \cap (\neg Y \cup \neg V)$.
Answer:

Back to the quiz on page 328.
Back to the notes on page 80.

Keys to Quiz(zes) on Predicates

Basic predicate logic (Key)

1 Let $\mathbb{P} = \{2, 3, 5, 7, 11, 13, 17, 19, \ldots\}$ be the set of prime numbers. Let $p, q \in \mathbb{P}$ be prime numbers.

1.1 Is the predicate $p < q$ True or False or undecidable?
Answer: The inequality is undecidable: Without known values for p and q, you cannot decide if the predicate is True or False.

1.2 Is the quantified expression below True or false?
For every prime p there is a larger prime q. Or, the prime numbers are unbounded.
1.3 Negate the expression in problem (1.2).

 Answer: There is largest prime number. There does exist a prime \(q \) that is larger than every other prime number \(p \).

1.4 Is the quantified expression below True or false? There is a prime \(q \) that larger than every other prime number.

 Answer: This is False. Euclid’s Elements contains a proof that there the primes are unbounded. The proof is by contradiction. The assumption that the primes are finite leads to a falsehood.

1.5 What does the expression in problem (1.4) mean?

 Answer: The expression says there is some prime \(q \) that is larger than every other prime number \(p \).

1.6 Negate the expression in problem (1.4).

 Answer:

 \[
 (\forall q \in \mathbb{P})(\exists p \in \mathbb{P})(p > q)
 \]
Explain your answer.

Answer: The statement is False. It demands a fixed x that makes $x + y = 1$ for every y. But, $x = 1 - y$ is not fixed, it changes for every y. Notice the similarity of equations 30 and 31. Apparently, \forall and \exists do not commute.

4 Now, let’s restrict x and y be natural numbers ($x, y \in \mathbb{N}$).

4.1 Is the statement: “There is an x such that $x + y = 1$” True or False or undecidable? Written mathematically,

\[(\exists x \in \mathbb{N})(x + y = 1)\] (32)

Answer: The statement is only True for $y = 0$ and $y = 1$. In these case, $x = 1 - y$ is also a natural number. The statement is False for all other values of y. Without knowing the value of y the statement is undecidable.

4.2 Is the statement: “There is an x such that for every y, $x + y = 1$” True or False or undecidable? Written mathematically,

\[(\exists x \in \mathbb{N})(\forall y \in \mathbb{N})(x + y = 1)\] (33)

Answer: The statement is False. There is no single fixed natural number x such that $x + y = 1$ for every natural number y.

Back to the quiz on page 329.
Back to the notes on page 92.
Summative exam #1 (Key)

1 (10 pts) Fill in the truth table for De Morgan’s first law: If p and q are not both True, then one of p or q is False. Conversely, if one of p or q is False, then not both of them are True.

\[\neg(p \land q) \equiv \neg p \lor \neg q \]

<table>
<thead>
<tr>
<th>Input Computations</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

2 (10 pts) Construct a truth table for the Boolean expression.

\[[(p \rightarrow q) \land (\neg p \rightarrow r)] \rightarrow (q \lor r) \]

Answer:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

3 (10 pts) Given the truth table below, find a Boolean expression that computes it.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>
Answer: Taking the row where the output \(D \) is 1. Form an AND-clauses of the input to make the row True. Form the OR of these clauses.

\[
D = \left(\neg A \land B \land c \right) \lor \left(A \land \neg B \land c \right) \lor \left(A \land B \land \neg c \right) \lor \left(A \land B \land c \right)
\]

Alternatively, take the row where the output \(D \) is 0. Form an OR-clauses of the input to make the row False. Form the AND of these clauses.

\[
D = \left(A \lor B \lor c \right) \land \left(A \lor B \lor \neg c \right) \land \left(A \lor \neg B \lor c \right) \land \left(\neg A \lor B \lor c \right)
\]

4 (10 pts) The Internet Protocol (IP) is used to route traffic on the Internet. IPv6 uses 128-bits (16-bytes) to name addresses. What is the size of Internet version 6 space?

Answer: Internet version 6 space has \(2^{128} = 16^{16} \) addresses. A simple approximation gives

\[
2^{128} = \left(2^{10} \right)^{12.8} \\
\approx \left(10^3 \right)^{12.8} \\
= 10^{38.4}
\]

SI (International System of Units) prefixes go up to yotta: \(10^{24} \). So there are about one hecto-tera-yotta-addresses \(10^{38} \) in IPv6 space.

5 (10 pts) Using \(n \) digits what is the largest natural number that can be written? Using \(n \) bits what is the largest natural number that can be written?

Answer: The largest decimal number that can written using \(n \) digits is \(10^n - 1 \). The largest binary number that can written using \(n \) bits is \(2^n - 1 \).

6 (10 pts) How many bits does it take to write the number 73? How many bits does it take to write the number \(n \)?

Answer: 73 can be written in 7 bits. Note that repeated division (quotients and remainders) is a simple way to compute a number’s binary representation. For instance,

<table>
<thead>
<tr>
<th>Quotients</th>
<th>73</th>
<th>36</th>
<th>18</th>
<th>9</th>
<th>4</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remainders</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Therefore \(73 = (1001001)_2 \).
In general, any number \(n \geq 1 \) can be bound below and above by powers of 2
\[
2^k \leq n < 2^{k+1} \quad \text{for some } k \geq 0.
\]
In this case, it will require \(k + 1 \) bits to write \(n \). Using the inequalities above, and taking the log base 2 of each term, deduce that
\[
k \leq \lg n < k + 1
\]
Take the floor of \(\lg n \) to get \(k \) and add 1 to get \(k + 1 \), the number of bits needed to write \(n \).
\[
\lfloor \lg n \rfloor + 1 = \text{number of bits to write } n.
\]

7 (30 pts) Let \(n, m \in \mathbb{N} \) be natural numbers. Write the following statements using mathematical notation.

7.1 There is an \(n \in \mathbb{N} \) such that \(m = n/2 \).
Answer: \[(\exists n \in \mathbb{N})(m = n/2)\]

7.2 For all \(m \in \mathbb{N} \), there is an \(n \in \mathbb{N} \) such that \(n/2 = m \).
Answer: \[(\forall m \in \mathbb{N})(\exists n \in \mathbb{N})(m = n/2)\]

7.3 There is an \(n \in \mathbb{N} \) such that for all \(m \in \mathbb{N} \), \(m = n/2 \).
Answer: \[(\exists n \in \mathbb{N})(\forall m \in \mathbb{N})(m = n/2)\]

Which of these three statements are True, False, or undecidable.
Answer:

7.1 Question (7.1) is True: \(n = 2m \) is a natural number if \(m \) is and \(m = n/2 \).

7.2 Question (7.2) is True: Since there were no restrictions on \(m \) in the previous answer, the argument applies to all \(m \).

7.3 Question (7.3) is False: It says there is some fixed natural number \(n \) such that every other natural number is twice \(n \) (\(m = 2n \)).

8 (10 pts) Okay, I have to know, who can solve my favorite quadratic equation?
\[
x^2 - x - 1 = 0
\]
The roots are interesting numbers, for 10 extra points, tell me about the roots.

Back to the quiz on page 330.
Back to the notes on page 100.
Keys to Quiz(zes) on Functions

Function Basics (Key)

Answer:

1 Write, in English, an explanation of what it means to say: \(f : \mathbb{X} \to \mathbb{Y} \) is a function from \(\mathbb{X} \) to \(\mathbb{Y} \).

\[\text{Answer: In English you could say:} \]

- “\(f \) maps each \(x \) in \(\mathbb{X} \) to one and only one \(y \) in \(\mathbb{Y} \).”
- “\(f \) describes how each \(x \) in \(\mathbb{X} \) is assigned to one and only one \(y \) in \(\mathbb{Y} \).”
- “\(f \) assigns, by some rule, each element \(x \) in the domain \(\mathbb{X} \) to a single value \(y \) co-domain \(\mathbb{Y} \).”

This is the concept of a total function. There is also the idea of a partial function, where some elements \(x \) in \(\mathbb{X} \) may not be mapped to an element \(y \in \mathbb{Y} \).

2 Use predicate logic to write what it means to say: \(f : \mathbb{X} \to \mathbb{Y} \) is a function from \(\mathbb{X} \) to \(\mathbb{Y} \).

\[\text{Answer: It is simple to say } f(x) = y. \text{ The trick is to restrict } y \text{ to only one value. You can do this by saying: If } x \text{ mapped to two (or more values) of } y, \text{ then the } y \text{'s are in fact equal.} \]

\[(\forall x \in \mathbb{X})(\forall y_0, y_1 \in \mathbb{Y})(f(x) = y_0) \land (f(x) = y_1) \Rightarrow (y_0 = y_1) \]

This is the concept of a total function. There is also the concept of a partial function. Such a function may not be defined on every element in the domain \(\mathbb{X} \).

\[(\exists x \in \mathbb{X})(\forall y_0, y_1 \in \mathbb{Y})(f(x) = y_0) \land (f(x) = y_1) \Rightarrow (y_0 = y_1) \]

3 Write, in English and in predicate logic, statements that describe what it means to say: \(f : \mathbb{X} \to \mathbb{Y} \) is an onto function from \(\mathbb{X} \) to \(\mathbb{Y} \).

\[\text{Answer: In English, some elocutions are:} \]

- “\(f \) is a function and for each \(y \) in \(\mathbb{Y} \) to an \(x \) in \(\mathbb{X} \) such that \(f(x) = y \).”
- “\(f \) is a function and every \(y \) in \(\mathbb{Y} \) is mapped by \(f \) to by some \(x \) in \(\mathbb{X} \).”
- “\(f \) is a function and the range of \(f \) is the co-domain \(\mathbb{Y} \).”

In predicate logic you could write

\[(\forall y \in \mathbb{Y})(\exists x \in \mathbb{X})(f(x) = y) \]

This assumes, by context, that \(f \) is known to be a function.
Write explanations in **English** and *predicate logic* of what it means to say $f : \mathcal{X} \rightarrow \mathcal{Y}$ is a **one-to-one** function.

Answer: In English: f is a function and each y in \mathcal{Y} is the image of at most one x in \mathcal{X}. Or, different input map to different output.

$$(\forall u, v \in \mathcal{X})((u \neq v) \Rightarrow (f(u) \neq f(v)))$$

Do you know your **conic sections**? Which conics define functions from \mathcal{X} to \mathcal{Y}?

5.1 **The parabola:** $ax^2 + y = 0$
Answer: This parabolic curve is a function from \mathcal{X} to \mathcal{Y}. Each x maps to one and only one $y = -ax^2$.

5.2 **The ellipse:** $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$
Answer: This elliptical curve is not a function from \mathcal{X} to \mathcal{Y}. For instance, when $x = 0$, the value of y can be b or $-b$. A function from \mathcal{X} to \mathcal{Y} maps each x to one and only one y.

5.3 **The hyperbola:** $\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = 1$
Answer: This hyperbolic curve is not a function from \mathcal{X} to \mathcal{Y}. For instance, when $x = \sqrt{2}a$, the value of y can be b or $-b$. A function from \mathcal{X} to \mathcal{Y} maps each x to one and only one y.

Back to the quiz on page 332.
Back to the notes on page 104.

The Pigeonhole Principle (Key)

1. Suppose there are twelve people who must do 25 jobs.

1.1 **Is it possible to define an onto function that maps people to jobs?** If so, explain how.
Answer: It is *not* possible to define an onto function. Each person would have to do two or more jobs and that is not a function. A function from people to jobs would leave some jobs undone.

1.2 **Is it possible to define an onto function from jobs to people?** If so, explain how.
Answer: It is possible to define an onto function from jobs to people. Some people will have more than one job. Someone would need to have at least 3 jobs: If everyone did 2 or fewer jobs, at most 24 jobs would be done.

1.3 **Is it possible to define a one-to-one function from people to jobs?** If so, explain how.
Answer: Well, yes it is possible, but not all jobs would be covered.

1.4 **Is it possible to define a one-to-one function from jobs to people?** If so, explain how.
Answer: No it is *not* possible. Some person would have to be assigned more than one job.
2 A bridge hand is 13 cards from a standard deck of 52 cards.

2.1 Why must there be at least 4 cards of some suit in a bridge hand?
Answer: If there were only 3 or less cards of every suit, then there would be no more than 12 cards in the hand.

2.2 Why is there some suit with only 3 cards in a bridge hand?
Answer: If there were 4 or more cards of every suit, then there would be more than 16 cards in the hand.

Back to the quiz on page 332.
Back to the notes on page 111.

Examples Functions (Key)

1 Draw a graph of the following polynomial functions.

Answer:

- \(y = 4 \)
- \(y = 4x - 3 \)
- \(y = x^2 - x - 1 \)

2 Compute the following values.

2.1 \(\log(\sqrt[3]{16}) \)

Answer: \(\log(\sqrt[3]{16}) = 4/3 \) because \(2^{4/3} = \sqrt[3]{16} \).

2.2 \(\log(\sqrt[5]{8}) \)

Answer: \(\log(\sqrt[5]{8}) = 3/5 \) because \(2^{3/5} = \sqrt[5]{8} \).

2.3 \(\log \sqrt[3]{32} \)

Answer: The logarithm base 2 of the cube root of 32 is \(5/3 \) because \(2^{5/3} = \sqrt[3]{32} \).

2.4 \(\log_{16} \sqrt[3]{32} \)

Answer: The logarithm base 16 of the cube root of 32 is \(5/12 \). Note that
\[
\log_{16} \sqrt[3]{32} = \frac{1}{3} \log_{16} 32 = \frac{1}{3} \cdot \frac{5}{4} = \frac{5}{12}
\]

2.5 \(\log(2^n! \)

Answer: \(\log(2^n! \) = \(n! \)

Answer:

3 Draw a graph of the following logarithms or exponential functions.

3.1 \(y = 2^x \)

3.2 \(y = \log x \)
4. Identify which of the following is a permutation of the digits
\[\mathcal{D} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \]

For those that are, describe them using cycle notation.

4.1 \(\langle 3, 4, 5, 9, 8, 7 \rangle\)

Answer: This is not a permutation of the digits because it is not onto \(\mathcal{D}\).

4.2 \(\langle 5, 4, 3, 2, 1, 0, 6, 7, 9, 8 \rangle\)

Answer: This is a permutation of the digits. It is a one-to-one and onto function. In cycle notation it is
\[[1, 4][2, 3][5, 0][6][7][8, 9] \]

4.3 \(\langle 5, 5, 4, 3, 1, 1, 0, 6, 7, 8, 9 \rangle\)

Answer: This is not a permutation because 1 is repeated twice.

Back to the quiz on page 332.
Back to the notes on page 119.

Keys to Quiz(zes) on Horner’s Rule

Horner’s rule (Key)

1. Use Horner’s rule to evaluate the polynomials at the indicated value of \(x\).

How many multiplications and additions were required in each case?

1.1 \(p(x) = -7x^2 + 28x + 7\) at \(x = 3\).

Answer:

\[
\begin{array}{c|c|c}
 & -7 & 28 \\
- & -21 & 21 \\
\hline
 & -7 & 7 & 28 \\
\end{array}
\]

Therefore \(p(3) = 28\). The computation used 2 multiplies and 2 additions.

1.2 \(p(x) = 4x^4 + 5x^3 - 3x + 2\) at \(x = 2\).

Answer:

\[
\begin{array}{c|c|c|c|c}
 & 4 & 0 & 5 & -3 \\
 & 8 & 16 & 42 & 78 \\
\hline
 & 4 & 8 & 21 & 39 & 80 \\
\end{array}
\]

Therefore \(p(2) = 80\). The computation used 4 multiplies and 4 additions.
1.3 $p(x) = 3x^5 - x^3 + 4x^2 + x + 1$ at $x = -2$.

