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Goal

I Understand the nature of computation
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According to Peter J. Denning, the fundamental question
underlying computer science is, “What can be (efficiently)
automated?”

This is not to be interpreted as a question of what can be
accomplished with today’s computing devices. This is not
exclusively a question about the physical world. (Physicists,
chemists, biologists study the material world.) The question is:
what can be computed by any real or imagined means.

Here we ignore the question of what physical things can be
accomplished by automata: swim, drive cars, explore
extraterrestrial bodies, etc. These applications require one to
faithfully capture the external world in a practical, non-material
model. This translation is an important part of computing, but not
the one we address here.
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The mental challenge is dismissed by the layman. After all, cannot
mankind think anything!?

The mental challenge is unpopular because it is not as visceral as
robots, cell phones, and 3D printers.

Many prefer to learn what theory they need in order to accomplish
some desire rather than study foundations in the hope that it
proves useful later.

Curiosity is the key. (As it is behind all theoretical science.)
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to tear the mask off nature and stare at the face of God

Sheldon Cooper, The Big Bang Theory
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History

Who asked first asked the question what can be automated?

Gottlob Frege (1880s): logic and arithmetic can be formalized

Russell (1903): not that way, but with types

Hilbert (1920s): can mathematics be formalized consistently?

Gödel (1931): truth cannot be automated!

Then, nobody knew what could be computable. Today, we have a
science of computation. So, what is computation?
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Recommended Reading
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David Hilbert (1863-1943)
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Kurt Friedrich Gödel (1906–1978)
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Kurt Friedrich Gödel (1906–1978)

Kurt Gödel’s achievement in modern logic is singular
and monumental - indeed it is more than a monument, it
is a landmark which will remain visible far in space and
time. . . . The subject of logic has certainly completely
changed its nature and possibilities with Gödel’s
achievement.

John von Neumann
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Kurt Friedrich Gödel (1906–1978)

In 1931 and while still in Vienna, Gödel published his
incompleteness theorems in Über formal unentscheidbare Sätze der
“Principia Mathematica” und verwandter Systeme (called in
English “On Formally Undecidable Propositions of “Principia
Mathematica” and Related Systems”). In that article, he proved
for any computable axiomatic system that is powerful enough to
describe the arithmetic of the natural numbers that:

1. If the system is consistent, it cannot be complete.

2. The consistency of the axioms cannot be proven within the
system.

These theorems ended a half-century of attempts, beginning with
the work of Frege and culminating in Russell and Whitehead’s
Principia Mathematica and Hilbert’s formalism, to find a set of
axioms sufficient for all mathematics.
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What is an automaton?

An automaton is

a self-moving, self-operating
machine.

In our (scientific, mathematical) context we are less interested in
machines which can be realized mechanically, and more interested
in abstract or virtual machines.

But first, some history of automata.
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Antikythera Mechanism – 200 BC

The Antikythera Mechanism

http://www.computerhistory.org/revolution/calculators/1/42/2249
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Clockwork – Installed 1410

Watch the Astronomical Clock Prague on YouTube.

https://www.youtube.com/watch?v=82-Zo_hFcCE
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Stepped Reckoner – 1670s

Leibniz Stepped Reckoner

http://www.computerhistory.org/revolution/calculators/1/49
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Also, Search for Truth Calculus

Gottfried Wilhelm Leibniz (1646–1716) searched for a method he
called characteristica generalis or lingua generalis.

I would like to give a method . . . in which all truths of the
reason would be reduced to a kind of calculus. This could
at the same time be a kind of language or universal script,
but very different from all that have been projected
hitherto, because the characters and even the words
would guide reason, and the errors (except those of fact)
would only be errors of computation. It would be very
difficult to form or invent this Language or Characteristic,
but very easy to learn it without any Dictionaries.
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Mechanical Turk (ca1775–1850) from the BBC

http://www.bbc.com/news/magazine-21882456
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Rube Goldberg (US cartoonist 1883–1970)

Sesame Street on YouTube

https://www.youtube.com/watch?v=B17OvPYM040
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Difference Engine – 1820s

The difference engine by Charles Babbage

http://www.computerhistory.org/babbage/
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Vending Machine
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End of the historical examples.
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What is an abstract machine?
A possible literary example. Das Glasperlenspiel (The Glass Bead
Game). Hermann Hesse did not describe precise rules, and, indeed,
probably could not comprehend a completely formal game.
Humanity requires ambiguity, contradiction, etc.
Obviously, complex problems have computer programs that solve
them. But to most people this is magic and provides no evidence
of a science of computation.

“Any sufficiently advanced technology is
indistinguishable from magic.”

