Counting Functions by Subsets

It is useful to be able to count the number of functions from a finite set to another finite set.

One way to count functions is By recognizing that a function can Be represented as a set of ordered pairs with a special property

$$
(\forall x \in \mathbb{X})(\exists!y \in \mathbb{Y})((x, y) \in f)
$$

Let $f: \mathbb{X} \rightarrow \mathbb{Y}$ Be a function. Let $|\mathbb{X}|=n$ and $|\mathbb{Y}|=m$.
Then f is a subset of the Cartesian product $\mathbb{X} \times \mathbb{Y}$. And the cardinality of f is n.

For each of the n pairs $(x, \sqcup) \in f$ there are m possible ways to fill in the y value. Therefore, there are

$$
m^{n} \text { functions } f: \mathbb{X} \rightarrow \mathbb{Y}
$$

Counting Functions by Subsets

As a "counting functions" example, let

$$
\mathbb{X}=\{0,1\} \quad \text { and } \quad \mathbb{Y}=\{a, b, c\}
$$

There are $3^{2}=9$ functions from \mathbb{X} to \mathbb{Y}.
l. $\{(0, a),(1, a)\}$
2. $\{(0, a),(1, b)\}$
3. $\{(0, a),(1, c)\}$
4. $\{(0, b),(1, a)\}$
5. $\{(0, b),(1, b)\}$
7. $\{(0, c),(1, a)\}$
8. $\{(0, c),(1, b)\}$
b. $\{(0, b),(1, c)\}$
9. $\{(0, c),(1, c)\}$

Counting Functions by Adjacency Matrix

Another way to count functions is By recognizing that a function can Be represented By an adjacency matrices. Let $f: \mathbb{X} \rightarrow \mathbb{Y}$ Be a function, and let $|\mathbb{X}|=n$ and $|\mathbb{Y}|=m$. Then f is an $n \times m$ adjacency matrix.

		m columns					
		0	1	2	\cdots	$m-2$	$m-1$
n	0						
	1						
rows	\vdots						
	$n-1$						

Each row will have a 1 in one and only one column. There are m column choices for each of the n rows.

Therefore, there are m^{n} functions from \mathbb{X} to \mathbb{Y}.

Counting Functions by Adjacency Matrix

As a "counting functions" example, let

$$
\mathbb{X}=\{0,1\} \quad \text { and } \quad \mathbb{Y}=\{a, b, c\}
$$

There are $3^{2}=9$ functions from \mathbb{X} to \mathbb{Y}.
।. $\begin{gathered} \\ 0 \\ 1\end{gathered}\left(\begin{array}{ccc}a & b & c \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$
4. $\begin{gathered}a \\ 1\end{gathered}\left(\begin{array}{lll}a & b & c \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$
7. $\begin{gathered}a \\ 0\end{gathered}\left(\begin{array}{lll}a & b & c \\ 1 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$
$a \quad b \quad c$
$a \quad b \quad c$
$a \quad b \quad c$
2. $01\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$
5. $\begin{aligned} & 0 \\ & 1\end{aligned}\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right)$
8. $\begin{aligned} & 0 \\ & 1\end{aligned}\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$
$\begin{array}{lll}a & b & c\end{array}$
$\begin{array}{lll}a & b & c\end{array}$
9. $\begin{gathered}a \\ 1\end{gathered}\left(\begin{array}{lll}0 & b & c \\ 0 & 0 & 1 \\ 0 & 1\end{array}\right)$

Counting Functions by Bipartite Graph

Another way to count functions is By recognizing that a function can Be represented By a Bipartite Graphs.

Let $f: \mathbb{X} \rightarrow \mathbb{Y}$ Be a function. Let $|\mathbb{X}|=n$ and $|\mathbb{Y}|=m$.
Then, f is a Bipartite Graph from \mathbb{X} to \mathbb{Y}.
A sipartite graph is a collection of directed edges from \mathbb{X} to \mathbb{Y}.
To be a function, the Graph has one and only one edge leaving each element in \mathbb{X}.

That edge can be directed at any of the m elements in \mathbb{Y}.
Therefore, there are m^{n} functions from \mathbb{X} to \mathbb{Y}.

Counting Functions by Adjacency Matrix

As a "counting functions" example, let

$$
\mathbb{X}=\{0,1\} \quad \text { and } \quad \mathbb{Y}=\{a, b, c\}
$$

There are $3^{2}=9$ functions from \mathbb{X} to \mathbb{Y}.

2

3.

Counting Functions

Theorem 1 (Counting Functions). Let the cardinality of \mathbb{X} be $n(|\mathbb{X}|=n)$ and let the cardinality of \mathbb{Y} be $n(|\mathbb{Y}|=m)$.

Then there are $m^{n} \quad$ functions from \mathbb{X} to \mathbb{Y}