Answer:

<table>
<thead>
<tr>
<th>Horner’s Rule @ $x = -2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 0 -1 4 1 1</td>
</tr>
<tr>
<td>-6 12 -22 36 -74</td>
</tr>
<tr>
<td>3 -6 11 -18 37 -73</td>
</tr>
</tbody>
</table>

Therefore $p(-2) = -73$. The computation used 5 multiplies and 5 additions.

2 How many multiplies and additions does Horner’s rule make when evaluating a polynomial of degree $n - 1$?

Answer: The computation will require $n - 1$ multiplies and $n - 1$ additions.

Back to the quiz on page 333.
Back to the notes on page 130.

Horner’s rule for conversion to decimal (Key)

Use Horner’s rule to convert the following natural numbers (unsigned integers) into decimal notation.

1 $(00001001)_2$

Answer:

<table>
<thead>
<tr>
<th>Horner’s Rule @ $x = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 1 0 0 1</td>
</tr>
<tr>
<td>0 0 0 0 2 4 8</td>
</tr>
<tr>
<td>0 0 0 0 1 2 4 9</td>
</tr>
</tbody>
</table>

∴ $(00001001)_2 = (9)_{10}$.

2 $(11111111)_2$

Answer:

<table>
<thead>
<tr>
<th>Horner’s Rule @ $x = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>2 6 14 30 62 126 254</td>
</tr>
<tr>
<td>1 3 7 15 31 63 127 255</td>
</tr>
</tbody>
</table>

∴ $(11111111)_2 = (255)_{10}$.
3 \((0100\ 1100)_2\)
Answer:

Horner's Rule @ \(x = 2\)

\[
\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 2 & 4 & 8 & 18 & 38 & 76 \\
0 & 1 & 2 & 4 & 9 & 19 & 38 & 76 \\
\end{array}
\]

\[
\therefore (0100\ 1100)_2 = (76)_{10}.
\]

4 \((747)_8\)
Answer:

Horner's Rule @ \(x = 8\)

\[
\begin{array}{cccc}
7 & 4 & 7 \\
56 & 480 \\
7 & 60 & 487 \\
\end{array}
\]

\[
\therefore (747)_8 = (487)_{10}.
\]

5 \((123)_4\)
Answer:

Horner's Rule @ \(x = 4\)

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 24 \\
1 & 6 & 27 \\
\end{array}
\]

\[
\therefore (123)_4 = (27)_{10}.
\]

6 \((BAD)_{16}\)
Answer:

Horner's Rule @ \(x = 16\)

\[
\begin{array}{cccc}
11 & 10 & 13 \\
176 & 2976 \\
11 & 186 & 2989 \\
\end{array}
\]

\[
\therefore (BAD)_{16} = (2989)_{10}.
\]

Back to the quiz on page 333.
Back to the notes on page 133.
Remaindering to convert from decimal to another base (Key)

1. Use repeated remaindering to convert the following decimal numbers to their representation in the indicated base.

1.1 Convert 76 to binary:
 Answer: Quotients and remainders in the table below are computed from right-to-left.

<table>
<thead>
<tr>
<th>Quotients</th>
<th>76</th>
<th>38</th>
<th>19</th>
<th>9</th>
<th>4</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remainders</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

 \[76 = (1001100)_2\]

1.2 Convert 137 to binary:
 Answer:

<table>
<thead>
<tr>
<th>Quotients</th>
<th>137</th>
<th>68</th>
<th>34</th>
<th>17</th>
<th>8</th>
<th>4</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remainders</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

 \[137 = (10001001)_2\]

1.3 Convert 177 to octal:
 Answer:

<table>
<thead>
<tr>
<th>Quotients</th>
<th>177</th>
<th>22</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remainders</td>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

 \[177 = (261)_8\]

2. Conversion between binary, octal, and hexadecimal can be done by grouping or ungrouping bits.

2.1 Group the bits you computed in question (1.1) and (1.2) three at a time to write 76 and 137 in octal.
 Answer: For 76 write
 \[\text{(1 001 100)}_2 = (114)_8\]

 For 137 write
 \[\text{(10 001 001)}_2 = (211)_8\]
2.2 Group the bits you computed in question (1.1) and (1.2) four at a time to write 76 and 137 in hexadecimal.

Answer: For 76 write
\[(1001100)_2 = (4C)_{16}\]

For 137 write
\[(10001001)_2 = (89)_{16}\]

Keys to Quiz(zes) on Sequences

Sequence basics (Key)

1 What is the sum of the first \(n\) terms of the Alice sequence? How are the sequence of these sums related to the Gauss sequence?

Answer: The sum of \(n\) 1’s is \(n\). The sequence of sums of \(n\) terms from the Alice sequence is the Gauss sequence.

\[
\begin{align*}
0 &= \text{sum of no} \ (n=0) \text{ term} \\
1 &= \text{sum of one} \ (n=1) \text{ term} \\
1 + 1 &= \text{sum of two} \ (n=2) \text{ terms} \\
1 + 1 + 1 &= \text{sum of three} \ (n=3) \text{ terms} \\
1 + 1 + 1 + \cdots + 1 &= n \text{ where there are } n \text{ terms in the sum.}
\end{align*}
\]

2 What is the sum of the first \(n\) terms of the Gauss sequence? How are the sequence of these sums related to the Triangular sequence?

Answer: The sum \(0 + 1 + 2 + \cdots + (n-1)\) is \(n(n−1)/2\). The sequence of sums of \(n\) terms from the Alice sequence is the Gauss sequence.

\[
\begin{align*}
0 &= \frac{0(0-1)}{2} \quad \text{sum of no} \ (n=0) \text{ terms} \\
0 &= \frac{1(1-1)}{2} \quad \text{sum of one} \ (n=1) \text{ term} \\
0 + 1 &= \frac{2(2-1)}{2} \quad \text{sum of two} \ (n=2) \text{ terms} \\
0 + 1 + 2 &= \frac{3(3-1)}{2} \quad \text{sum of three} \ (n=3) \text{ terms} \\
0 + 1 + 2 + 3 &= \frac{4(4-1)}{2} \quad \text{sum of three} \ (n=4) \text{ terms} \\
0 + 1 + 2 + \cdots + (n-1) &= \frac{n(n−1)}{2} \quad \text{sum of } n \text{ terms}
\end{align*}
\]
3 Consider the sequence of even natural numbers
\(\langle 0, 2, 4, 6, 8, \ldots \rangle\)

3.1 What function \(e(n)\) maps the natural numbers to the even natural numbers?
Answer: The function is \(e(n) = 2n\).

3.2 What is the recursive-initial value form for the even natural numbers?
Answer: The recursion and initial condition is
\[e_n = e_{n-1} + 2, \quad e_0 = 0\]

4 Consider the sequence of natural numbers that have a remainder of 1 when divided by 3
\(\langle 1, 4, 7, 10, 13, \ldots \rangle\)

4.1 What function maps the natural numbers to these numbers?
Answer: The function is \(f(n) = 3n + 1\).

4.2 What is the recursive-initial value form for these numbers?
Answer: The recursion and initial condition is
\[f_n = f_{n-1} + 3, \quad f_0 = 1\]

5 The half-life sequence is the decreasing sequence
\(\left\langle 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \right\rangle\)

5.1 What function maps the natural numbers to these numbers?
Answer: The function is \(d(n) = (1/2)^n\).

5.2 What is the recursive-initial value form for these numbers?
Answer: The recursion and initial condition is
\[d_n = \frac{d_{n-1}}{2}, \quad d_0 = 1\]
Differences (Key)

1 Given the sequences below, what is the function for a term in the sequence and what function computes the difference of the sequence?

1.1 The quadratic sequence

\[\vec{R} = \langle 0, 1, 4, 9, 16, \ldots \rangle \]

Answer: The general term is given by \(q(n) = n^2 \). The function for the difference is

\[\triangle n^2 = (n + 1)^2 - n^2 = 2n + 1 \]

1.2 The cubic sequence

\[\vec{R} = \langle 0, 1, 8, 27, 64, \ldots \rangle \]

Answer: The general term is given by \(c(n) = n^3 \). The function for the difference is

\[\triangle n^3 = (n + 1)^3 - n^3 = 3n^2 + 3n + 1 \]

1.3 The ratio sequence

\[\vec{R} = \langle 1, r, r^2, r^3, \ldots \rangle \]

Answer: The general term is given by \(r(n) = r^n \). The function for the difference is

\[\triangle r^n = r^{n+1} - r^n = r^n(r - 1) \]

1.4 The logarithm sequence

\[\vec{L} = \langle \lg 1, \lg 2, \lg 3, \lg 4, \lg 5, \ldots \rangle \]

Answer: The general term is given by \(l(n) = \lg n \). The function for the difference is

\[\triangle \lg n = \lg n + 1 - \lg n = \lg \left(\frac{n + 1}{n} \right) \]

1.5 The sine sequence

\[\vec{S} = \langle \sin 0, \sin 1, \sin 2, \sin 3, \sin 4, \ldots \rangle \]

Answer: The general term is given by \(s(n) = \sin n \). The function for the difference is

\[\triangle \sin n = \sin (n + 1) - \sin n = 2 \sin \left(\frac{1}{2} \right) \cos \left(n + \frac{1}{2} \right) \]

You will not be held responsible for trigonometric functions, but you may need to use them in other classes.

Back to the quiz on page 335.
Back to the notes on page 145.
Sums (Key)

1. Consider the general sum
\[\sum_{k=0}^{n-1} t_k \]

1.1 What is the lower limit?
Answer: The lower limit on the sum is \(k = 0 \).

1.2 What is the upper limit?
Answer: The upper limit on the sum is \(k = n - 1 \).

1.3 What terms are being summed?
Answer: The terms in the sum are \(t_0, t_1, t_2, \ldots, t_{n-1} \).

2. What are the functions that compute the following sums?

2.1 The sum of terms in the Alice sequence
\[\sum_{k=0}^{n-1} 1 \]

Note that \(1 = (k + 1) - k \).
Answer: The sum is equal to \(n \). These are the terms in the Gauss sequence: \(\langle 0, 1, 2, 3, \ldots, n, \ldots \rangle \).

2.2 The sum of terms in the Gauss sequence
\[\sum_{k=0}^{n-1} k \]

Note that \(k = \lfloor (k + 1)k - k(k - 1) \rfloor / 2 \).
Answer: The sum is equal to \(n(n - 1)/2 \). These are the terms in the Triangular sequence: \(\langle 0, 0, 1, 3, \ldots, n(n-1)/2, \ldots \rangle \).

2.3 The sum of terms in the Doubling sequence
\[\sum_{k=0}^{n-1} 2^k \]

Note that \(2^k = 2^{k+1} - 2^k \).
Answer: The sum is equal to \(n(n - 1)/2 \). These are the terms in the Triangular sequence: \(\langle 0, 0, 1, 3, \ldots, n(n-1)/2, \ldots \rangle \).

Fundamental Theorem (Key)

1. Use the fact that
\[\Delta x^{m+1} = (m + 1)x^m \]

Recall from the notes on Horner’s rule
falling factorial powers are defined by
\[x^m = x(x - 1)(x - 2) \cdots (x - m + 1) \]
and it was shown that
\[\Delta x^m = m x^{m-1} \]
and the fundamental theorem of the sum & difference calculus to find a simple formula for

\[n-1 \sum_{k=0}^{m} k^m \]

Answer: You have

\[n-1 \sum_{k=0}^{m} k^m = n-1 \sum_{k=0}^{m} \frac{\Delta k^{m+1}}{m+1} \]

\[= \frac{n^{m+1}}{m+1} \triangle k^m \]

\[= \frac{n^{m+1}}{m+1} \]

2. What is a simple formula for the sum

\[\sum_{k=1}^{n} \log \left(\frac{k+1}{k} \right) \]

Answer: Since the log of a quotient is the difference of logs you can write

\[\sum_{k=1}^{n} \log \left(\frac{k+1}{k} \right) = \sum_{k=1}^{n} (\log (k+1) - \log k) \]

which is equal to

\[(\log 2-\log 1)+(\log 3-\log 2) + (\log 4-\log 3) + \cdots + (\log n-\log (n-1)) + (\log (n+1)-\log n) \]

and this sum telescopes to

\[\log (n+1) - \log 1 = \log (n+1) \]

Sums of ordinary powers are more complex.

\[\sum_{k=0}^{n-1} k^n = n \]

\[\sum_{k=0}^{n-1} k^3 = \frac{1}{2} n^2 - \frac{1}{2} n \]

\[\sum_{k=0}^{n-1} k^4 = \frac{1}{3} (n-1)^3 - \frac{2}{2} (n-1)^2 + \frac{1}{6} (n-1) \]

and lead to the study of Bernoulli numbers.

Back to the quiz on page 336.
Back to the notes on page 148.
Summative exam #2 (Key)

1 (10 pts) Write an English statement to explain that \(f : X \rightarrow Y \) is an onto function. Using the notation of predicate logic, write the definition that \(f : X \rightarrow Y \) is an onto function from \(X \) to \(Y \).

Answer: \(f \) is a function and for each \(y \) in \(Y \) there is an \(x \) in \(X \) that \(f \) maps to \(y \).

\[(\forall y \in Y)(\exists x \in X)(f(x) = y) \]

2 (20 pts) By drawing arrows from points in \(X \) to points in \(Y \) show how to construct examples of the following types, or explain why no such example can be drawn.

2.1 Draw a picture of a graph that is not a function.

Answer: Here is one solution: The top \(x \) value maps to two different \(y \)'s.

\[X \quad \quad \quad Y \]

2.2 Draw a picture of a function that is onto.

Answer: You cannot draw an onto function in this case. Since there are 5 \(y \)'s and only 4 \(x \)'s, some \(y \) will not be the image of any \(x \).

\[X \quad \quad \quad Y \]

2.3 Draw a picture of a function that is onto.

Answer: Here is one solution:

\[X \quad \quad \quad Y \]

2.4 Draw a picture of a function that is one-to-one.

Answer: You cannot draw a one-to-one function in this case. Each \(x \) maps to some \(y \). Since there are 4 \(x \)'s and only 3 \(y \)'s, some \(y \) will have 2 or more \(x \)'s that map to it.

\[X \quad \quad \quad Y \]

3 (10 pts) Use Horner’s rule to evaluate the polynomial

\[p(x) = 3x^5 - 20x^3 - 60x - 7 \]
and \(x = 3 \).

Answer:

<table>
<thead>
<tr>
<th>Horner’s Rule @ (x = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 0 -20 0 -60 -7</td>
</tr>
<tr>
<td>9 27 21 63 9</td>
</tr>
<tr>
<td>3 9 7 21 3 2</td>
</tr>
</tbody>
</table>

\(\therefore p(3) = 2 \)

4. (10 pts) Use Horner’s rule to convert the binary number \((11101101)_2\) to decimal notation.

Answer:

<table>
<thead>
<tr>
<th>Horner’s Rule @ (x = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 1 0 1</td>
</tr>
<tr>
<td>2 6 14 28 58 118 236</td>
</tr>
<tr>
<td>1 3 7 14 29 59 118 237</td>
</tr>
</tbody>
</table>

\(\therefore (11101101)_2 = (237)_{10} \)

5. (10 pts) Use repeated remaindering to convert the decimal number \((87)_{10}\) to binary notation.

