
Proposed Course Calendar
CSE 4083/5210 Formal Languages & Automata Theory
Summer 2017 (June 20, 2017)
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This course calendar predicts when class events are expected to hap-
pen. It is not written in stone. Nothing is certain. Things may change.
Pay attention. It will be updated, but it may not be up to date. Colors
are used to indicate an exam or assignment due date, a holiday, or
a link to additional information. Course reference textbooks for the
course include (Linz, 2017) and (Hopcroft et al., 2006).

Week 1

• Tuesday, May 16:

– Course structure (Syllabus)

– Gradiance system for homework

– Course management system for communication, link collec-
tion, grades, attendance

– Mathematics preliminaries (Dr. Stansifer’s notes)

* Inductive proofs over well-founded data structures

* Relations and Functions

– Diagonalization: Let f : X 7→ 2X (upshot: f cannot be
onto; there exists a subset of X that is not in the range of f ):
D = {x ∈ X : x 6∈ f (x)}. Then (∀x ∈ X)(D 6= f (x))
If x 6∈ f (x), then x ∈ D. If x ∈ f (x), then x 6∈ D. (N.B. The
proof does not provide a construction of X, only its exis-
tence.)

• Thursday, May 18:

– Overview (Dr. Stansifer’s notes)

– Linz 1st slide deck

* Formal Language: Finite alphabet Σ; String s ∈ Σn, n ≥ 0,
Σ∗ Kleene closure (set of all strings), Σ+ (all non-empty
strings); Language L ⊆ Σ∗

* Automaton: I/O decision makers, with various memory
models

* Grammar: Rules for enumerating strings (words, sen-
tences) in a formal language

– Linz 2nd slide deck

* Languages, strings, operations (concatenation, reverse,
length, repetition)

* Recursive definitions:

http://xkcd.com/1140/
https://cs.fit.edu/~wds/classes/formal/Syllabus/Syllabus.pdf
http://www.newgradiance.com/
https://fit.instructure.com/courses/504414
https://cs.fit.edu/~wds/classes/formal/Handouts/Math.pdf
https://cs.fit.edu/~wds/classes/formal/Handouts/Lectures.pdf
https://cs.fit.edu/~ryan/cse4083/busch/class01.pdf
https://cs.fit.edu/~ryan/cse4083/busch/class02.pdf


proposed course calendar 2

Strings — Basis: the empty string λ is a string. For each
a ∈ Σ, a is a string
Construction: If w is a string then wa is a string (∀a ∈
Σ).

Length — students respond

Reverse — students respond

Finite repetition — students respond
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* Sub-string, prefixes, suffixes (paths in a graph, from the
start state, to a final (or dead) state

* Set operations on languages: Union ∪, Intersect ∩,
Difference −, Complement ,

* Finite accepter

* Transition graph

* Configuration (current state of the machine)

* Deterministic finite automata (DFAs) M = (Q, Σ, δ, q0, F)

where

· Q is a finite set of states

· Σ is a finite alphabet

· δ :: Q→ Σ→ Q is a transition function δ : Q× Σ→ Q

· q0 ∈ Q is the initial state

· F is set of final states

* Transition table representation of δ

* Extension of δ to δ∗ to strings (paths/walks)

* Recursive definition of δ∗:

δ∗(q, λ) = q; δ∗(q, wa) = δ(δ∗(q, , w), a)

* Definition: Language accepted by DFA

L(M) = {w ∈ Σ∗ : δ∗(q0, w) ∈ F}

* Complement language

* Definition: A language L is regular if there exists a DFA
M such that L = L(M).

– Linz 3rd slide deck

* Non-Deterministic Finite Automata (NFA) N = (Q, Σ, δN , q0, F)

* δN is a relation

δN → Q→ (Σ ∪ {λ})→ 2Q

in a state q a transition on a ∈ Σ can be to many states.

* λ transitions (movements from state to state without
consuming input)

https://cs.fit.edu/~ryan/cse4083/busch/class03.pdf
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* NFA accepts w if some computation terminates in a
final state.

* NFA rejects w if no computation terminates in a final
state.

• Tuesday, May 23: May
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– Linz 3rd slide deck

* Non-Deterministic Finite Automata (NFA)

· Theorem: Language accepted by DFAs are identical to
languages accepted by NFAs

* DFAs are a special case of NFAs. Therefore, if L =

L(M) for some DFA M, then L = L(N) for some
NFA N [take N = M].

* If L = L(M′) for some NFA M′, then L = L(M) for
some DFA: Construction below)
States Q of NFA map to states 2Q of DFA.

q0 7→ {q0}

For each a ∈ Σ and DFA state X:

δ(X, a) = {δ∗(x, a) : x ∈ X} = X′

Add transition (X, a) 7→ X′ to DFA
If f ∈ X′ is an NFA final state, then X′ is a DFA final
state

Construct DFA from this NFA; Assume q and s are
start and final states respectively.