Arthur C. Clarke
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The science of computing can be best be appreciated by building
up the little pieces bottom-up.

So, identify simple, indisputable pieces and see how far you can go.

Take a simple example of problem solving: wolf, goat, cabbage.
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The cabbage, goat, wolf problem has simple actions.

c row cabbage to the other side
g row goat to the other side
w row wolf to the other side
m row alone to the other side

And, it has two constraints. When left unattended, the wolf will
eat the goat, and the goat will eat the cabbage.

How, then, can the cabbage, the goat, and the wolf get to the
other side?

A state, transition diagram can help.
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MWGC// WC//MG MWC//G

C//MWG W//MGC

MGC//W MWG//C

G//MWCMG//WC//MWGC
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m
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Model of a Simple Game

1 2 3

4 5 6

7 8 9

A checkerboard (rectangular lattice with 8 neighbors) with
(non-deterministic) moves to the adjacent red squares or black
squares.

r move to some adjacent red square
b move to some adjacent black square
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Deterministic Finite Automata

Although we will take up the definition in more detail later, we
present the formal definition of the first automata we shall study.
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Deterministic Finite Automata

HMU, 3rd. Section 2.2.1 Definition of a Deterministic Finite
Automaton, page 45

HMU, 3rd. Section 2.3.2 Definition of Nondeterministic Finite
Automata, page 57

HMU, 3rd. Section 2.5.2 The Formal Notation of an ε-NFA, page
73

Linz, 6th. Definition 2.1 Deterministic finite accepter, page 39

Linz, 6th. Definition 2.4 Nondeterministic finite accepter, page 51
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Deterministic Finite Automata

A deterministic finite automata is:

〈Q,Σ, δ, q0,F 〉

I Q is a finite set of states

I Σ is a finite alphabet (set of symbols)

I δ : Q × Σ→ Q is a transition function

I q0 ∈ Q is a distinguished start state

I F ⊆ Q is a set of final states

The general purpose of automata is to represent
computations—compute answers. First, we examine the pieces of
the formal definition, then we explain how it computes.
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A Finite Automaton

input (read only)

a b c d · · · a b c db

q0

q1
q2

q4
q5

q6

q3

state transition table

accept
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States

Q is a finite set of symbols denoting abstract states.
An individual state could represent:

I The man and the cabbage are on the west bank of the river.

I It is noon EST.

I Twenty cents have been deposited in the vending machine.

I The first die shows 2 pips, and the second die shows 5 pips.

I All five dice show the same number of pips.

I The content of the computer’s registers is . . .

I The overflow flag is set.

The symbols, names symbols of the state, are the only thing that
matters to the abstract machine, not what the state signifies.
Some states are distinguished by being initial or final states.
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Alphabet

Σ is a finite set of symbols called the alphabet. The problem input
must be encoded in the alphabet.
In our digital world we are accustomed to everything from books to
movies being encoded as zeros and ones.
In fact Σ = {0, 1} and Σ = {a, b} are often used in our examples,
because they are simple alphabets. More complicated alphabets
(Latin-0 or Unicode) do not allow us to express more in theory.
Though they may be more convenient in practice.
The choice of alphabet does not have any impact on our theory.
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Output?

Our machine has input: some string of symbols from the alphabet.
We will use our automata as accepters, namely, execution of the
machine will be a simple “yes” or “no.”
This appears to be a severe limitation on computation. We can compute
everything using yes and no questions.

I Is 1 + 2 = 3? “Yes, it is.”

I Is 1 + 2 = 4? “No, it isn’t.”

f (x) = y if, and only if xRf y
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Transitioning

The crux of the machine is its operation which is precisely
described by the transition function commonly denoted by the
Greek letter δ. The domain of the transition function δ is Q × Σ
and the range is Q. (NB. A function is just a special case of a
relation, and so we might well allows an arbitrary relation as indeed
we do later.) The range of δ is finite and so there only a finite
number of values the function defines.
A labeled, graph may be the best way to communicate the
transition function of a finite automata to a person, though
sometimes these graphs can be convoluted.
The transition function may also be communicate by means a
table. Different kinds of tables can be used to express the same
transition function.
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A Single Transition