Answer:

<table>
<thead>
<tr>
<th>Repeated Remaindering mod 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quotients</td>
</tr>
<tr>
<td>Remainders</td>
</tr>
</tbody>
</table>

\(\therefore (87)_{10} = (1010111)_2 \)

6. (10 pts) What decimal numbers do the hexadecimal numbers \(A, B, C, D, E,\) and \(F\) represent.

Answer:

\[A = 10, \quad B = 11, \quad C = 12, \quad D = 13, \quad E = 14, \quad F = 15 \]

7. (10 pts) Part (a) is simple arithmetic to help you guess the general answer in part (b).

7.1 Verify that the sum on the left is equal to the expression on the right.
7.1.1 \[1 + 2 = \frac{2^3}{2}\]
Answer: \[1 + 2 = 3 = \frac{6}{2} = \frac{2^3}{2}\]

7.1.2 \[1 + 2 + 3 = \frac{3^4}{2}\]
Answer: \[1 + 2 + 3 = 6 = \frac{12}{2} = \frac{3^4}{2}\]

7.1.3 \[1 + 2 + 3 + 4 = \frac{4^5}{2}\]
Answer: \[1 + 2 + 3 + 4 = 10 = \frac{20}{2} = \frac{4^5}{2}\]

7.2 Compute the value of the Gauss sum
\[1 + 2 + 3 + 4 + 5 + \cdots + 98 + 99 + 100\]
Answer:
\[1 + 2 + 3 + 4 + 5 + \cdots + 98 + 99 + 100 = \frac{100 \cdot 101}{2} = 5050\]

8 (10 pts) Part (a) is simple arithmetic to help you guess the general answer in part (b).

8.1 Verify that the sum on the left is equal to the expression on the right.

8.1.1 \[1 + 2 = 2^2 - 1\]
Answer: \[1 + 2 = 3 = 4 - 1 = 2^2 - 1\]

8.1.2 \[1 + 2 + 4 = 2^3 - 1\]
Answer: \[1 + 2 + 4 = 7 = 8 - 1 = 2^3 - 1\]

8.1.3 \[1 + 2 + 4 + 8 = 2^4 - 1\]
Answer: \[1 + 2 + 4 + 8 = 15 = 2^4 - 1\]

8.2 Compute the value of the Mersenne sum (you are expected to leave your answer in exponential form).
\[1 + 2 + 4 + 8 + 16 + \cdots + 2^{98} + 2^{99} + 2^{100}\]
Answer:
\[1 + 2 + 4 + 8 + \cdots + 2^{98} + 2^{99} + 2^{100} = 2^{101} - 1\]

9 (10 pts) I once gave a 20 question True/False exam.

9.1 In how many ways can you answer the questions (pretend you answer each question True or False)?
Answer: There are \(2^{20}\) ways: There are two answers (True or False) that can be chosen for each question.

9.2 If you decide to leave some questions blank, in how many ways can you answer the questions?
Answer: There are \(3^{20}\) ways: There are three answers (True, False, or blank) that can be chosen for each question.

Back to the quiz on page 337.
Back to the notes on page 151.
Keys to Quiz(zes) on Machine Numbers

Machine Number Basics (Key)

1 What is the largest unsigned natural number on:

1.1 A 16-bit computer?
Answer: The largest 16 bit number is the Mersenne number $2^{16} - 1 = 65,535$, about 65 thousand.

1.2 A 32-bit computer?
Answer: The largest 32 bit number is the Mersenne number $2^{32} - 1 = 4,294,967,295$, about 4 billion.

1.3 A 64-bit computer?
Answer: The largest 64 bit number is the Mersenne number $2^{64} - 1 = 18,446,744,073,709,551,615$, about 18 quintillion.

2 What is the decimal value of the following ten’s complement numbers?
Assume the word length is 4.

2.1 $(3084)_{10c}$
Answer: $(3084)_{10c} = 3084$.

2.2 $(8034)_{10c}$
Answer: $(8034)_{10c} = 8034 - 10000 = 1966$.

3 Pad the following ten’s complement numbers to be 5 digits long.

3.1 $(384)_{10c}$
Answer: $(384)_{10c} = (00384)_{10c}$.

3.2 $(834)_{10c}$
Answer: $(834)_{10c} = (99834)_{10c}$.

Back to the quiz on page 339.
Back to the notes on page 155.

Two’s Complement Notation (Key)

1 Using two’s complement notation what range of integers from most negative to most positive can be represented using

1.1 2 bits?
Answer: The range is from $-2^1 = -2$ to $2^1 - 1 = 1$.

$(00)_{2c} = 0, \ (01)_{2c} = 1, \ (10)_{2c} = -2, \ (11)_{2c} = -1$

1.2 8 bits?
Answer: The range is from $-2^7 = -128$ to $2^7 - 1 = 127$.

$(000)_{2c} = 0, \ (001)_{2c} = 1, \ (010)_{2c} = 2, \ (011)_{2c} = 3$\
$(100)_{2c} = -4, \ (101)_{2c} = -3, \ (110)_{2c} = -2, \ (111)_{2c} = -1$
1.3 32 bits?
 Answer: The range is from \(-2^{31} = -2,147,483,648\) to \(2^{31} - 1 = 2,147,483,647\).

1.4 64 bits?
 Answer: The range is from \(-2^{63}\) to \(2^{63} - 1\). How big is \(2^{63}\)? Approximate it by a power of 10.

2 Negate the two’s complement integers below.

2.1 \((\text{0100 1100})_{2c}\).
 Answer: The negative of \((\text{0100 1100})_{2c}\) is \((\text{1011 0100})_{2c}\). The bit-flipping rule is: Copy the bits from right-to-left up to and including the first 1. Flip the remaining bits on the left. Notice the two numbers sum to 1 0000 0000 which is truncated to 8 bits all of them are 0.

2.2 \((\text{1100 0000})_{2c}\).
 Answer: The negative of \((\text{1100 0000})_{2c}\) is \((\text{0100 0000})_{2c}\).

2.3 \((\text{1010 0100})_{2c}\).
 Answer: The negative of \((\text{1010 0100})_{2c}\) is \((\text{0101 1100})_{2c}\).

2.4 \((\text{1000 0000})_{2c}\).
 Answer: You might say this is a “trick” question. Extend the sign by writing \((\text{1000 0000})_{2c} = (1 1000 0000)_{2c}\) and then negate this last string to get \((0 1000 0000)_{2c}\).

3 Convert the following two’s complement integers into decimal notation.

3.1 \((\text{0100 1100})_{2c}\).
 Answer: Conversion algorithms are discussed starting on page 157. The leftmost sign bit, 0, declares the number is positive. Use Horner’s rule to compute

```
<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>18</td>
<td>38</td>
<td>76</td>
<td></td>
</tr>
</tbody>
</table>
```

Since the two’s complement number is positive, +76 is the answer.

3.2 \((\text{1011 0100})_{2c}\).
 Answer: The leftmost sign bit, 1, declares the number is negative. Use Horner’s rule to compute

```
<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>10</td>
<td>22</td>
<td>44</td>
<td>90</td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>
```

1 2 5 11 22 45 90 180
Since the two’s complement number is negative the answer is $180 - 256 = -76$.

3.3 \((10101010)_2\).

Answer: The leftmost sign bit, 1, declares the number is negative. Use Horner’s rule to compute

\[
\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & 0 \\
2 & 4 & 10 & 20 & 42 & 84 \\
1 & 2 & 5 & 10 & 21 & 42 & 85 & 170
\end{array}
\]

Since the two’s complement number is negative the answer is $170 - 256 = -86$.

3.4 \((00101000)_2\).

Answer: The leftmost sign bit, 0, declares the number is positive. Use Horner’s rule to compute

\[
\begin{array}{cccccc}
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 2 & 4 & 10 & 20 \\
0 & 0 & 1 & 2 & 5 & 10 & 20 & 40
\end{array}
\]

Since the two’s complement number is positive the answer is $+40$.

4 Convert the signed decimal integers below into two’s complement notation.

Answer: Conversion algorithms are discussed starting on page 157.

4.1 $+76$.

Answer: First convert unsigned 76 to binary: Quotients and remainders in the table below are computed from left-to-right.

\[
\begin{array}{cccccccc}
\text{Quotients} & 76 & 38 & 19 & 9 & 4 & 2 & 1 \\
\text{Remainders} & 0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}
\]

Prefixing string 100 1100 with a sign bit gives the two’s complement representation

$$+76 = (01001100)_2$$
4.2 \(-76\).

Answer: Using the result from problem 4.1 we know \(+76 = (0100\ 1100)_{2c}\)
and this can be negated by using the algorithm described on page 157. This gives the result
\[-76 = (1011\ 0100)_{2c}\]

4.3 \(-137\).

Answer: First convert unsigned 137 to binary: Quotients and remainders in the table below are computed from left-to-right.

<table>
<thead>
<tr>
<th>Quotients</th>
<th>137</th>
<th>68</th>
<th>34</th>
<th>17</th>
<th>8</th>
<th>4</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remainders</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Prefixing the bit string 1000 101 with a sign bit gives the two’s complement representation
\[+137 = (0\ 1000\ 101)_{2c}\]

Negate \(+137 = (0\ 1000\ 101)_{2c}\) to get the answer
\[-137 = (1\ 0111\ 0111)_{2c}\]

4.4 \(+177\).

Answer: First convert unsigned 177 to binary using repeated remaindering.

<table>
<thead>
<tr>
<th>Quotients</th>
<th>177</th>
<th>88</th>
<th>44</th>
<th>22</th>
<th>11</th>
<th>5</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remainders</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Prefixing the bit string 1011 0001 with a sign bit gives the two’s complement representation
\[+177 = (0\ 1011\ 1011)_{2c}\]

Back to the quiz on page 339.
Back to the notes on page 163.
Floating Point Notation (Key)

1 One rule for a number \(m \) written in biased notation is that \(m \) should be a natural number. What is the minimum value for a bias \(b \) to represent the range of integers shown below?

1.1 \(-127 \leq n \leq 128.\)
 \text{Answer:} The minimum value for the bias \(b \) is 127. The given range is translated to \(0 \leq m \leq 255.\)

1.2 \(-511 \leq n \leq 512.\)
 \text{Answer:} The minimum value for the bias \(b \) is 511. The given range is translated to \(0 \leq m \leq 1023.\)

1.3 \(-49 \leq n \leq 50.\)
 \text{Answer:} The minimum value for the bias \(b \) is 49. The given range is translated to \(0 \leq m \leq 99.\)

1.4 \(s \leq n \leq t, \) where \(s \) and \(t \) are integers with \(s \leq t.\)
 \text{Answer:} The minimum value for the bias \(b \) is \(-s.\) The given range is translated to \(0 \leq m \leq t - s.\)

2 One guideline for biased notation is numbers represented should be about half-and-half positive-and-negative. Given the ranges of biased numbers below, what values of the bias \(b \) satisfies this guideline?

2.1 \(0 \leq m_{\text{bias}=?} \leq 255.\)
 \text{Answer:} When the bias \(b \) is 127, then integers from \(-127 \) to \(128 \) can be represented. About half of them are negative \(-127, -126, \ldots, -1.\) About half of them are positive \(1, 2, \ldots, 128.\) When the bias \(b \) is 128, then integers from \(-128 \) to \(127 \) can be represented. About half of them are negative \(-128, -127, \ldots, -1.\) About half of them are positive \(1, 2, \ldots, 127.\) In this course, the default is to choose the odd bias \(b = 127.\)

2.2 \(0 \leq m_{\text{bias}=?} \leq 1023.\)
 \text{Answer:} When the bias \(b \) is 511, integers from \(-511 \) to \(512 \) can be represented. When the bias \(b \) is 512, integers from \(-512 \) to \(511 \) can be represented. In this course, the default is to choose the odd bias \(b = 511.\)

2.3 \(0 \leq m_{\text{bias}=?} \leq 99.\)
 \text{Answer:} When the bias \(b \) is 49, integers from \(-49 \) to \(50 \) can be represented. When the bias \(b \) is 50, integers from \(-50 \) to \(49 \) can be represented. In this course, the default is to choose the odd bias \(b = 49.\)

2.4 \(s \leq m_{\text{bias}=?} \leq t, \) where \(s \) and \(t \) are integers with \(s \leq t.\)
 \text{Answer:} Set the bias \(b \) to \(\lceil (t - s)/2 \rceil.\)

3 Convert the biased numbers below to decimal integers.
 \text{Answer:} Conversion from biased to decimal notation is discussed on page 164.
3.1 \((6)_{\text{bias}=3}\).

Answer: Subtract the bias 3 from 6 to get

\[(6)_{\text{bias}=3} = 6 - 3 = +3\]

3.2 \((76)_{\text{bias}=126}\).

Answer: Subtract the bias 126 from 76 to get

\[(76)_{\text{bias}=126} = 76 - 126 = -50\]

3.3 \((137)_{\text{bias}=126}\).

Answer: Subtract the bias 126 from 137 to get

\[(137)_{\text{bias}=126} = 137 - 126 = +11\]

3.4 \((177)_{\text{bias}=254}\).

Answer: Subtract the bias 254 from 177 to get

\[(177)_{\text{bias}=126} = 177 - 254 = -77\]

4. The following binary strings are floating point numbers where the first (leftmost) bit is a sign bit, the next three bits are exponent bits written in biased notation with bias \(b = 3\), and the last four bits are fraction bits. These floating point are normalized. What are decimal values of these floating point numbers?

4.1 \((1\ 001\ 1000)_{fp}\)

Answer: This is a negative number (the sign bit is 1) with exponent \((001)_{b=3} = 1 - 3 = -2\) and fixed point value \((1.1000)_{2} = 3/2\).

\[\therefore (1\ 001\ 1000)_{fp} = -\frac{3}{2} \times 2^{-2} = -\frac{3}{8}\]

4.2 \((0101\ 1011)_{fp}\)

Answer: This is a positive number (the sign bit is 0) with exponent \((101)_{b=3} = 5 - 3 = 2\) and fixed point value \((1.1011)_{2} = 27/16\).

\[\therefore (0101\ 1011)_{fp} = \frac{27}{16} \times 2^{2} = \frac{27}{4}\]

4.3 \((1111\ 1111)_{fp}\)

Answer: This is a negative number (the sign bit is 1) with exponent \((111)_{b=3} = 7 - 3 = 4\) and fixed point value \((1.1111)_{2} = 31/16\).

\[\therefore (1111\ 1111)_{fp} = -\frac{31}{16} \times 2^{4} = -31\]
4.4 \((0000\ 0001)_{fp}\)

Answer: This is a positive number (the sign bit is 0) with exponent \((000)_{b} = 3 - 3 = -3\) and fixed point value \((1.0001)_{2} = 17/16\).

\[
\therefore (0000\ 0001)_{fp} = \frac{17}{16} \times 2^{-3} = -\frac{17}{128}
\]

5 Using the 8 bit float point format, explain why 17/128 is the smallest positive floating point number and why 16/128 = 1/8 is not.

Answer: The smallest non-zero number is represented by the string \((0\ 000\ 0001)_{fp}\). This string is interpreted as

\[
(-1)^{0} (1.0001)_{2} \times 2^{0-3} = \frac{17}{16} \times \frac{1}{8} = \frac{17}{128}
\]

On the other hand, 1/8 = \((1.0000)_{2} \times 2^{-3}\) and that would be written as the all zero string, which is reserved for the value 0.

Back to the quiz on page 340.
Back to the notes on page 168.

Keys to Quiz(zes) on Names

Naming Basics (Key)

1 Using the binary alphabet, how many things can you name with fixed-length strings of the given length?

1.1 1 bit?

Answer: 2 things can be named: 0 and 1.

1.2 2 bits?

Answer: 4 things can be named: 00, 01, 10, 11.