Construct a deterministic transition table

* Linz 4th slide deck

· NFA only requires a single finite state (create a new
final state with λ transitions from original final (now
none final) states

https://cs.fit.edu/~ryan/cse4083/busch/class03.pdf
https://cs.fit.edu/~ryan/cse4083/busch/class04.pdf
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· Regular languages are closed under: Union, Com-
plement, Intersection, Set Difference, Concatenation,
Kleene Star (Construct machines for these operations) May
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· Definition: Regular expressions

Basis: ∅, λ, and a for all a ∈ Σ are regular expres-
sions

Construction: If r1 and r2 are regular expressions
then so are r1 + r2, r1r2, r∗1 , and (r1) (Or, Concatena-
tion, Repetition, Parenthesizing)

* Machine and language for a regular expression — student
response: define for primitives, demonstrate for construc-
tions: Or, Concat, Repeat

* Interpreting a regular expression (semantics)

* Theorem: Regular languages are generated by regular
expressions.

· Regular expressions r define DFAs (proof by induction
on length of r. True for primitive expressions, If L(r1)

and L(r2) are regular languages, show the operations
preserve regularity)

· If L is a regular language construct a regular expression

– Linz 5th slide deck

* If L is regular, then the reverse language LR is regular
(Proof: invert transitions; make initial state q0 for M(L) the
final state for M(LR); add new initial state q′0)

* Grammar: G = (V, T, S, P) where

· V is a set of variables (non-terminals)

· T is a set of constants (terminals)

· S ∈ V is the start symbol

· P is a set production rules: u 7→ v where u and v are
strings of terminals and non-terminals and u has at
least one non-terminal

* Sentential forms and sentences

* Derivations

* Definition: Language of a Grammar

L(G) =
{

w : S ∗⇒ w, where w ∈ Σ∗
}

* Linear grammars: At most one variable on right-hand side
in any production rule

* Non-Linear, Right-Linear, Left-Linear Grammars

* Definition: Regular Grammars: A grammar is regular if it
is right-linear or left-linear

https://cs.fit.edu/~ryan/cse4083/busch/class05.pdf
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* Theorem: Regular grammars generate regular languages

· Let G be right-linear, let L((G) be the language gener-
ated by G, Construct NFA M such that L(G) = L(M). May
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Every variable X is a state in M. Create new final
state F. For each production S → aA, create edge from
S to A labeled a. For each production S → A, create
edge from S to B labeled λ. For each production B → b
create edge from B to F labeled b. For each production
A → wB create edge from A to B labeled w, where w is
a word (can add intermediate states)

For left-linear grammar G, reduce it right-linear
grammar G′ show L(G) = L(G′)R

· Let L = L(M) be a regular language. Construct a right-
linear grammar G such that L(G) = L.

Each state q is a non-terminal. For each transition
δ(q, a) = p create production q→ ap. For any final state
q f , create production q f → λ.

– Friday (midnight) Homework 1 due

Week 2 Thursday, May 25:

• Linz 6th slide deck

– Representations of regular languages: DFAs, NFAs, regular
expressions, regular grammars (choose the one that best fits
the problem to solve)

– Regular languages are closed under: Union, Concatenation,
Closure, Reverse, Complement, Intersection

– Equivalent representations of regular languages: DFA, NFA,
Regular expression, Regular grammar

– Decision Problems: Let L be a regular languages

* Is w ∈ L? (use DFA to check membership)

* Is L = ∅? (search paths from q0 to see if any lead to a final
state q f )

* Is L finite? (Is there a cycle in a walk from the initial state
to a final state)

* Are two languages described by regular expressions
equivalence?? Given regular languages L1 and L2, L1 = L2

if and only if L1− L2 = ∅ and L2− L1 = ∅. (Depth/Breadth=First)
search decides if a DFA recognizes the empty language.

– Non-regular languages (standard examples)

* L = {anbn : n ≥ 0}

* L = {wwr} (palindromes) Consider 5 pigeons and 3 pigeonholes:
Some hole must contain d5/3e = 2
or more pigeons and some hole must
contain b5/3c = 1 or fewer pigeons.

https://cs.fit.edu/~wds/classes/formal/Homework/Homework.pdf
https://cs.fit.edu/~ryan/cse4083/busch/class06.pdf
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– Pigeonhole principle: If n pigeons are placed in m pigeon-
hole, then some hole has dn/me or more pigeons and some
hole has bn/mc or fewer pigeons

– If a DFA has n states then some state is visited at least twice
in any walk on a string w with |w| ≥ n

