**Counting Functions by Subsets** 

It is useful to be able to count the number of functions from a finite set to another finite set.

One way to count functions is by recognizing that a function can be represented as a set of ordered pairs with a special property

$$(\forall x \in \mathbb{X}) (\exists ! y \in \mathbb{Y}) ((x, y) \in f)$$

Let  $f: \mathbb{X} \to \mathbb{Y}$  be a function. Let  $|\mathbb{X}| = n$  and  $|\mathbb{Y}| = m$ .

Then f is a subset of the Cartesian product  $X \times Y$ . And the cardinality of f is n.

For each of the *n* pairs  $(x, \sqcup) \in f$  there are *m* possible ways to fill in the *y* value. Therefore, there are

$$m^n$$
 functions  $f:\mathbb{X}\to\mathbb{Y}$ 

### **Counting Functions by Subsets**

As a "counting functions" example, let

$$\mathbb{X} = \{0, 1\} \quad \text{and} \quad \mathbb{Y} = \{a, b, c\}$$

There are  $3^2 = 9$  functions from X to Y.

| I. $\{(0, a), (1, a)\}$                     | $4. \{(0, b), (1, a)\}$ | <b>7</b> . $\{(0, c), (1, a)\}$ |
|---------------------------------------------|-------------------------|---------------------------------|
| 2. $\{(0, a), (1, b)\}$                     | 5. {(0, b), (1, b)}     | <b>8</b> . {(0, c), (1, b)}     |
| <b>3</b> . {(0, <i>a</i> ), (1, <i>c</i> )} | Ь. {(0, b), (1, c)}     | <b>9</b> . {(0, c), (1, c)}     |

## **Counting Functions by Adjacency Matrix**

Another way to count functions is by recognizing that a function can be represented by an adjacency matrices. Let  $f: \mathbb{X} \to \mathbb{Y}$  be a function, and let  $|\mathbb{X}| = n$  and  $|\mathbb{Y}| = m$ . Then f is an  $n \times m$  adjacency matrix.



Each row will have a 1 in one and only one column. There are m column choices for each of the n rows.

Therefore, there are  $m^n$  functions from X to Y.

# **Counting Functions by Adjacency Matrix**

As a "counting functions" example, let

$$X = \{0, 1\}$$
 and  $Y = \{a, b, c\}$ 

There are  $3^2 = 9$  functions from X to Y.

| $\begin{array}{c} a \\ 1 \\ 1 \end{array} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ \end{array}$ |             |                                             | $\begin{array}{c} a \\ 0 \\ 1 \end{array} \begin{pmatrix} 0 \\ 1 \end{array}$ |  | 7. | $\begin{array}{c} a \\ 0 \\ 1 \end{array} \begin{pmatrix} 0 \\ 1 \end{array}$       | b<br>0<br>0 | $\begin{pmatrix} c \\ 1 \\ 0 \end{pmatrix}$ |
|--------------------------------------------------------------------------------------------|-------------|---------------------------------------------|-------------------------------------------------------------------------------|--|----|-------------------------------------------------------------------------------------|-------------|---------------------------------------------|
| $2 \begin{array}{c} a \\ 0 \\ 1 \end{array} \begin{pmatrix} 1 \\ 0 \\ \end{array}$         |             |                                             | $\begin{array}{c} a \\ 0 \\ 1 \end{array} \begin{pmatrix} 0 \\ 0 \end{array}$ |  |    | $\begin{array}{c} a \\ 0 \\ 1 \end{array} \begin{pmatrix} 0 \\ 0 \end{array}$       |             |                                             |
| $3. \begin{array}{c} a \\ 3. \\ 1 \end{array} \begin{pmatrix} 1 \\ 0 \\ \end{array}$       | b<br>0<br>0 | $\begin{pmatrix} c \\ 0 \\ 1 \end{pmatrix}$ | $\begin{array}{c} a \\ 0 \\ 1 \end{array} \begin{pmatrix} 0 \\ 0 \end{array}$ |  |    | $\begin{array}{c} a \\ 0 \\ 1 \\ \end{array} \begin{pmatrix} 0 \\ 0 \\ \end{array}$ |             |                                             |

# **Counting Functions by Bipartite Graph**

Another way to count functions is by recognizing that a function can be represented by a bipartite graphs.

Let  $f : \mathbb{X} \to \mathbb{Y}$  be a function. Let  $|\mathbb{X}| = n$  and  $|\mathbb{Y}| = m$ .

Then, f is a Bipartite Graph from X to Y.

A bipartite graph is a collection of directed edges from X to Y.

To be a function, the graph has one and only one edge leaving each element in  $\mathbb X.$ 

That edge can be directed at any of the m elements in Y.

Therefore, there are  $m^n$  functions from X to Y.

#### **Counting Functions by Adjacency Matrix**

As a "counting functions" example, let

$$X = \{0, 1\}$$
 and  $Y = \{a, b, c\}$ 

There are  $3^2 = 9$  functions from X to Y.





**Counting Functions** 

**Theorem 1** (Counting Functions). Let the cardinality of X be n (|X| = n) and let the cardinality of Y be n (|Y| = m). Then there are

 $m^n$  functions from X to Y