1.3 3 bits?

Answer: 8 things can be named:

000, 001, 010, 011, 100, 101, 110, 111

1.4 \(n\) bits?

Answer: \(2^n\) things can be named.

2 Using the binary alphabet, how many things can you name with non-empty, variable-length strings?

2.1 1 or fewer bits?

Answer: 2 things can be named: 0 and 1.

2.2 2 or fewer bits?

Answer: 6 things can be named: 0, 1, 00, 01, 10, 11.
2.3 3 or fewer bits?

Answer: 14 things can be named:

0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111

2.4 \(n \) or fewer bits?

Answer: The number of things that can be named using \(n \) or fewer bits is.

\[
\sum_{k=1}^{n} 2^k = 2 + 4 + 8 + \cdots + 2^n = 2^{n+1} - 2
\]

3 Using the English alphabet, how many things can you name with fixed-length strings of the given length?

3.1 1 character?

Answer: 26 things can be named:

\(a, b, c, \ldots, z \)

3.2 2 characters?

Answer: \(26^2 = 676 \) things can be named:

\(\{aa, ab, ac, \ldots, zx, zy, zz\} \)

3.3 3 characters?

Answer: \(26^3 = 17,576 \) things can be named:

\(\{aaa, aab,aac, \ldots, zzz, zyy, zzz\} \)

3.4 \(n \) characters?

Answer: \(26^n \) things can be named.

4 Using the English alphabet, how many things can you name with non-empty, variable-length strings of the given length?

4.1 1 or fewer characters?

Answer: 26 things can be named:

\(a, b, c, \ldots, z \)

4.2 2 or fewer characters?

Answer: \(26 + 26^2 = 702 \) things can be named:

\(\{a, b, c, \ldots, z, aa, ab, ac, \ldots, zx, zy, zz\} \)
4.3 3 or fewer characters?
Answer: \(26 + 26^2 + 26^3 = 18,278\) things can be named:
\[\{a, \ldots, z, \, aa, \ldots, zz, \, aaa, \ldots, zzz\}\]

4.4 \(n\) or fewer characters?
Answer: The number of things that can be named using \(n\) or fewer characters is.
\[
\sum_{k=1}^{n} 26^k = 26 + 26^2 + 26^3 + \cdots + 26^n = \frac{26^{n+1} - 26}{25}
\]

Back to the quiz on page 341.
Back to the notes on page 179.

Naming Numbers (Key)

For instance, using the binary alphabet, you can name

- 1 or 2 things using 1 bit: (0) or (0 and 1).
- 3 or 4 things using 2 bits: (00, 01, 10) or (00, 01, 10, 11)
- 5 through 8 things using 3 bits: To name the things, choose 5 through 8 elements from the set
 \[\{000, 001, 010, 011, 100, 101, 110, 111\}\]

Using the **English** alphabet, you can name

- 1 through 26 things using 1 letter: \(a\) through \(z\).
- 27 through \(26^2 = 676\) things using 2 letters To name the things, choose 27 through 676 elements from the set
 \[\{aa, \, ab, \, ac, \ldots, \, zx, \, zy, \, zz\}\]

- 677 through \(26^3 = 17,576\) things using 3 letters: To name the things, choose 677 through 17,576 elements from the set
 \[\{aaa, \, aab, \,aac, \ldots, \, zxx, \, zyy, \, zzz\}\]

Back to the quiz on page 341.
Back to the notes on page 174.
Summative exam #3 (Key)

1 (20 pts) The sum $1 + 2 + 4 + \ldots + 2^{n-1}$ of powers of 2 numbers called geometric. What function (formula) computes the value of the sum

$$1 + 2 + 4 + \ldots + 2^{n-1} = \sum_{k=0}^{n-1} 2^k$$

Answer: The sum is a Mersenne number

$$1 + 2 + 4 + \ldots + 2^{n-1} = \sum_{k=0}^{n-1} 2^k = 2^n - 1$$

Not asked, but you should recognize that $1 + 2 + 4 + \ldots + 2^{n-1}$ is a binary number of length n where all the bits are 1.

2 (10 pts) Convert the two’s complement number $(10010100)_{2c}$ into decimal notation.

Answer: One way to do this is Recognize the number is negative. Negate it to get $-(10010100)_{2c} = (01101100)_{2c}$. Use Horner’s rule to convert $(01101100)_{2c}$ to decimal

<table>
<thead>
<tr>
<th>Horner’s Rule @ $x = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 0 1 1 0 0</td>
</tr>
<tr>
<td>0 2 6 12 26 54 108</td>
</tr>
<tr>
<td>0 1 3 6 13 27 54 108</td>
</tr>
</tbody>
</table>

Therefore, $(10010100)_{2c} = -108$. Alternatively, just use Horner’s rule on the original number

<table>
<thead>
<tr>
<th>Horner’s Rule @ $x = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0 1 0 1 0 0</td>
</tr>
<tr>
<td>2 4 8 18 36 74 148</td>
</tr>
<tr>
<td>1 2 4 9 18 37 74 148</td>
</tr>
</tbody>
</table>

and subtract $2^8 = 256$ from the result

$$(01101100)_{2c} = 148 - 256 = -108$$

3 (10 pts) Convert the decimal integer -37 into two’s complement notation.
Answer: Use repeated remaindering

<table>
<thead>
<tr>
<th>Quotients</th>
<th>37</th>
<th>18</th>
<th>9</th>
<th>4</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remainders</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

to find that unsigned 37 is \((100101)_2\). Therefore, positive signed \(+37\) is \((0100101)_2\). Finally, negate this to represent

\[-37 = (1011011)_2\]

4 Using the ideas explained in class, answer the following questions about the floating point number \((00101101)_{fp}\).

4.1 (5 pts) Is the value of the number positive or negative?

Answer: The leading (sign) bit is 0, which implies the value is positive (note the value is not 0).

4.2 (5 pts) What is the (decimal) value of the exponent?

Answer: The exponent is written in bias notation and is equal to \((010)_{\text{bias}=3} = 2 - 3 = -1\).

4.3 (5 pts) What is the decimal value of the fractional part?

Answer: The fractional part is \((0.1101)_2 = 13/16\)

Note that binary \((1101)_2\) is 13 and because there are four places to the right of the point, you must divide 13 by 16.

4.4 (5 pts) What is the (decimal) value of the normalized floating point number \((00101101)_{fp}\)?

Answer: Using the above answers

\[(00101101)_{fp} = +\left(1 + \frac{13}{16}\right) \times 2^{-1} = \frac{29}{32}\]

5 (10 pts) The ASCII character set lies first in the Unicode alphabet: A block known as Basic Latin. The largest (last) Latin-1 value \((7F)_{16}\) represents the “delete” character. What is the decimal value of \((7F)_{16}\)?
Answer: Use the fact that \((F)_{16} = 15\) and Horner’s rule you can convert \((7F)_{16}\) to decimal

<table>
<thead>
<tr>
<th>Horner's Rule @ x = 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 15 112</td>
</tr>
<tr>
<td>7 127</td>
</tr>
</tbody>
</table>

Therefore, \((7F)_{16} = 127\).

6 The octal alphabet is \(O = \{0, 1, 2, 3, 4, 5, 6, 7\}\).

6.1 (10 pts) How many octal numerals are needed to write 73?

Answer: It takes \([\log_8 73] + 1 = 2 + 1 = 3\) octal numerals

Alternatively you can see that

\[73 = 64 + 8 + 1 = (111)_8\]

6.2 (5 pts) How many octal strings with fixed-length \(n\) are there?

Answer: There are \(8^n\) strings with length \(n\).

6.3 (5 pts) How many non-empty, variable-length octal strings of length \(n\) or less are there?

Answer: There are 8 strings of length 1, 8² strings of length 2 up to \(8^n\) strings of with length \(n\). You want to find a formula for

\[8 + 8^2 + 8^3 + \ldots + 8^{n-1} + 8^n\]

Name the sum \(S\) and note

\[7S = 8S - S\]
\[= 8(8 + 8^2 + 8^3 + \ldots + 8^{n-1} + 8^n) - (8 + 8^2 + 8^3 + \ldots + 8^{n-1} + 8^n)\]
\[= (8^2 + 8^3 + \ldots + 8^n + 8^{n+1}) - (8 + 8^2 + 8^3 + \ldots + 8^{n-1} + 8^n)\]
\[= 8^{n+1} - 8\]

Therefore, the sum is (the number of non-empty, variable-length octal strings of length \(n\) or less)

\[S = \frac{8^{n+1} - 8}{7}\]

Note that \(S(n)\) is a function, and generates the sequence

\[0, 8, 72, 584, \ldots\]
7. Consider the arithmetic sequence
\[\vec{X} = \langle 3, 7, 11, 15, \ldots, 4n - 1, 4n + 3, \ldots \rangle \]
and the quadratic sequence
\[\vec{Y} = \langle 0, 3, 10, 21, 36, \ldots, 2n^2 + n, \ldots \rangle \]

7.1 (5 pts) What is the difference sequence \(\Delta \vec{Y} \) of \(\vec{Y} \) and how is it related to \(\vec{X} \)?

Answer: The difference sequence \(\Delta \vec{Y} \) is the sequence of differences of successive terms in \(\vec{Y} \). That is,
\[\Delta \vec{Y} = \langle 3 - 0, 10 - 3, 21 - 10, 36 - 21, \ldots \rangle = \langle 3, 7, 11, 15, \ldots \rangle = \vec{X} \]

7.2 (5 pts) What is the function (formula) that computes the sum
\[\sum_{k=0}^{n-1} (4k + 3) \]

Answer: The sum telescopes.
\[
\sum_{k=0}^{n-1} (4k + 3) = \sum_{k=0}^{n-1} (2(k + 1)^2 + (k + 1) - (2k^2 + k))
\]
\[= (3 - 0) + (10 - 3) + (21 - 10) + (36 - 21) + \ldots + (2n^2 + n) - (2(n - 1)^2 + (n - 1)) \]
\[= 2n^2 + n \]

Alternatively,
\[
\sum_{k=0}^{n-1} (4k + 3) = 4 \sum_{k=0}^{n-1} k + 3n
\]
\[= 4 \frac{n(n - 1)}{2} + 3n \]
\[= 2n^2 + n \]
Keys to Quiz(zes) on Counting

Counting Truth Assignments and Boolean Functions (Key)

1 How many truth assignments are there on 2, 4, 8, 16 and n Boolean variables?

 Answer: There are 2 choices for each of the variables.
 • For 2 variables there are $2 \times 2 = 2^2 = 4$ truth assignments.
 • For 4 variables there are $2 \times 2 \times 2 \times 2 = 2^4 = 16$ truth assignments.
 • For 8 variables there are $2 \times 2 = 2^8 = 256$ truth assignments.
 • For 16 variables there are $2^{16} = 65536$ truth assignments.
 • For n variables there are 2^n truth assignments.

2 How many Boolean functions are there on 2, 4, 8, 16 and n Boolean variables?

 Answer: There are 2^k truth assignments on k variables. Each of these can map to one of 2 values.
 • For 2 variables there are $2^2 = 16$ Boolean functions.
 • For 4 variables there are $2^4 = 16$ Boolean functions.
 • For 8 variables there are $2^8 = 2^{256}$ Boolean functions.
 • For 16 variables there are $2^{16} = 2^{65536}$ Boolean functions.
 • For n variables there are 2^n Boolean functions.

3 In implementing Boolean logic, there are situations where we don’t care what the value of an input or output is. That is, one of 3 values (False, True, and Don’t Care) can be on an input or output line.

 3.1 For input don’t cares, but only False and True output, how many Boolean functions on n variables are there?

 Answer: There are 3^n input combinations and 2 outputs for each of these. Therefore there are 2^3 Boolean functions of this type.

 3.2 For output don’t cares, but only False and True input, how many Boolean functions on n variables are there?

 Answer: There are 2^n input combinations and 3 outputs for each of these. Therefore there are 3^2 Boolean functions of this type.

 3.3 For both input and output don’t cares, how many Boolean functions on n variables are there?

 Answer: There are 3^n input combinations and 3 outputs for each of these. Therefore there are 3^3 Boolean functions of this type.

Back to the quiz on page 344.
Back to the notes on page 187.
Counting Functions (Key)

1. Use theorem to show there are \(2^n\) Boolean functions on \(n\) Boolean variables.

 Answer: The domain is \(X = \mathbb{B}^n\) and has cardinality \(2^n\). The range is \(Y = \mathbb{B}\) and has cardinality 2. By the theorem there are

 \[|Y|^{|X|} = 2^{2^n}\] functions from \(X\) to \(Y\).

2. How many functions \(f : X \rightarrow Y\) can be defined when the domain and co-domain have the following sizes?

 2.1 \(|X| = 2, |Y| = 4\)

 Answer: There are

 \[|Y|^{|X|} = 4^2 = 16\] functions

 2.2 \(|X| = 4, |Y| = 2\)

 Answer: There are

 \[|Y|^{|X|} = 2^4 = 16\] functions

 2.3 \(|X| = 4, |Y| = 8\)

 Answer: There are

 \[|Y|^{|X|} = 8^4 = 2^{12} = 4096\] functions

 2.4 \(|X| = 8, |Y| = 4\)

 Answer: There are

 \[|Y|^{|X|} = 4^8 = 2^{16} = 65536\] functions

Back to the quiz on page 344.
Back to the notes on page 191.

Counting Subsets (Key)

1. In how many ways can you choose 5 elements from the bits \(\mathbb{B}\)?

 Answer: Well, is this a trick question? You cannot choose 5 elements if there are only 2?.

2 In how many ways can you choose 5 elements from the octal numerals \(\mathbb{O} \)?

Answer: The set \(\mathbb{O} = \{0, 1, 2, 3, 4, 5, 6, 7\} \) contains 8 elements. Therefore, 5 elements can be chosen from \(\mathbb{O} \) in

\[
\binom{8}{5} = \frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1} = 56 \text{ ways}
\]

3 In how many ways can you choose 5 elements from the set of digits \(\mathbb{D} \)?

Answer: There are 10 elements in \(\mathbb{D} \). Therefore, 5 elements can be chosen from \(\mathbb{D} \) in

\[
\binom{10}{5} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 5}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 252 \text{ ways}
\]

4 In how many ways can you choose 5 elements from the set of hexadecimal digits \(\mathbb{H} \)?

Answer: There are 16 elements in \(\mathbb{H} \). Therefore, 5 elements can be chosen from \(\mathbb{H} \) in

\[
\binom{16}{5} = \frac{16 \cdot 15 \cdot 14 \cdot 13 \cdot 12}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 4368 \text{ ways}
\]

5 Let \(X \) be an \(n \)-element set. How many subsets does \(X \) have?

Answer: \(X \) has \(2^n \) subsets. To construct a subset: For each element \(x \) chose to put \(x \) in or leave it out of the subset.

6 Why does the sum of values in row \(n \) of Pascal’s triangle sum to \(2^n \)?

Answer: The values in a row count the number of 0-element, 1-element, 2-element, \ldots and \(n \)-element subsets. The total number of subsets is \(2^n \). Therefore the sum of values in row \(n \) of Pascal’s triangle is \(2^n \)

\[
\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = \sum_{k=0}^{n} \binom{n}{k} = 2^n
\]

7 Let \(X \) be an \(n \)-element set. Suppose there are \(i \) subsets of \(X \) with \(k \)-elements and \(j \) subsets of \(X \) with \(k - 1 \) elements. Let \(y \) be an element that is not in \(X \). How many \(k \)-element subsets of \(X \cup \{y\} \) are there.