• The Pumping Lemma: Let L be a regular language. Assume a
DFA that accepts L has m states (|Q| = m). Let w ∈ L. If |w| ≥
m, then some state q is repeated on the walk that accepts w.
Write w = xyz where x labels the walk from q0toq,zlabelsthewalk f romq
to f ∈ F, and y labels the cycle from q to q. Then

|xy| ≤ m |y| ≥ 1

and
xyiz ∈ L ∀ i ∈N

• Use the pumping lemma to show some languages are not regu-
lar (proofs by contradiction)

– L = {anbn : n ∈N}
– L =

{
wwR : w ∈ Σ∗

}
– L =

{
anb`cn+` : n, l ∈N

}
– L =

{
an! : n ∈N

}
– Let nx(w) count the number of character x in string w. Let

p v w denote that p is a prefix of w. The language of bal-
anced parentheses is

L = {w : (na(w) = nb(w)) ∧ (∀p v w)(na(v) ≥ nb(v))}

• Linz 7th slide deck

– Lex: a lexical analyzer

* Recognizes a string and takes and action (an important
part of a compiler)

* Converts a regular expression r into a NFA, then a DFA,
then a minimal DFA

Week 3

• Tuesday, May 30:

– Practice midterm

– Linz 8th slide deck

* Context-Free Languages: Pushdown Automata and Context-
Free Grammars

* Standard CFG Examples:

· Language {anbn : n ∈N}, Grammar S→ aSb | λ

https://cs.fit.edu/~ryan/cse4083/busch/class07.pdf
https://cs.fit.edu/~wds/classes/formal/Tests/pmidterm.pdf
https://cs.fit.edu/~ryan/cse4083/busch/class08.pdf
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· Palindromes
{

wwR : w ∈ Σ∗
}

, Grammar S→ aSa | bSb |
λ

· Balanced Parentheses, Grammar S→ (S) | SS | λ

– Grammar: G = (V, T, S, P) where productions in P have the
form

A→ x where x ∈ (V∪T)∗

– Derivation order: Leftmost or Rightmost
– Derivation trees
– Ambiguity: More than one leftmost (rightmost) derivation

(operator precedence)

E→ E + E |→ E ∗ E |→ (E) |→ a

– Remove ambiguity by introducing new words/symbols:
terms/T and factor/F

E→ T | E + T

T → T ∗ F | F

F → (E)

F → a

– Some CFL are ambiguous: {anbncm} ∪ {anbmcm}
– CFG for arithmetic expressions

• Thursday, June 1:

– Summary on regular languages (accepted by DFA).

* NFA to DFA
· NFA initial state q0 becomes DFA initial state {q0}
· For any subset A of NFA states and character a com-

pute DFA state

B = {qk : δ∗(q, a) = qk, q ∈ {A}}

Add transition A
a→ B to DFA

* Regular expressions map to NFAs: Inductive proof (True
for primitive regular expressions)
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Construct NFAs for Union, Concatenation, and Star
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* NFA to regular expression: Complete the transition graph
by adding edges labeled ∅ where no edge exists. For a
two-state graph

create regular expression

r = c∗a(d∗ + bc∗)∗

To eliminate a (non-initial, non-final) state qk introduce
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new edges labeled

r00 + r0kr∗kkrk0

r0 f + r0kr∗kkrk f

r f 0 + r f kr∗kkrk0

r f f + r f kr∗kkrk f

Remove state qk and all of its edges.

* DFA to regular (right-linear) grammar: States become
non-terminals
For transitions δ(qi, a) = qk create production qi → aqk

If qk is a final state, create production qk → λ

* Regular grammar (right-linear) to DFA: Non-terminal S
becomes DFA initial state.
For productions Vi → a1a2 · · · ajVk create states and transi-
tions labeled a1a2 · · · aj from state Vi to Vk.
For terminating productions Vi → a1a2 · · · aj create states
and transitions labeled a1a2 · · · aj from state Vi to Vf (a
final state)

– Linz 9th slide deck

* Compilers

* Simplifications of CFGs

· Substitution Rule (A 6= B)

(A→ xBy B→ u | v | · · · )⇒ (A→ xuy | xvy | · · · )

· Useless non-terminals/productions (Variable A does
not derive a terminal string or A cannot be reached
from S)

V′ = ∅
Repeat: Add to V′ all variables A that derive terminal
strings
Until: V′ does not change
Construct Dependency Graph:
State are variables
Transitions from C to D if there is production C → xDy

· Nullable non-terminals

· Unit productions

* Linz 10th slide deck

· Normal Forms for CFGs

Chomsky Normal Form (A→ BC and A→ a)

Convert CFG to CNF

https://cs.fit.edu/~ryan/cse4083/busch/class09.pdf
https://cs.fit.edu/~ryan/cse4083/busch/class10.pdf
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Step One: For productions A → x1x2 · · · xn Replace
by A → C1C2 · · ·Cn where Ck is a new variable is
xk ∈ T.
Add production Ck → xk