We sometimes write a single transition from state p to state q on
input symbol a in this manner: p

a→ q. Often the states are
depicted as nodes in a graph, as in the following:

p qa
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p

q

r

a b

a

b

ba
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Transition Tables

current input next
state char state

p a p
p b q
q a q
q b r
r a p
r b r
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Transition Tables

a b

p p q
q q r
r p r

p q r

p a b
q a b
r a b

p q r

p a b ∅
q ∅ a b
r a ∅ b
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Multi-edge Transition Graph

p

q

r

a b

a

b

a

b
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Transition Functions

current input next
state char state

p a p
p b q
q a q
q b r
r a p
r b p

a b

p p q
q q r
r p p

p q r

p a b
q a b
r a, b

p q r

p a b ∅
q ∅ a b
r a + b ∅ ∅
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Transition Graph With Stuck State

p q

rt

a

b

a

b

b

a

a, b
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Transition Functions

current input next
state char state

p a p
p b q
q a q
q b r
r a t
r b p
t a t
t b t

a b

p p q
q q r
r t p
t t t

p q r t

p a b
q a b
r b a
t a, b

p q r t

p a b ∅ ∅
q ∅ a b ∅
r b ∅ ∅ a
t ∅ ∅ ∅ a + b
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Transition Functions

A row in the table for every state and input symbol combination.

qo a qi
qo b qj
qi a qk
qi b ql
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Transition Functions

A row in the table for every state and a column for every input
symbol. (A missing entry in the table signals a transition to a
non-final “trap” or “sink.”)

a b

q0 qi qj
q1 qk ql
q2 qi qj

This form is very natural for encoding the transition function as
two-dimensional array in a programming language.



52/ 161

Transition Functions
Another way of representing the transition function is related to the
Boolean, adjacent matrix use to represent graphs. Here the matrix
is square with each row and each column representing a state.
Rows are the transitions from the state; columns are the transitions
to the state. The matrix entry describes the input symbol

q0 qi qj qk ql
q0 a b a a
qi a b a a
qj b a a
qk a b a
ql a b a

Blank cells mean that there is no transition on any input symbol
between the two state.
But what about a transition from a state to another state on more
than one symbol of the alphabet? (This is related to the problem
caused by multi-graphs—those with parallel edges.)
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Transition Functions

Transitions on multiple

q0 qi qj qk ql
q0 a b a a
qi a a + b a a
qj b a a
qk a b a + b
ql a b a

Notice the similarity to regular expressions!
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Transition Functions

q0 qi qj qk ql
q0 a ∅ b a a
qi a ∅ a + b a a
qj ∅ b a a ∅
qk a ∅ b ∅ a + b
ql a ∅ b a ∅

Consider the possibility of marking the cells of the matrix (the
transitions of the automaton) with arbitrary regular expressions.
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Encoding Finite Automata

We can encode an automaton as a transition matrix; a
two-dimensional array indexed by state number and input
character. There will be a “dead” state (state 0) that loops to
itself on all characters; we use this state to encode the absence of
an edge.

int edges [][]={ /* ... 0 1 2 ... e f g h i ...*/
/* state 0 */ {0,0,... 0,0,0,... 0,0,0,0,0,...},
/* state 1 */ {0,0,... 7,7,7,... 4,4,4,4,2,...},
/* state 2 */ {0,0,... 4,4,4,... 4,3,4,4,4,...},
/* state 3 */ {0,0,... 4,4,4,... 4,4,4,4,4,...},
/* state 4 */ {0,0,... 4,4,4,... 4,4,4,4,4,...},
/* state 5 */ {0,0,... 6,6,6,... 0,0,0,0,0,...},
/* state 6 */ {0,0,... 6,6,6,... 0,0,0,0,0,...},
/* state 8 */ {0,0,... 8,8,8,... 0,0,0,0,0,...},
// and so on
}
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We must also know which of the state is the start state and which
are the final states.

Is is convenient to use row zero as the “dead” or “trap” state. It is
a row of all zeroes
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Code for Table-Driven Automata

Current_State := The_Initial_State;
while not (End_Of (Input_Stream )) loop

Input_Char := Next_Character (Input_Stream );
Current_State :=Edges[Current_State ][ Input_Char ];

end loop;
if (Final_State (Current_State )) then

Accept;
else

Reject;
end if;
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Can you formalize the cabbage, good, wolf problem?

〈Q,Σ, δ, q0,F 〉

I Q = {MWGC//, . . . , //MWGC }
I Σ = { c, g ,w ,m }
I δ : Q × Σ→ Q is a transition function

I q0 = MWGC//

I F = { //MWGC }
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c g w m

0 0 0 0 0
MWGC// 0 WC//MG 0 0
WC//MG0 MWGC// 0 MWC//G
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We have examined the “hardware” of the DFA, but we have not
said anything about how it is used.

It is used to define a set of strings. This seems ridiculously simple
and abstract.

It is abstract. In this way the computation has been distilled to its
essential nature. Information is encoded in strings and
computation into yes and no questions.