Answer: This is just an awkward way to express Pascal’s indentity. The number to be computed is

\[
\binom{n+1}{k} \text{ number of } k\text{-element subsets of an } n\text{-element set.}
\]

Given

\[
i = \binom{n}{k} \text{ and } j = \binom{n}{k-1} = j
\]

Pascals’s indentity yields

\[
\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} = i + j
\]

Back to the quiz on page 344.
Back to the notes on page 204.
Counting Relations (Key)

1 How many relations \(x \sim y \) can be defined between elements \(x \in X \) and \(y \in Y \) when the domain and co-domain have the following sizes?

1.1 \(|X| = 2, |Y| = 4\)

Answer: There are

\[
2^{|X||Y|} = 2^2 \cdot 4 = 2^8 = 256 \text{ relations}
\]

1.2 \(|X| = 4, |Y| = 2\)

Answer: There are

\[
2^{|X||Y|} = 2^4 \cdot 2 = 2^8 = 256 \text{ relations}
\]

1.3 \(|X| = 4, |Y| = 8\)

Answer: There are

\[
2^{|X||Y|} = 2^4 \cdot 8 = 2^{32} \text{ relations}
\]

1.4 \(|X| = 8, |Y| = 4\)

Answer: There are

\[
2^{|X||Y|} = 2^8 \cdot 4 = 2^{32} \text{ relations}
\]

1.5 \(|X| = n, |Y| = m\)

Answer: There are

\[
2^{|X||Y|} = 2^{nm} \text{ relations}
\]

2 Pretend you have 40 Facebook friends. In how many different ways can they “like” each other?

Answer: There are \(40 \times 40 = 1600\) ordered pairs of friends \((x, y)\) where, potentially, “\(x\) likes \(y\).” So there are \(2^{1600}\) possible ways friends could like each other, from no one likes anyone else to everyone likes everyone.

Back to the quiz on page 345.
Back to the notes on page 195.

Counting Permutations, Cycles and Partitions (Key)

1 Use the recurrence relation

Answer:

Back to the quiz on page 345.
Back to the notes on page 208.
Keys to Quiz(zes) on Induction

Basic induction problems (Key)

1 Write a function \(f \) that maps each integer \(n \) to some integer that has a remainder of 3 when divided by 4.

Answer:

\[
 f(n) = 4n + 3
\]

Recall mod 4 partitions the integers into 4 subsets:

\[
 \{4k : k \in \mathbb{Z}\}, \quad \{4k + 1 : k \in \mathbb{Z}\}, \quad \{4k + 2 : k \in \mathbb{Z}\}, \quad \{4k + 3 : k \in \mathbb{Z}\}
\]

2 Use mathematical induction to prove:

\[
\sum_{k=0}^{n-1} (4k + 3) = n(2n + 1)
\]

Answer: First, a *basis*: For \(n = 1 \), the value of the sum is 3, which matches the formula (function) \(f(1) = 1(2 \cdot 1 + 1) = 3 \).

For the inductive step, state an assumption or hypothesis:

\[
3 + 7 + 11 + \cdots + (4n - 1) = \sum_{k=0}^{n-1} (4k + 3) = n(2n + 1) \quad \text{for some} \ n \geq 1.
\]

And, then draw a conclusion: When you add in the next term you get

\[
[3 + 7 + 11 + \cdots + (4n - 1)] + (4n + 3) = \left[\sum_{k=0}^{n-1} (4k + 3) \right] + (4n + 3)
\]

\[
= [n(2n + 1)] + (4n + 3)
\]

\[
= 2n^2 + 5n + 3
\]

\[
= (n + 1)(2n + 3)
\]

\[
= f(n + 1)
\]

3 Use mathematical induction to prove the largest \(n \)-numeral octal number is \(8^n - 1 \).

Answer: First, a *basis*: For \(n = 1 \), the largest octal number is \(7 = 8^1 - 1 \).

The *hypothesis* is, for some \(n \geq 1 \), the largest \(n \)-numeral octal number is \(8^n - 1 \). And, then the *conclusion* is this: Construct the largest \(n + 1 \) octal number multiplying \(8^n - 1 \) by 8 and adding 7. That is

\[
8 \cdot (8^n - 1) + 7 = 8^{n+1} - 8 + 7 = 8^{n+1} - 1
\]

Back to the quiz on page 345.

Back to the notes on page 227.
Basic problems on recursion (Key)

1 Consider binary strings without consecutive 1’s. For instance,

$$\epsilon, 0, 1, 00, 01, 10, 000, 001, 010, 100, 101, \ldots$$

Let be s is a string without consecutive 1’s.

- how you can extend s to a string without consecutive 1 by appending a single bit.

Back to the quiz on page 345.
Back to the notes on page 236.

Basic problems on recursion (Key)

1 Show that the linear function $f(n) = 4n + 3$ satisfies the recurrence

$$f_n = f_{n-1} + 4 \quad \text{with base case } f_0 = 3$$

Answer: For $n = 0$ the function value matches the base case

$$f(0) = 4 \cdot 0 + 3 = f_0 = 3$$

Assume $f(n - 1) = 4(n - 1) + 3 = f_{n-1}$ for some $n \geq 1$ and substitute it into the equation

$$f_n = f_{n-1} + 4$$
$$= [4(n - 1) + 3] + 4$$
$$= 4n + 3$$

2 Show that the quadratic function $s(n) = n^2$ satisfies the recurrence

$$s_n = s_{n-1} + (2n - 1) \quad \text{with base case } s_0 = 0$$

Answer: For $n = 0$ the function value matches the base case

$$s(0) = 0^2 = s_0 = 0$$

Assume $s(n - 1) = (n - 1)^2 = s_{n-1}$ for some $n \geq 1$ and substitute it into the equation

$$s_n = s_{n-1} + (2n - 1)$$
$$= (n - 1)^2 + (2n - 1)$$
$$= n^2 - 2n + 1 + (2n - 1)$$
$$= n^2$$
What well-known list of natural numbers has partial sums equal to $s(n) = n^2$?

Answer: The sum of odd numbers are the squares

$$1 = 1^2, \quad 1 + 3 = 2^2, \quad 1 + 3 + 5 = 3^2, \quad 1 + 3 + 5 + 7 = 4^2, \ldots$$
Summative exam #4 (Key)

1. (10 pts) How many truth assignments and how many Boolean functions can be defined on \(n \) Boolean variables?
 Answer: There are \(2^n \) truth assignments and \(2^{2^n} \) Boolean functions.

2. The following questions are about a set characters from the animated television series SpongeBob SquarePants. The set is called \(\text{SBSP} \) and the characters are: SpongeBob, Patrick, Squidward, Gary the Snail, and Captain Krabs. Let \(\text{SP} \) be the set without SpongeBob.

 \[\text{SBSP} = \{ \text{SpongeBob, Patrick, Squidward, Gary the Snail, Captain Krabs} \} \]
 \[\text{SP} = \{ \text{Patrick, Squidward, Gary the Snail} \} \]

 2.1 (10 pts) How many functions can be defined from \(\text{SBSP} \) to \(\text{SP} \)?
 Answer: There are \(4^5 \) functions.

 2.2 (10 pts) Is there a one-to-one function from \(\text{SBSP} \) to \(\text{SP} \)? Explain your answer.
 Answer: There is not! Mapping more elements to fewer means that some character in \(\text{SP} \) is the image of more than one character in \(\text{SBSP} \).

 2.3 (10 pts) Is there an onto function from \(\text{SBSP} \) to \(\text{SP} \)? Explain your answer.
 Answer: There is! One such function would map every character to itself and map SpongeBob to any character you like.

 2.4 (10 pts) In how many ways can you arrange (permute) the characters in \(\text{SBSP} \)?
 Answer: There are \(5! = 120 \) ways to permute the five different characters.

 2.5 (10 pts) How many relations can be defined between \(\text{SBSP} \) and \(\text{SP} \)?
 Answer: There are \(2^{4 \times 5} = 2^{20} \) relations.

 2.6 (10 pts) How many subsets does \(\text{SBSP} \) have?
 Answer: There are \(2^5 \) subsets.

 2.7 (10 pts) How many subsets of \(\text{SBSP} \) contain 3 characters? Give your answer as a natural number.
 Answer: There are \(\binom{5}{3} = \frac{5!}{3!2!} = \frac{5 \cdot 4}{2} = 10 \) subsets with 3 characters.

3. (10 pts) Use mathematical induction to prove:
 \[0 + 1 + 2 + 3 + \cdots + (n - 1) = \frac{n(n - 1)}{2} \]
Answer: The *basis* for induction can start at \(n = 1 \). In this case, there is only one term in the sum: 0. And, the function is
\[
\frac{1(1-1)}{2} = 1
\]
Both sides of the identity are equal.

The *inductive step* has two parts.

Assume

\[
0 + 1 + 2 + 3 + \cdots + (n-1) = \frac{n(n-1)}{2}
\]

for some value of \(n \geq 1 \).

Prove the sum of the first \((n+1)\) natural numbers equals \((n+1)n/2\). To do so, note that the sum of the first \((n+1)\) natural numbers is the sum of the first \(n\) plus the \((n+1)\)th natural number. This leads to the derivation:

\[
\left[0 + 1 + 2 + 3 + \cdots + (n-1)\right] + n = \frac{n(n-1)}{2} + n
= \frac{n^2 - n + 2n}{2}
= \frac{n^2 + n}{2}
= \frac{(n+1)n}{2}
= \tau(n+1)
\]

4 (10 pts) Use mathematical induction to prove:

\[
1 + 2 + 4 + \cdots + 2^{n-1} = 2^n - 1
\]

Answer: The proof has these steps:

The *basis* for induction can start at \(n = 1 \). In this case, the sum is simply \(2^0 = 1 \), and the function value is \(2^1 - 1 = 1 \) also. The sum is equal to the value of the function at \(n = 1 \).

5 **Assume** the value of the sum (of the first \(n\) powers of \(2\)) is equal to the value of the function \(2^n - 1\), for some \(n \geq 1 \). That is,

\[
(\exists n \in \mathbb{N}, n \geq 1)(2^0 + 2^1 + 2^2 + 2^3 + \cdots + 2^{n-1} = 2^n - 1)
\]

Prove the sum (of the first \((n+1)\) powers of \(2\)) is the same as the value \(2^{n+1} - 1\). To do so, note the sum of the first \((n+1)\) powers of \(2\) is the sum of the first \(n\) powers of \(2\) plus the \((n+1)\)th power of \(2\). This leads to the derivation:

\[
(2^0 + 2^1 + 2^2 + 2^3 + \cdots + 2^{n-1}) + 2^n = (2^n - 1) + 2^n
= 2 \cdot 2^n - 1
= 2^{n+1} - 1
\]
Back to the quiz on page 347.
Back to the notes on page 259.
Keys to Quiz(zes) on Orders

Order Basics (Key)

1 Prove that divides on the natural numbers is a partial order.

Answer: Let \(a, b, c \) and \(d \) be natural numbers.

- Divides is reflexive: for all natural numbers \(a \), \(a \) divides \(a \) because \(a = a \cdot 1 \).
- Divides is antisymmetric: for all natural numbers \(a \) and \(b \neq 0 \), if \(a \) divides \(b \) and \(b \) divides \(a \), then there exists natural numbers \(c \) and \(d \) such that
 \[
 b = ac \ (a \ 	ext{divides} \ b) \quad \text{and} \quad a = bd \ (b \ 	ext{divides} \ a)
 \]

Therefore

\[
b = ac = (bd)c \quad \text{therefore} \ 1 = cd \ \text{and both} \ c = 1 \ \text{and} \ d = 1, \ \text{that is} \ a = b
\]

Note if \(b = 0 \) then \(a = 0 \) also since \(b \) divides \(a \).
- Divides is transitive: for all natural numbers \(a, b \) and \(c \), if \(a \) divides \(b \) and \(b \) divides \(c \), then there exists natural numbers \(d \) and \(e \) such that
 \[
 b = ad \ (a \ 	ext{divides} \ b) \quad \text{and} \quad c = be \ (b \ 	ext{divides} \ c)
 \]

Therefore

\[
c = be = (ad)e = a(de) \quad \text{therefore} \ a \ 	ext{divides} \ c
\]

2 Prove that subset on the power set of set is a partial order.

Answer: Let \(X, Y, V \) and \(W \) be subsets of some universal set \(U \).

- Subset is reflexive: for all subsets \(X \), \(X \) is a subset of \(X \) because every element \(x \in X \) is in \(X \).
- Subset is antisymmetric: for all subsets \(X \) and \(Y \), if \(X \) is a subset of \(Y \) and \(Y \) is a subset of \(X \), then \(X = Y \).
- Subset is transitive: for all subsets \(X, Y, V \) if \(X \) is a subset of \(Y \) and \(Y \) is a subset of \(V \), then \(X \) is a subset of \(setY \).

3 All other qualities being equal, would you chose to use a sorting algorithm whose running time behaved like \(n^2 \) or one that behaved like \(n \log n \)? Explain your answer.

Answer: Since \(\log n < n \) for all \(n = 1 \), choose an \(n \log n \) algorithm.

Back to the quiz on page 348.
Back to the notes on page 267.
Counting orders by their properties (Key)

1 How many reflexive relations can be defined on sets with cardinality 2, 8, 10, 16, and n?

Answer: The function that counts reflexive relations is \(r(n) = 2^{n(n-1)} \). For \(n = 2, 8, 10, \text{and} 16 \) these values are

\[2^2, \ 2^{56}, \ 2^{90}, \ 2^{240} \]

2 How many antisymmetric relations can be defined on sets with cardinality 2, 8, 10, 16, and n?

Answer: The function that counts antisymmetric relations is \(a(n) = \left(2 \sqrt{3^{n-1}} \right) ^n \). For \(n = 2, 8, 10, \text{and} 16 \) these values are

\[(2 \cdot \sqrt{3})^2 = 12, \ (2 \cdot \sqrt{3^8}) = 2^8 \cdot 3^{28}, \ (2 \cdot \sqrt{3^{10}}) = 2^{10} \cdot 3^{45}, \ (2 \cdot \sqrt{3^{16}}) = 2^{16} \cdot 3^{120} \]

Keys to Quiz(zes) on Equivalences

Basics about equivalences (Key)

1 Let \(X, Y \) and \(V \) be subsets of a universal set \(U \). Demonstrate the following equivalences by filling in the given truth tables.

1.1 The identity law for intersection: \(X \cap U = X \)

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \in X)</td>
<td>(x \in U)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1.2 De Morgan’s laws for the set complement of a union: \(\neg(X \cup Y) = \neg X \cap \neg Y \)

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \in X)</td>
<td>(x \in Y)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
1.3 The Currying law for sets: \((\neg X \cup Y) \cap (X \cup Y) \subseteq (Y \vee Y)\)

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \in X) (x \in Y) (x \in Y) (x \in \neg (X \cup Y)) (\neg X \cup \neg Y)</td>
<td>(1) (1) (0) (0) (0)</td>
</tr>
</tbody>
</table>

2. Consider the set of integers

\[\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \ldots \} \]

and the set of natural numbers

\[\mathbb{N} = \{0, 1, 2, 3, 4, 5, \ldots \} \]

Let \(a, b \in \mathbb{Z}\) and let \(n \in \mathbb{N}\). If \(n\) divides \(a - b\), write

\[a \equiv b \pmod{n} \]

and say \(a\) is congruent to \(b\) modulo \(n\).