Step Two: Replace productions A → C1C2 · · ·Cn by
sequence A → C1D1, D1 → C2D2, . . . , Cn− 2 →
Cn−1Cn,

Palindromes to CNF:

S→ aSa | S→ bSb | S→ a | S→ b | S→ λ

Step One:

S→ ASA | S→ BSB | S→ A | S→ B | S→ λ | A→ a |→ b

Step Two:

S→ AC|C → SA | S→ BD | D → SB | S→ A | S→ B | S→ λ | A→ a |→ b

· Greibach Normal Form (A→ ax, where x ∈ V∗)
· Linz 10th slide deck

· CYK membership algorithm: Given Chomsky normal
form grammar G, test if w = a1a2 · · · an ∈ L(G).

Let Vi,i = {A ∈ V : A→ ai} be the variables that
produce ai

Let Vi,j =
⋃

i<k<j

{
A : A→ BC where B ∈ Vi,k, C ∈ Vk+1,j

}
}

be the variables that produce ai · · · aj

Compute the table of (n+1
2 ) = n(n+1)

2 = O(n2)

values in row order (uses a dynamic programming
algorithm paradigm)

V11 V22 . . . Vn−2,n−2 Vn−1,n−1 Vnn

V12 V23 . . . Vn−2,n−1 Vn−1,n

V13 V24 . . . Vn−2,n
...

V1n

To compute Vij requires scanning all productions
A → BC to check if B ∈ Vik and C ∈ Vk+1,j for
k = i + 1, . . . j− 1 (a total of 2(j− 1− (i + 1) + 1) =
2(j− i− 1) ≤ 2n set membership tests). There are a
fixed (constant) number of productions. Checking set
membership can be executed in constant time

· Pushdown Automata:

M = (Q, Σ, Γ, δ, q0, z, F)

where

https://cs.fit.edu/~ryan/cse4083/busch/class10.pdf
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Q is a finite set of states

Σ is a finite (input) alphabet

Γ is a finite (stack) alphabet

δ : Q× (Σ ∪ {λ})× Γ→ Q× Γ∗
q0 is the start state

z ∈ Γ is the bottom of the stack

F ⊆ Q are the final states

Week 4

• Tuesday, June 6:

– Practice Midterm Key

– Linz 11th slide deck

• Thursday, June 8:

– Gradiance homework

– Hopcroft-Ullman CFG Normal Forms slide deck

– Hopcroft-Ullman Pushdown Automata slide deck

– Hopcroft-Ullman Equivalence of CFG and PDA slide deck

Week 5

• Tuesday, June 13:

– Linz 12th slide deck

– Linz 13th slide deck

– Linz 14th slide deck

• Wednesday, June 14: Homework 2 due

• Thursday, June 15:

– Midterm Examination

Week 6

• Tuesday, June 20:

– Linz 15th slide deck

– Linz 16th slide deck

– Linz 17th slide deck

– Homework 3 due

• Thursday, June 22:

– Linz 18th slide deck

– Linz 18th+ slide deck

– Linz 19th slide deck

–

https://cs.fit.edu/~wds/classes/formal/Tests/pmidterm-key.pdf
https://cs.fit.edu/~ryan/cse4083/busch/class11.pdf
http://www.newgradiance.com/
https://cs.fit.edu/~ryan/cse4083/ullman/cfl3.pdf
https://cs.fit.edu/~ryan/cse4083/ullman/pda1.pdf
https://cs.fit.edu/~ryan/cse4083/ullman/pda2.pdf
https://cs.fit.edu/~ryan/cse4083/busch/class12.pdf
https://cs.fit.edu/~ryan/cse4083/busch/class13.pdf
https://cs.fit.edu/~ryan/cse4083/busch/class14.pdf
https://cs.fit.edu/~wds/classes/formal/Homework/Homework.pdf
https://cs.fit.edu/~ryan/cse4083/busch/class15.pdf
https://cs.fit.edu/~ryan/cse4083/busch/class16.pdf
https://cs.fit.edu/~ryan/cse4083/busch/class17.pdf
https://cs.fit.edu/~wds/classes/formal/Homework/Homework.pdf
https://cs.fit.edu/~ryan/cse4083/busch/class18.pdf
https://cs.fit.edu/~ryan/cse4083/busch/class18u.pdf
https://cs.fit.edu/~ryan/cse4083/busch/class19.pdf
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Week 7

• Tuesday, June 27:

– Linz 20th slide deck

– Proof That Computers Can’t Do Everything (The Halting
Problem)

• Thursday, June 29:

– Homework 4 due

Week 8

• Tuesday, July 4: Independence Day

• Thursday, July 6: Final Examination
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