Representing Permutations

There are several ways to write a permutation.
As an example, let $\mathbb{D}=\{0,1,2,3,4,5,6,7,8,9\}$.
A permutation on \mathbb{D} can Be represented By

- The permutation itself, say $\langle 0,2,4,6,8,1,3,5,7,9\rangle$, But this notation fails to show how the permutation is constructed.
- A $2 \times n$ permutation matrix

$$
\left[\begin{array}{llllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 2 & 4 & 6 & 8 & 1 & 3 & 5 & 7 & 9
\end{array}\right]
$$

which shows how terms are permuted from their natural order.

- Cyclic notation

$$
[0][1,5,7,8,4,2][3,6][9]
$$

Cyclic Notation for Permutations

Consider the 4 -cycle permutation written in cyclic notation

$$
[0][1,5,7,8,4,2][3,6][9]
$$

This notation is read
I. 0 Goes to (position) 0 .
2. 1 goes to (position) 5, 5 Goes to 7,7 Goes to 8,8 Goes to 4,4 Goes to 2 , and 2 goes to 1 .
3. 3 Goes to (position) 6 and 6 Goes to 3 .
4. 9 Goes to (position) 9 .

Therefore, the permutation is $\langle 0,2,4,6,8,1,3,5,7,9\rangle$

Writing a Permutation in Cyclic Notation

To write a permutation in cyclic notation it is perhaps best to first write it in matrix notation.

For instance, given the permutation $\langle 8,6,4,2,0,9,7,5,3,1\rangle$ write it in matrix notation

$$
\left[\begin{array}{llllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
8 & 6 & 4 & 2 & 0 & 9 & 7 & 5 & 3 & 1
\end{array}\right]
$$

And now read off the cyclic structure.
(See the next slide)

Writing a Permutation in Cyclic Notation

Use the matrix notation

$$
\left[\begin{array}{llllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
8 & 6 & 4 & 2 & 0 & 9 & 7 & 5 & 3 & 1
\end{array}\right]
$$

to read off the cyclic structure.
I. 0 goes to (position) 4,4 Goes to 2,2 goes to 3,3 goes to 8 , and 8 goes to 0 . Giving the cycle

$$
[0,4,2,3,8]
$$

2. 1 goes to 9,9 goes to 5,5 goes to 7,7 goes to 6 , and 6 goes to 1 .

$$
[1,9,5,7,6]
$$

Therefore, the permutation has 2 cycles $[0,4,2,3,8][1,9,5,7,6]$

Writing a Permutation in Cyclic Notation

Here is another example.
Given the permutation $\langle 7,4,8,1,3,6,5,2,9,0\rangle$ write it in matrix notation

$$
\left[\begin{array}{llllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 4 & 8 & 1 & 3 & 6 & 5 & 2 & 9 & 0
\end{array}\right]
$$

Read off the cyclic structure.
I. 0 Goes to (position) 9, 9 Goes to 8,8 Goes to 2,2 Goes to 7 , and 7 Goes to 0 .
2. 1 goes to 3,3 goes to 4,4 goes to 1 .
3. 5 goes to 6,6 goes to 5 .

Therefore, the permutation has 3 cycles

$$
[0,9,8,2,7][1,3,4][5,6]
$$

Writing Cyclic Notation as a Permutation

Consider the reverse problem:
Given cyclic notation, write the permutation.
For instance, given the four cycle permutation

$$
[0,2,5][3,8,7,6][4,1][9]
$$

Write it in matrix notation

$$
\left[\begin{array}{llllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
5 & 4 & 0 & 6 & 1 & 5 & 7 & 8 & 3 & 9
\end{array}\right]
$$

and read off the permutation
$\langle 5,4,0,6,1,5,7,8,3,9\rangle$

Permutations Written in Cyclic Notation	
$[0,1,2]$	$[0][1,2]$
$[0][1][2]$	
$0,2,1]$	$[1][0,2]$
	$[2][0,1]$

Figure 1: Cyclic notation for the $3!=6$ permutations of $\{0,1,2\}$.

Permutations Written in Cyclic Notation			
$[0,1,2,3]$	$[0,1,2][3]$	$[0][1,2][3]$	$[0][1][2][3]$
$[0,1,3,2]$	$[0,2,1][3]$	$[1][0,2][3]$	
$[0,3,1,2]$	$[0][1,2,3$		
$[0,2,1,3]$	$[2][0,1][3]$		
$[0,2,3,1$	$[0][1,3,2]$	$[0][1][2,3]$	
$[0,3,2,1]$	$[0,3][1,2]$	$[0][1,3][2]$	
	$[1][0,2,3$	$[0,3][1][2]$	
	$[1][0,3,2]$		
	$[1,3][0,2]$		
	$[2][0,1,3]$		
	$[2][0,3,1$		
	$[2,3][0,1$		

Figure 2: Cyclic notation for the $4!=24$ permutations of $\{0,1,2,3\}$.