3. Show that congruence modulo \(n\) is an equivalence relation.

Answer: Congruence is

- Reflexive: \((\forall a \in \mathbb{Z})(a \equiv a \pmod{n})\) because \(n\) divides \(a - a = 0\).
- Symmetric: \((\forall a, b \in \mathbb{Z})(a \equiv b \pmod{n} \implies b \equiv a \pmod{n})\)
 because if \(n\) divides \(a - b\), then \(n\) divides \(b - a\). That is, if \(a - b = n \cdot q\) for some quotient \(q \in \mathbb{Z}\), then \(b - a = n(\neg q)\).
- Transitive: \((\forall a, b, c \in \mathbb{Z})(a \equiv b \pmod{n} \land b \equiv c \pmod{n}) \implies (a \equiv c \pmod{n})\)
 because if \(n\) divides \(a - b\) and \(n\) divides \(b - c\), then \(n\) divides \(a - c\). That is, if \(a - b = n \cdot q\) for some quotient \(q \in \mathbb{Z}\) and \(b - c = n \cdot q'\), then \(a - c = (a - b) + (b - c) = n(q + q')\), and \(n\) divides \(a - c\).

Back to the quiz on page 348.
Back to the notes on page 280.

Summative exam #5 (Key)

1. (10 pts) Show that the function \(t(n) = n(n - 1)/2\) satisfies the recurrence equation and initial condition

\[t_n = t_{n-1} + (n - 1), \quad t_0 = 0 \]
Answer: First, see that the function matches the initial condition.
\[t(0) = \frac{0(0-1)}{2} = 0 = t_0 \]

Next, if
\[t(n-1) = t_{n-1} = \frac{(n-1)(n-2)}{2} \]
for some \(n \geq 1 \),
then
\[t(n) = t(n-1) + (n-1) \]
\[= \frac{(n-1)(n-2)}{2} + (n-1) \]
\[= \frac{(n-1)(n-2) + 2n - 2}{2} \]
\[= \frac{n^2 - n}{2} \]
\[= \frac{n(n-1)}{2} \]
establishing that the equation is satisfied. This recurrence generates the Triangular sequence
\[\vec{T} = \langle 0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, \ldots \rangle \]
which is the third column in Pascal’s triangle.

2 (10 pts) Prove that \(t(n) = n \lg n \) satisfies the recurrence
\[t_{2n} = 2t_n + 2n, \ t_1 = 0, \text{ for } n = 1, 2, 4, 8, \ldots \]

Answer: First, see that the function matches the initial condition.
\[t(1) = 1 \lg 1 = 0 = t_1 \]

Next, if
\[t(n) = t_n = n \lg n \text{ for some } n \geq 1, \]
then
\[t(2n) = 2t(n) + 2n \]
\[= 2n \lg n + 2n \]
\[= 2n(\lg n + 1) \]
\[= 2n(\lg n + \lg 2) \]
\[= 2n \lg 2n \]
establishing that the equation is satisfied.

3 (35 pts) Consider the divides relation \((a \mid b)\) on the set of natural numbers.

3.1 Does 7 divide 38? Explain your answer.

Answer: No, 38 divided by 7 leaves a remainder of 3. 38 is not a multiple of 7.
3.2 Is divides reflexive?
Answer: Since \(a = a \cdot 1 \), \(a \) divides \(a \) for every natural number \(a \). That is, divides is reflexive.

3.3 Is divides antisymmetric? Explain your answer.
Answer: If \(a \mid b \) and \(b \mid a \), then \(ac = b \) for some natural number \(c \) and \(bd = a \) for some natural number \(d \). Therefore, \(acd = bd = a \) showing that \(cd = 1 \) and \(c = d = 1 \), and \(a = b \).

3.4 Is divides symmetric? Explain your answer.
Answer: No. for a counterexample, \(7 \) divides \(14 \), but \(14 \) does not divide \(7 \).

3.5 Is divides transitive? Explain your answer.
Answer: If \(a \mid b \) and \(b \mid c \), then \(ad = b \) for some natural number \(d \) and \(be = c \) for some natural number \(e \). Therefore, \(a(de) = be = c \) showing that \(a \) divides \(c \).

3.6 Is divides an equivalence? Explain your answer.
Answer: No. it is not symmetric.

3.7 Is divides a partial order? Explain your answer.
Answer: Yes. it is reflexive, antisymmetric, and transitive.

4 (35 pts) Consider congruence mod \(m \) relation \((a \equiv b \pmod{m}) \) on the set of integers.

4.1 What does it mean to say that \(a \) is congruent to \(b \) mod \(m \)?
Answer: It means that \(m \) divides \(a - b \), or \(a - b \) is a multiple of \(m \), or \(a \) and \(b \) have the same remainder when divided by \(m \), or \(a = b + mc \) for some integer \(c \).

4.2 Is \(a \equiv a \pmod{m} \) for every integer \(a \)? Explain your answer.
Answer: Yes. \(a - a = 0 \) is a multiple of \(m \).

4.3 If \(a \equiv b \pmod{m} \) is \(b \equiv a \pmod{m} \) for every pair of integers \(a \) and \(b \)?
Explain your answer.
Answer: Yes. If \(m \) divides \(a - b \), then \(m \) divides \(b - a \).

4.4 If \(a \equiv b \pmod{m} \) and \(b \equiv a \pmod{m} \) does \(a = b \) for every pair of integers \(a \) and \(b \)? Explain your answer.
Answer: No. a counterexample is \(3 \equiv 8 \pmod{5} \) and \(8 \equiv 3 \pmod{5} \), but \(3 \neq 8 \).

4.5 If \(a \equiv b \pmod{m} \) and \(b \equiv c \pmod{m} \) is \(a \equiv c \pmod{m} \) for every triple of integers \(a, b \) and \(c \)? Explain your answer.
Answer: Yes.

4.6 Is congruence mod \(m \) an equivalence? Explain your answer.
Answer: No. it is not symmetric.

4.7 Is congruence mod \(m \) a partial order? Explain your answer.
Answer: No. it is reflexive, antisymmetric, and transitive.
5 (10 pts) What function \(f(n) \) satisfies the recurrence \(f_n = 2f_{n-1} + 1 \) and initial condition \(f_0 = 0 \)? Listing the first few terms generated by the recurrence should help you identify \(f(n) \).

Answer: The function is \(f(n) = 2^n - 1 \).

Back to the quiz on page 349.
Back to the notes on page 289.
Keys to Quiz(zes) on Modular Numbers

Basic cryptography concepts (Key)

1 Consider the modular recurrence equation

\[r_n = (4r_{n-1} + 2) \mod 7. \]

with seed \(r_0 = 1 \).

1.1 What sequence is generated?

Answer: The sequence is \(\langle 1, 6, 5, 1, 6, \ldots \rangle \).

1.2 What is the period of the sequence?

2 Pretend you use a Caesar cipher with shift \(k = 6 \) to send and receive messages.

2.1 What is the encryption of “mrwatsoncomehere?”

2.2 What is decryption of the message “igxvkjoks?”

3 Pretend you use an affine cipher

\[(5x + 7) \mod 26 \]

to send and receive messages. Encrypt the message “soitgoes”

“So it goes” is a frequent refrain in Kurt Vonnegut’s novel, Slaughterhouse-Five, or The Children’s Crusade: A Duty-Dance with Death

Back to the quiz on page 351.
Back to the notes on page 293.

Modular arithmetic (Key)

1 Verify the following:

1.1 Verify that 2 is the remainder when 37 is divided by 7. Conclude that 37 can be reduced to \(2 \mod 7 \). 37 = 2 mod 2.

Answer: 37 = 5 \cdot 7 + 2: The remainder is \(r = 2 \) and the quotient is 5 when 37 is divided by 7. Multiples of 7 are equivalent to 0 \mod 7. Therefore, 37 = 2 mod 7.

1.2 Verify that 5 is the (smallest non-negative) remainder when –37 is divided by 7. Conclude that –37 can be reduced to \(5 \mod 7 \).

Answer: –37 = –6 \cdot 7 + 5. Multiples of 7 are equivalent to 0 \mod 7. Therefore, –37 = 5 mod 7.

1.3 Do you see how you can use –37 + 37 = 0 together with 37 = 2 mod 7 to deduce that –37 = 5 mod 7?

2 Verify the given value of \(x \) satisfies the linear congruence.
2.1 \(x = 5 \) satisfies \(3x = 1 \mod 7 \), that is \(3^{-1} = 5 \mod 7 \).
2.2 \(x = 5 \) satisfies \(5x = 1 \mod 8 \), that is \(5^{-1} = 5 \mod 8 \).

Back to the quiz on page 351.
Back to the notes on page 298.

The Euclidean algorithm and its extension (Key)

1 Given the factorization of numbers below, identify their greatest common divisor.

1.1 \(a = 210 = 2 \cdot 3 \cdot 5 \cdot 7 \) and \(m = 495 = 3^2 \cdot 5 \cdot 11 \)

Answer: Include each prime factor the maximum number of times it occurs in both numbers. The greatest common divisor is
\[
gcd(210, 495) = 3 \cdot 5 = 15
\]

1.2 \(a = 147 = 3 \cdot 7^2 \) and \(m = 392 = 2^3 \cdot 7^2 \)

Answer: Include each prime factor the maximum number of times it occurs in both numbers. The greatest common divisor is
\[
gcd(147, 392) = 7^2 = 49
\]

2 Use the Euclidean algorithm to compute the greatest common divisor of the numbers below. Identify the sequence of quotients and remainders that are generated.

2.1 \(\gcd(m, a) = \gcd(37, 17) \)

Answer:

\[
\begin{align*}
\text{Dividend} &= \text{Divisor} \cdot \text{Quotient} + \text{Remainder} \\
m &= a \cdot q + r \\
37 &= 17 \cdot 2 + 3 \\
17 &= 3 \cdot 5 + 2 \\
3 &= 2 \cdot 1 + 1 \\
2 &= 1 \cdot 2 + 0 \\
\therefore \ \gcd(37, 17) &= 1.
\end{align*}
\]

2.2 \(\gcd(m, a) = \gcd(165, 42) \)

Answer:

\[
\begin{align*}
\text{Dividend} &= \text{Divisor} \cdot \text{Quotient} + \text{Remainder} \\
\text{a} &= \text{m} \cdot q + r \\
165 &= 42 \cdot 3 + 39 \\
42 &= 39 \cdot 1 + 3 \\
39 &= 3 \cdot 13 + 0 \\
\therefore \ \gcd(165, 42) &= 3.
\end{align*}
\]

Back to the quiz on page 351.
Back to the notes on page 306.
Keys to Quiz(zes) on Proofs

Proofs by contradiction (Key)

1. Mimic Euclid’s proof that $\sqrt{2}$ is irrational to show that $\sqrt{3}$ is irrational.

 Answer: Pretend $\sqrt{3}$ is rational so that it can be written as

 $$\sqrt{3} = \frac{a}{b}, \quad \text{where} \quad a, b \in \mathbb{Z}, \ b \neq 0 \text{ and } \gcd(a, b) = 1$$

 Then, follow the steps:

 $$\sqrt{3}b = a$$

 $$3b^2 = a^2$$

 Therefore, a is a multiple of 3 and a can be written as $a = 3c$ for some integer c.

 This gives $3b^2 = 9c^2$ or $b^2 = 3c^2$. That is, b is a multiple of 3.

 But then both a and b are multiples of 3 which contradicts the hypothesis that $\gcd(a, b) = 1$.

2. Prove there is no largest composite number.

 Answer: Pretend there is a largest composite number m. Clearly, $m > 2$.

 Also, $m+1$ and $m+2$ are larger numbers. One of $m+1$ or $m+2$ is divisible by 2 and therefore composite, contradicting the assumption that m is the largest composite.

Back to the quiz on page 352.

Back to the notes on page 317.

Summative exam #6 (Key)

1. (12 pts) Consider the modular recurrence equation

 $$r_n = (4r_{n-1} + 2) \mod 9.$$

 with seed $r_0 = 0$. What are the values of r_1, r_2, r_3?

 Answer: The generated sequence has period 9.

 $$\langle r_0 = 0, \ r_1 = 2, \ r_2 = 1, \ r_3 = 6, \ r_4 = 8, \ r_5 = 7, \ r_6 = 3, \ r_7 = 5, \ r_8 = 4, \ r_9 = 0, \ldots \rangle$$

 Simple equations such as this, with significantly larger parameters than 4, 2 and 9 could be used to generate pseudo-random numbers.

2. (12 pts) Consider -37 divided by 5.

 2.1. What is the quotient q and smallest non-negative remainder r?

 Answer: $-37 = 5 \cdot (-8) + 3$. The quotient is $q = -8$ and the remainder is $r = 3$.

 2.2. Reduce $-37 \mod 5$ and $37 \mod 5$ to modular integers in \mathbb{Z}_5.

 Answer: $-37 \mod 5 = 3$ and $37 \mod 5 = 2$. Notice that $(3 + 2) \mod 5 = 0$.
3 (10 pts) Verify the following.

3.1 Show that $x = 4$ satisfies $3x = 1 \mod 11$.

Answer: $3 \cdot 4 = 12 = 11 + 1 = 1 \mod 11$.

3.2 What is $3^{-1} \mod 11$?

Answer: $3^{-1} = 4 \mod 11$.

4 (12 pts) Use the Euclidean algorithm to compute the greatest common divisor of 19 and 43.

Answer:

\[
\begin{align*}
43 &= 19 \cdot 2 + 5 \\
19 &= 5 \cdot 3 + 4 \\
5 &= 4 \cdot 1 + 1 \\
4 &= 1 \cdot 4 + 0
\end{align*}
\]

$\therefore \gcd(43, 19) = 1$.

5 (12 pts) Find parameters s and t such that

\[43s + 19t = \gcd(43, 19)\]

Answer:

<table>
<thead>
<tr>
<th>Quotients</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 3 4 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 2 7 9 43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccc}
+1 & -1 & +1 & -1 & +1 \\
\end{array}
\]

Determinants

The last determinant is

\[
\det \begin{bmatrix} 4 & 19 \\ 9 & 43 \end{bmatrix} = 43 \cdot 4 - 19 \cdot 9 = 172 - 171 = 1 = \gcd(43, 19)
\]

That is, $43s + 19t = 43 \cdot 4 + 19 \cdot (-9) = 1$, where $s = 4$ and $t = -9$.

6 (10 pts) Compute the value of x that solves the linear congruence equation

\[19x = 4 \mod 43\]

Answer: From the previous problem, you know $19^{-1} = -9 \mod 43$. Therefore,

\[-9 \cdot 19x = x = -9 \cdot 4 = -36 = 7 \mod 43\]

As a check, notice that

\[19 \cdot 7 = 133 = 43 \cdot 3 + 4 = 4 \mod 43\]
7 (12 pts) Use a proof by contradiction to show that $\sqrt[3]{2}$, the cube root of 2, is irrational.

Answer: Assume that $\sqrt[3]{2}$ is rational. Then

$$\sqrt[3]{2} = \frac{a}{b}$$

where $a, b \in \mathbb{Z}$ and $b \neq 0$.

Moreover, the fraction a/b can be assumed to be in reduced form, that is, $\gcd(a, b) = 1$. Then, follow the equations:

- Cube both sides:
 $$\sqrt[3]{2} = \frac{a}{b}$$

- Clear the sides of fractions:
 $$2 = \frac{a^3}{b^3}$$

- Conclude $a = 2k$ is even:
 $$2b^3 = a^3$$

- Divide by 2:
 $$2b^3 = 8k^3$$

- Conclude b is even:
 $$b^3 = 4k^3$$

The conclusion that both a and b are even contradicts the assumption. Therefore, $\sqrt[3]{2}$ is irrational.

8 (10 pts) What function $f(n)$ satisfies the recurrence $f_n = f_{n-1} + (n-1)$ and initial condition $f_0 = 0$? Listing the first few terms generated by the recurrence should help you identify $f(n)$.

Answer: The function is $f(n) = n(n-1)/2$.

9 (10 pts) Let $\mathcal{X} = \{a, b, c, d\}$.

9.1 Is $\{\{a, b\}, \{c, d\}\}$ a partition of \mathcal{X}? Explain your answer.

Answer: Yes, $\{a, b\}$ and $\{c, d\}$ are two non-empty disjoint subsets whose union is \mathcal{X}.

9.2 Is $\{\{a, b, c\}, \{c, d\}\}$ a partition of \mathcal{X}? Explain your answer.

Answer: No, $\{a, b, c\}$ and $\{c, d\}$ are not disjoint.

Back to the quiz on page 352.
Back to the notes on page 311.
Mindmaps: Discrete mathematics

Discrete Mathematics

Logic & Sets
- Boolean (Propositional)
- First-Order (Predicate)
- Sets & Subsets
- Boolean & Set Operations

Numbers & Naming
- Conversion Algorithms
- Binary & Hex
- Signed Integers
- Floating Point

Recursion & Induction
- Induction
- Recurrence Equations
- Summations
- Sequences

Relations & Functions
- Equivalences
- Partial Orders
- Permutations
- Polynomials
- Logs & Exponentials
- Integer Functions

Figure 13: Mind map: Discrete mathematics, part 1
Figure 14: Mind map: Discrete mathematics, part 2
Figure 15: Mind map: Logic and sets
Arithmetic Recurrence:
\[a_n = a_{n-1} + m \]
Function:
\[a(n) = mn + b \]

Geometric Recurrence:
\[g_n = rg_{n-1} \]
Function:
\[g(n) = ar^n \]

Triangular Recurrence:
\[t_n = t_{n-1} + (n-1) \]
Function:
\[t(n) = n(n+1)/2 \]

Fibonacci Recurrence:
\[f_n = f_{n-1} + f_{n-2} \]
Function:
\[f(n) = \frac{\phi^n - \bar{\phi}^n}{\sqrt{5}} \]

Mersenne Recurrence:
\[m_n = m_{n-1} + m_{n-2} \]
Function:
\[m(n) = 2^n - 1 \]

First Stirling Numbers: \(\{\cdot\} \)

Second Stirling Numbers: \(\{\cdot\} \)

Binomial Coefficients: \(\binom{n}{k} \)

Tower of Hanoi

Figure 16: Mind map: Sequences
Figure 17: Mind map: Recursion and induction
Counting

Truth Assignments
- 2^n truth assignments on n variables
- Count of Boolean Variables: n

Subsets
- Cardinality of Set: n
- Cardinality of Subset: k
- Binomial Coefficients: $\binom{n}{k}$

Boolean Expressions (Functions)
- 2^n Boolean functions on n variables
- Count of Boolean Variables: n

Relations
- Domain Cardinality: $|\mathcal{X}|$
- Co-Domain Cardinality: $|\mathcal{Y}|$

Functions
- Domain Cardinality: $|\mathcal{X}|$
- Co-Domain Cardinality: $|\mathcal{Y}|$
- $|\mathcal{Y}|^{\mathcal{X}}$

Subsets
- Cardinality of Set: n
- Cardinality of Subset: k

Relations
- Domain Cardinality: $|\mathcal{X}|$
- Co-Domain Cardinality: $|\mathcal{Y}|$

Functions
- Domain Cardinality: $|\mathcal{X}|$
- Co-Domain Cardinality: $|\mathcal{Y}|$
- $|\mathcal{Y}|^{\mathcal{X}}$

Counting

Figure 18: Mind map: Counting
Relations

Properties
- Reflexive: $x \sim x$
- Antisymmetric: $x \sim y \land y \sim x \Rightarrow x = y$
- Symmetric: $x \sim y \Rightarrow y \sim x$
- Transitive: $x \sim y \land y \sim z \Rightarrow x \sim z$
- Nondeterministic

Partial Orders
- Subset \subseteq
- Divides $|$
- Less than or equal \leq

Equivalences
- Congruence mod \equiv
- Parallel Projections

Representing
- Adjacency matrix
- Bipartite graph
- Subset of ordered pairs

Figure 19: Mind map: Relations
Figure 20: Mind map: Functions
Figure 21: Mind map: Numbers and naming
Figure 22: Mind map: Number theory
Bibliography

Index

2001: A Space Odyssey, 309

Ackermann function, 48
Addition, 33–35, 39, 43, 233
Adjacent matrix, 188–190, 192, 193, 267, 281
Algebra, 64, 125, 227, 240, 293
Matrix, 302

Algebraic sum, 9, 225, 226, 343, 394
ASCII, 108, 181, 343, 395
Associative, 34, 35, 66, 75, 261

Arabic, 180
Arithmetic, 19, 25, 26, 30, 33, 36, 39, 41, 43, 49, 52, 58, 153–155, 166, 167, 294
Fixed-point, 35, 130, 132, 134, 139, 169
Floating-point, 35, 153, 163, 164, 166, 167, 169
IEEE 754, 163
Modular, 36, 291, 294, 298
Addition, 295
Multiplication, 297

Arithmetic sum, 9, 225, 226, 343, 394
ASCII, 108, 181, 343, 395
Associative, 34, 35, 66, 75, 261

Arithmetic, 19, 25, 26, 30, 33, 36, 39, 41, 43, 49, 52, 58, 153–155, 166, 167, 294
Fixed-point, 35, 130, 132, 134, 139, 169
Floating-point, 35, 153, 163, 164, 166, 167, 169
IEEE 754, 163
Modular, 36, 291, 294, 298
Addition, 295
Multiplication, 297

Bézout, Étienne, 301–303, 307
Babylonia, 36, 249, 250
Bach, Johann Sebastian, 233
Base cases, 219, 233
Basic Latin, 343, 395
Bernoulli’s inequality, 230
Biased, 38, 39, 63, 163, 164
Bible, 171
Big Bang, 242
Theory, 125, 274
Big Oh, 87, 93, 103, 246–248
Binary, 5, 25, 26, 30, 33, 38, 39, 52, 55, 64, 131, 168, 169, 172
Notation, 25
Search, 247
Tree, 215
Full, 215

Binomial theorem, 198

Carry In, 59
Carry Out, 59
Black box test, 277
Boolean, 49, 55, 56, 74, 76, 183, 219, 278, 320, 325, 358–360
Conditional, 56, 67
Conjunction, 55, 59
Contraposition, 67, 102
Conversion, 67
Disjunction, 56
Exclusive-Or, 57, 59
Inverse, 67
Logic, 58, 85, 88, 313
logic, 85
Control, 85
Negation, 55, 67
Variable, 49, 85, 183, 184, 186, 187, 208

C programming language, 87, 103, 104, 274
Calculations, 33
Calculus, 112, 125, 126, 136, 138, 139, 141, 150, 252
Calendar, 11
Cantor, Georg, 315
Cardinality, 8, 33, 105, 174, 184, 187, 189, 191, 196, 198, 199, 201, 204, 219, 280, 308
Carroll, Lewis, 38, 41, 82, 83, 95, 142
Cartesian
Coordinates, 101
Product, 9, 184, 192, 267
Cassini, Giovanni, 256

Carroll, Lewis, 38, 41, 82, 83, 95, 142
Cartesian
Coordinates, 101
Product, 9, 184, 192, 267
Cassini, Giovanni, 256

Carroll, Lewis, 38, 41, 82, 83, 95, 142
Cartesian
Coordinates, 101
Product, 9, 184, 192, 267
Cassini, Giovanni, 256

Carroll, Lewis, 38, 41, 82, 83, 95, 142
Cartesian
Coordinates, 101
Product, 9, 184, 192, 267
Cassini, Giovanni, 256

Carroll, Lewis, 38, 41, 82, 83, 95, 142
Cartesian
Coordinates, 101
Product, 9, 184, 192, 267
Cassini, Giovanni, 256
Catalan numbers, 10, 213–216
Cauchy
 Sequence, 141
Cauchy, Augustin Louis, 141
Ceiling, 5, 114, 115
Characteristic function, 72
Chess, 257
Church-Turing thesis, 317
Click & Clack, 68, 168
Closure, 34, 35, 66, 75, 261
Collatz, 88
 Conjecture, 88
 Sequence, 88
Combinatorics, 183
Commutative, 35, 66, 75, 93
Comparisons, 61
Complement
 Notation, 63, 154, 156
 Number, 39
 Ten’s, 41, 63
 Two’s, 63
Computability, 33, 86
Computer, 20, 25, 29, 39, 153
 Memory, 25, 27
Concatenation, 10, 134
Concrete Mathematics, 20
Conic sections, 332, 371
Conjecture
 Collatz, 88, 94
 Goldbach, 94
 Twin prime, 94
Conjunctive normal form, 60
Contingency, 51, 64, 65
Continuous mathematics, 19, 125
Contradiction, 45, 64, 68, 106, 107, 228, 282
Control unit, 28
Conversion
 Number systems, 38, 125, 130, 133
 Units of measure, 119
Counting, 183
 Antisymmetric relations, 269
 Boolean expressions, 185
 Boolean functions, 185
 Functions, 187
 Partitions, 207
 Permutation cycles, 204, 271
 Permutations, 190
 Reflexive relations, 267
 Relations, 191, 267
 Subsets, 195
 Symmetric relations, 268
 Transitive relations, 270
Truth assignments, 183
CPU, 28
Cryptology, 292
 Affine Ciphers, 293
 Caesar Ciphers, 292
Curry, Haskell, 20, 320
Currying, 68, 349, 410
Cycle notation
 Permutation, 271
De Morgan, Augustus, 68, 92, 330, 367
De Morgan laws, 102, 363
Decartes, Rene, 23, 184
Decidable, 318
Decimal, 5, 25, 26, 31, 36–39, 52, 64, 157,
 160, 168, 169, 172
 Notation, 25
Decision tree, 203
Definition
 Additive inverse mod m, 296
 Cardinality, 105
 Characteristic function, 72
 Congruence mod m, 278
 Disjoint sets, 283
 Divides, 264
 Equivalence relation, 280
 Greatest common divisor, 299
 Harmonic numbers, 251
 Harmonic sequence, 251
 Homogeneous points, 279
 Multiplicative inverse mod m, 297
 Palindrome, 236
 Partial order, 263
 Partition of a set, 283
 Permutation, 190
 Relation, 192
 Set intersection, 73
 Sifting, 236
 Subset, 73, 195
 Total order, 263
Definitions
 Multiplication mod m, 296
 Determinant, 302–304, 307, 308
 Differences, 142, 178
 Digit, 55, 63
 Digitit, 7, 26, 31, 37, 38, 63, 71, 80, 105,
 344, 400
 Dijkstra, Edsger, 19
 Discrete mathematics, 19–21, 30
 Disjoint sets, 73
 Disjunctive normal form, 60
 Distributive, 36, 66, 76
 Division, 33, 34, 43, 46
DNA, 177, 179
Duality, 19
 Wave–particle, 19
Dynamite, Napoleon, 22, 23
\(e \), 80
EBCDIC, 181
Einstein, Albert, 51, 183, 233, 277
Empty
 Function \(\phi \), 6, 189
 List, 40
 Set \(\emptyset \), 8, 50, 72, 77, 195, 204, 265, 270,
 271
 String \(\lambda \), 10, 172, 236
 Sum, 10, 41, 145, 234
End of the world, 240, 241
Endian
 Little, 27
English, 21, 108, 172, 185, 263, 288, 292,
 293, 319, 332, 341, 342, 370, 371,
 392, 393
Enzensberger, Hans Magnus, 19
Equivalence, 8, 36, 50, 51, 57, 207, 277,
 278
 Relations, 277
Error
 Absolute, 52
 Relative, 52, 167
 Rounding, 167
Esher, M. C., 233
Euclid, 227, 298, 299, 313, 365
 Elements, 313, 365
Euclidean
 Algorithm
 Extended, 303
 Algorithm
 Extended, 302
 Algorithm, 119, 298, 299, 302, 303,
 306, 308, 352, 415
 Distance, 51
 Division, 33, 34, 43, 46
Euler diagram, 72
Euler’s
 Totient function, 6, 308
 \(\gamma \), 5, 80, 255
 \(\psi \), 5, 52, 138
Euler, Leonhard, 5, 6, 72, 80, 210, 255,
 308
Eulerian numbers, 209, 210
Everything, 171
Exponential, 5, 6, 112, 113
Exponentiation, 33, 48
 Table, 48
Expression, 49, 51

Facebook, 345, 401
Factorial, 31, 114, 191, 206, 213, 235
Falling factorial powers, 126
Fermat
 Last theorem, 93
 Fermat, Pierre, 10, 93
Fibonacci, 9, 144–146, 148, 230, 239, 243, 244, 256, 301
Fibonacci numbers, 243
Field, 35, 36, 294
Floating point
 Machine epsilon, 167
 Normalization, 165
 Numbers, 163
Floor, 5, 114, 115
Ford, Richard, 22
Fraction, 34, 35
Freerice, 230
Full-adder, 59

Function, 6, 19, 21, 33, 47, 52, 73, 93, 101, 141, 189, 190, 196, 198, 202, 206, 208, 209, 220–223, 225, 226, 230, 239, 243, 244, 326, 332, 361, 370
 Ackermann, 48
 Boolean, 60, 66–68, 185–187, 325, 358–360
 Ceiling, 5, 114, 115
 Characteristic, 72
 Co-domain, 332, 370
 Composition, 121
 Computable, 101
 Domain, 189, 332, 370
 Exponentials, 111
 Floor, 5, 114, 115, 119
 Fractional part, 117, 119
 GCD, 118
 Logarithms, 111
 One-to-one, 6, 21, 102, 104, 105, 114, 189, 190, 209, 261, 316, 332, 371, 373
 Horizontal line test, 103
 Onto, 6, 102, 103, 105, 114, 120, 189, 190, 209, 261, 316, 332, 370, 371, 373
 Horizontal line test, 102
 Partial, 332, 370
 Permutations, 114, 261
 Polynomial, 111
 Range, 189, 332, 370
 Round, 116
 Successor, 43, 234
 Total, 332, 370
 Vertical line test, 101

Gödel, Kurt, 69, 233
Geometric sums, 9, 177, 223, 224, 243
German, 33
Getysburg Address, 97
GIMPS, 143
Go, 257
God, 171, 240, 241, 243
Golden ratio, 5, 36, 51, 89, 144, 150, 244
Google, 97
Graham, Ronald, 20
Graphs
 Decision tree, 203
 Greatest common divisor, 7, 87, 106, 114, 118, 119, 298, 299, 301, 308, 352, 415
 Greek, 172
 Group, 34, 261
 Abelian, 93
Halmos, Paul, 71
Halting
 Machine, 318
 Problem, 318
Harmonic
 Numbers, 251
 Sequence, 251
 Harmonic number, 10, 250, 252, 255
 Hash table, 110, 122
 Hayes, Brian, 183, 275
 Hexadecimal, 7, 25–27, 31, 38, 52, 71, 105, 131, 172, 344, 400
 Notation, 25
Hofstadter, Douglas, 233
Homework
 Functions, 120
 Horner’s rule, 125, 128, 129, 131–133, 136–138, 157, 158, 168, 334, 374, 394, 396
 Conversion to decimal, 130
 Polynomial evaluation, 128
 Horner, William George, 125
HTML, 55
IBM, 211
Identity
 Element, 34, 35, 66, 75
 Matrix, 302
IEEE 754, 163, 164, 166, 167
Index
 Successor, 233
Induction, 219, 233
 Basis, 184, 191, 219
 Conclusion, 184, 191, 219
 Hypothesis, 184, 191, 219
Inference rule, 65, 68, 313
 Modus ponens, 68, 278
 Modus tollens, 68
 Currying, 68, 349, 410
 Resolution, 326, 360
Infinity ∞, 252
Initial conditions, 219, 236
Integers, 9, 34, 38, 46, 71, 114, 153–155, 164, 263
 Biased, 165
 Notation, 164
 Two’s complement
 Notation, 155
Internet, 21
Intersection \cap, 8, 73, 74, 348, 409
Inverse
 Additive, 34, 35
 Multiplicative, 34, 35
 IPv4, 31, 121
 IPv6, 31, 324, 330, 356, 368
 Iteration, 86
Kahan, William, 153
Kelly-Bootle, Stan, 233
Kleene, Stephen, 10, 172, 236
Knights and knoaves, 69
Knuth, Donald, 20, 25, 44, 112, 117, 291, 303

\LaTeX, 20, 55
\lambda calculus, 101
Lamport, Leslie, 20
Least common multiple, 7
Lemma, 68
Lincoln, Abraham, 93, 97
Linear congruence, 291, 298, 301, 307
Linear congruence equations, 307
List, 40
Logarithm, 5, 6, 52, 112, 175, 255
Logic, 19, 51, 52, 55, 85
Computation, 29
Control, 29
Instruction set, 29
Predicate, 50–52, 72, 74, 86, 88, 93, 94, 102, 332, 370, 371
Lucas, Édouard, 239, 256
Machine numbers, 153
Magic table, 303, 306
Mantissa, 165
Mathematical induction, 204, 219
Mathematician, 33, 49, 249
Mathematics, 111, 112
Continuous, 19, 125
Discrete, 19–21, 30
Matrix, 302
Adjacency, 188–190, 192, 193, 267, 281
Permutation, 262
Memory, 25, 27
Mersenne number, 8, 9, 143, 145, 146, 148, 208, 220, 238, 240–242, 385, 394
Mesopotomia, 249
Mindmap, 419
Modular integers, 9, 36, 71, 105, 294
\mathbb{Z}, 36
Modular numbers, 105, 291
Modulo, 36, 154, 184, 278, 294
Modus ponens, 68, 278
Modus tollens, 68
Monoid, 33
Multiplication, 33–35, 42, 43, 48
Table, 43
Munroe, Randall, 20, 21, 54
Names, 171, 187
Napier, John, 112
Natural numbers, 9, 31, 33, 34, 38, 43, 49, 71, 143, 153, 154, 171, 219–221, 224, 225, 228–230, 234, 237, 263
\mathbb{N}, 33
Newton’s method, 248
Newton, Issac, 248–250
Norvig, Peter, 97
Nothing, 171, 235
Number
Harmonic, 10, 250, 252, 255
Integers, 9, 34, 38, 46, 71, 114, 115–155, 164, 263
\mathbb{Z}, 34
Machine, 153
Modular, 87
Natural, 9, 31, 33, 34, 38, 43, 49, 71, 143, 153, 154, 171, 219–221, 224, 225, 228–230, 234, 237, 263
Positional notation, 130
Prime, 6, 8, 9, 36, 86, 94, 228, 229, 265, 293, 294, 298, 313, 314
Rational, 9, 34–36, 38, 105, 163, 293, 298, 313, 314
Real, 9, 33, 36, 38, 72, 119, 263, 293, 36
Representation
Binary, 38
Complement, 39
Decimal, 38
Hexadecimal, 38
Quaternary, 177
Sign-Magnitude, 38
Sign-magnitude, 154
Octal, 7, 38, 71, 131, 344, 400
Odd, 145, 147
OEIS, 143, 270, 271
One, 5
One-to-one, 103
Orders, 263
Linear, 263
Partial, 263
Total, 263
Palindrome, 125, 236
Papadimitriou, Christos, 93
Paradox, 319
Curry, 320
Russell, 320
Pareto principle, 245
Partial order, 263
Divides, 264
Subset, 265
Partition, 79, 207, 255, 277, 278, 281, 283, 286
Partitions
Positive Integer, 210
Pascal’s
Identity, 200, 213, 235, 236, 255
Rectangle, 201
Triangle, 78, 195, 199–202, 213, 214, 230, 237, 238, 345, 400, 411
Pascal’s triangle
Row sum, 198
Pascal, Blaise, 9, 20, 200
Patahshnik, Oren, 20
Peano
Axioms, 234
Permutation, 114, 190, 204, 205, 209, 235, 255, 261, 263, 281, 333, 373
Cycle notation, 261, 271
Matrix notation, 261
Two-line notation, 261
\varphi, 51, 144, 150, 244
\pi, 80
\pi, 5, 36, 229, 237, 278, 293
Pigeonhole principle, 107, 108, 110, 189
Poincaré, Henri, 71, 171
Polya, George, 228
Polynomial, 125
Degree, 125
Root, 125
Polynomials, 111, 125
Maclaurin, 138
Positional notation, 38, 111, 130, 131
Power
Of 10, 238
Of 2, 143, 145, 146, 148, 198, 220, 223, 234, 238
Power set, 8, 203, 204, 265
Cardinality, 203
Precedence
Boolean operators, 57
Prime numbers, 6, 8, 9, 36, 86, 94, 228, 229, 265, 293, 294, 298, 313, 314
Product, 10, 34
Programming, 20, 101
Projective geometry, 279
Proof, 219
By contradiction, 68, 313
By induction, 219
Direct, 68, 188, 200
Index

Indirect, 68
Mathematical induction, 184, 187, 204, 219–222, 228–230, 233, 240
Reductio ad absurum, 282, 313
Vacuous, 254
Punch (Hollerith) card, 211
Pyramidal numbers, 201

Quadratic, 144, 145, 147, 148
Formula, 95
Quantification, 88
For all \(\forall \), 89
For some \(\exists \), 89

Quaternary Notation, 177
Questions on Arithmetic, 52
Quotient, 43, 114, 117, 118
Table, 44
Quran, 171

Random numbers, 291
Rational numbers, 9, 34–36, 38, 105, 163, 165
Real numbers, 9, 33, 36, 38, 72, 119, 263, 293
Recurrence equation, 198, 206, 208, 210, 234, 236–239, 242, 246, 247, 249, 252, 255–257, 273
Recursion, 40, 47, 142, 203, 219, 233, 234, 236, 239, 246–248, 271
Strings, 236
Reflexive law, 263
Relation, 189, 191, 192, 194, 195
Antisymmetric, 263–265, 269, 270, 274, 275
Congruence, 192
Divides, 8, 192, 264
Equivalence, 277, 278
Reflexive, 263, 264, 267, 275, 277, 280–282
Subset, 265
Symmetric, 268, 275, 277, 280–282
Transitive, 263, 264, 275, 277, 280–282
Relatively prime, 7, 288, 297, 303, 306, 308
Remainder, 43, 114, 118
Table, 45
Repeated remaindering, 133
Resolution, 326, 360
Riemann, Bernhard, 141
RSA, 299, 308
Russell, Bertrand, 277, 320

Schrödinger’s cat, 23
Schrödinger, Erwin, 23
Scrabble, 275, 276
Search, 87
Linear, 87
Sensible Numbers, 321
Sequence, 37, 88, 141, 143, 223, 236
Lucas, 239, 256
Sequences
 Ascents, 209
Defined by recursion, 236
Set
 Finite, 71
Infinite, 71, 105
Power set, 8, 203, 204, 265
Set complement \(\neg \), 72, 74, 348, 409
Sets, 19, 33, 50, 52, 71, 74, 76, 86, 90, 195
 Disjoint, 73, 283
Operations, 71
Subsets, 86
Sexagesimal, 36, 249
Shakespeare, William, 171
Shannon, Claude, 55, 58, 122
Sign-Magnitude, 38, 39, 63
Signed numbers, 38, 154
Smullyan, Raymond, 69
Spanish, 177, 179
SpongeBob SquarePants, 280, 347, 405
\(\sqrt{2} \), 5, 36, 249, 250, 313, 315
Stansifer
 Paul, 20
 Ryan, 20
State, 317
Stern-Brocot tree, 105, 106
Stirling’s Approximation, 235
Stirling’s identity
Second kind, 286
The Art of Computer Programming, 20
Theorem
Stirling’s identity
Second kind, 286
Theorems
 Abel–Ruffini, 95
 Arithmetic sums, 226
 Bezout’s, 301
 Binomial, 198
 Binomial coefficients
 Factorial form, 202
 Cantor’s diagonal argument, 316
 Congruence mod \(m \), 281
 Counting
 A number’s string length, 174
 Antisymmetric relations, 269
 Boolean functions, 186
 Fixed-length strings, 175
 Functions, 188
 Permutations, 191
 Reflexive relations, 267
 Relations, 194
 Set expressions, 78
 Subsets, 202
 Subsets, again, 214
 Symmetric relations, 269
 Truth assignments, 184
 Equivalences and partitions, 283
 Exponential
 Change of base, 113
 Fundamental theorem
 Algebra, 126
 Arithmetic, 227
 Calculus, 142
 Discrete calculus, 147, 148
 Generalized pigeonhole principle, 109
 Geometric sums, 224
 Greatest common divisor recurrence, 299
 Harmonic numbers diverge, 252
 Incomplementness, 69
 Infinitely many primes, 313
 Irrationality of \(\sqrt{2} \), 315
 Lamé’s, 300
 Logarithm
 Change of base, 113
 Modular addition, 295
 Modular multiplication, 297
 No horse of a different color, 228
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pascal’s identity</td>
<td>200</td>
</tr>
<tr>
<td>Pascal’s triangle</td>
<td>201</td>
</tr>
<tr>
<td>Row sum</td>
<td>214</td>
</tr>
<tr>
<td>Pigeonhole principle</td>
<td>107</td>
</tr>
<tr>
<td>Point homogeneity</td>
<td>282</td>
</tr>
<tr>
<td>Pythagorean</td>
<td>50, 249</td>
</tr>
<tr>
<td>Quotient-remainder</td>
<td>45</td>
</tr>
<tr>
<td>Stirling’s approximation</td>
<td>235</td>
</tr>
<tr>
<td>Stirling’s identity</td>
<td>206, 273</td>
</tr>
<tr>
<td>Point homogeneity</td>
<td>282</td>
</tr>
<tr>
<td>Sum of natural numbers</td>
<td>220</td>
</tr>
<tr>
<td>Sum of powers of 2</td>
<td>222</td>
</tr>
<tr>
<td>These notes</td>
<td>11, 19–23, 36, 41, 51, 52, 72, 139, 149, 153, 169, 229</td>
</tr>
<tr>
<td>Third grade</td>
<td>21, 36, 39, 40, 143, 154, 278, 279, 294, 295</td>
</tr>
<tr>
<td>Time complexity</td>
<td>246</td>
</tr>
<tr>
<td>Torah</td>
<td>171</td>
</tr>
<tr>
<td>Total order</td>
<td>263</td>
</tr>
<tr>
<td>Tower of Hanoi</td>
<td>240</td>
</tr>
<tr>
<td>Tractable</td>
<td>247</td>
</tr>
<tr>
<td>Transitive law</td>
<td>263</td>
</tr>
<tr>
<td>Trichotomy law</td>
<td>263</td>
</tr>
<tr>
<td>Truth table</td>
<td>67</td>
</tr>
<tr>
<td>Tuft rules</td>
<td>20</td>
</tr>
<tr>
<td>Tuft, Edward</td>
<td>20</td>
</tr>
<tr>
<td>Tukey, John</td>
<td>55</td>
</tr>
<tr>
<td>Turing</td>
<td>10, 20, 101, 317, 319</td>
</tr>
<tr>
<td>Universal</td>
<td>319</td>
</tr>
<tr>
<td>Turing, Alan</td>
<td>85, 313, 315, 317</td>
</tr>
<tr>
<td>Two</td>
<td>5</td>
</tr>
<tr>
<td>Two’s complement</td>
<td>63, 64, 155–158, 160–162, 168, 169</td>
</tr>
<tr>
<td>Bit-flipping rule for negation</td>
<td>64, 157</td>
</tr>
<tr>
<td>Negating a number</td>
<td>156</td>
</tr>
<tr>
<td>Unicode</td>
<td>55, 172, 181, 343, 395</td>
</tr>
<tr>
<td>Union ∪</td>
<td>8, 74, 79, 348, 409</td>
</tr>
<tr>
<td>Universal set U</td>
<td>9, 50, 72, 76, 77, 79, 82, 86, 408</td>
</tr>
<tr>
<td>Unix</td>
<td>191</td>
</tr>
<tr>
<td>Venn diagram</td>
<td>72, 192, 328, 364</td>
</tr>
<tr>
<td>Venn, John</td>
<td>72, 76</td>
</tr>
<tr>
<td>von Neumann, John</td>
<td>291</td>
</tr>
<tr>
<td>Wales, Jimmy</td>
<td>20</td>
</tr>
<tr>
<td>Wikipedia</td>
<td>20, 263</td>
</tr>
<tr>
<td>Wizard of Oz</td>
<td>228</td>
</tr>
<tr>
<td>Words with Friends</td>
<td>275</td>
</tr>
<tr>
<td>xkcd</td>
<td></td>
</tr>
<tr>
<td>3 × 9</td>
<td>323, 355</td>
</tr>
<tr>
<td>1337: Part 2</td>
<td>112</td>
</tr>
<tr>
<td>Applied Math</td>
<td>20</td>
</tr>
<tr>
<td>Approximations</td>
<td>54</td>
</tr>
<tr>
<td>Barrel Part 1</td>
<td>20</td>
</tr>
<tr>
<td>Calendar of meaningful dates</td>
<td>11</td>
</tr>
<tr>
<td>Can’t Sleep</td>
<td>183</td>
</tr>
<tr>
<td>Collatz conjecture</td>
<td>85</td>
</tr>
<tr>
<td>Cryptography</td>
<td>291</td>
</tr>
<tr>
<td>Fetishes</td>
<td>315</td>
</tr>
<tr>
<td>Forgot Algebra</td>
<td>19</td>
</tr>
<tr>
<td>Functional</td>
<td>101</td>
</tr>
<tr>
<td>Goldbach Conjectures</td>
<td>94</td>
</tr>
<tr>
<td>Haiku Proof</td>
<td>314</td>
</tr>
<tr>
<td>Halting Problem</td>
<td>318</td>
</tr>
<tr>
<td>Haskell</td>
<td>40</td>
</tr>
<tr>
<td>Ineffective Sorts</td>
<td>261</td>
</tr>
<tr>
<td>Margin</td>
<td>21</td>
</tr>
<tr>
<td>Matrix transform</td>
<td>302</td>
</tr>
<tr>
<td>Number line</td>
<td>33</td>
</tr>
<tr>
<td>Principle of Explosion</td>
<td>313</td>
</tr>
<tr>
<td>Security</td>
<td>292</td>
</tr>
<tr>
<td>Self-Description</td>
<td>233</td>
</tr>
<tr>
<td>Set Theory</td>
<td>71</td>
</tr>
<tr>
<td>Seven</td>
<td>280</td>
</tr>
<tr>
<td>Sports</td>
<td>291</td>
</tr>
<tr>
<td>Sudoku</td>
<td>97</td>
</tr>
<tr>
<td>xkcd</td>
<td>20, 53</td>
</tr>
<tr>
<td>Zeno of Elea</td>
<td>231</td>
</tr>
<tr>
<td>Paradoxes</td>
<td>231</td>
</tr>
<tr>
<td>Zero</td>
<td>5</td>
</tr>
</tbody>
</table>