So, the question becomes how does an automoton define a formal
language.
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Extended Transition Function

Let M be the deterministic finite automaton 〈Q,Σ, δ, q0,F 〉.
Define extended transition function δ∗ : Q × Σ∗ → Q for M by:

δ∗(q, ε) = q
δ∗(q, a : w) = δ∗(δ(q, a),w)

The symbol a is the next symbol to be read (the symbol under the
“read head” of the machine); the string w is the future string to
be read.

This definition works fine if δ is a partial function on Q × Σ, then
δ∗ is partial as well.
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The formal language defined by the machine M is denoted L(M)
and is defined as follows:

L(M) = {w ∈ Σ∗ | δ∗(q0,w) ∈ F}
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Deterministic Finite Automata

An equivalent approach is more general
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Deterministic Finite Automata

Let M be the deterministic finite automaton 〈Q,Σ, δ, q0,F 〉. We
define an instantaneous description or ID of M to be the pair
〈q,w〉 where q ∈ Q is a state and w ∈ Σ∗ is a string representing
the unread input.

We define a binary relation `, called the transition relation, on the
set of IDs

〈q, aw〉 ` 〈q′,w〉 if δ(q, a) = q′

The binary relation `∗, called the reachability relation, is the
reflexive, transitive closure of transition relation, `.

L(M) = {w ∈ Σ∗ | 〈q0,w〉 `∗ 〈qf , ε〉with qf ∈ F}
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Deterministic Finite Automata

The inductive definition of the reachabilty relation means that
induction can be use to prove properies about IDs and hence on
the set of strings recognized by an automata.

〈q,w〉 `∗ 〈q,w〉
〈q,w〉 ` 〈q′,w ′〉 〈q′,w〉 `∗ 〈q′′,w ′′〉

〈q,w〉 `∗ 〈q′′,w ′′〉
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automata

computing

Whatever an automaton is, it should certainly be a simple model
of computation without any doubts.
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deterministic
finite

automata

computing

Being simple, deterministic finite automata certainly are a possible
a model of computation. However, it seems quite unlikely that this
encompasses all computation.
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Other models, all obviously computable, can be proposed.

The result might be chaotic.
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Models of computation might have little relationship to each other.
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In fact, a clear picture (science) emerges.

Something like the following picture.



72/ 161



Outline
Goal

History

Models of Computation

Motivating Finite Automata

Deterministic Finite Automata

Variations on Automata

Pushdown Automata

Turing Machine

Other Computational Models

Overview

Courses

Grammars

Pumping Lemma

73/ 161



74/ 161

What if we consider two-way, deterministic finite automata
(2DFA)? (Two-way automata can re-read the input.) Turns out
that they are the same as one-way deterministic finite automata.
(We must carefully formalize what is means for two machines to
solve the same class of problems.)
More interesting are other more radical variations, like
non-deterministic final automata.
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Nondeterministic Finite Automata

A nondeterministic finite automata is:

〈Q,Σ,∆, q0,F 〉

I Q is a finite set of states

I Σ is a finite alphabet (set of symbols)

I ∆ : Q × Σε × Q is a transition relation. Define
δ : Q × Σε → P(Q) to be the transition function
δ(q, σ) = {q′ ∈ Q | 〈q, σ, q′〉 ∈ ∆}.

I q0 ∈ Q is the distinguished initial state of the control unit, and

I F ⊆ Q is a set of final states

we define Σε to be Σ ∪ {ε}
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Non-Deterministic Finite Automata

Let M be the non-deterministic finite automaton 〈Q,Σ,∆, q0,F 〉.
We define an instantaneous description or ID of M to be the pair
〈q,w〉 where q ∈ Q is a state and w ∈ Σ∗ is a string representing
the unread input.

For q ∈ Q and a ∈ Σε we define a binary relation ` on the set of
IDs

〈q, aw〉 ` 〈q′,w〉 if 〈q, a, q′〉 ∈ ∆

This includes as a special case:

〈q,w〉 ` 〈q′,w〉 if 〈q, ε, q′〉 ∈ ∆

The binary relation `∗ is the reflexive, transitive closure of `. So,
now we let

L(M) = {w ∈ Σ∗ | 〈q0,w〉 `∗ 〈qf , ε〉 forany qf ∈ F}
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Non-Deterministic Finite Automata

input (read only)

a b c d · · · a b c db

q0

q1
q2

q4
q5

q6

q3

state transition table

accept

Same as DFA, but needs oracle



78/ 161

Automata Versus Expressions
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Automata Versus Expressions
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Pushdown Automata

HMU, 3rd. Section 6.1.2 The Formal Definition of Pushdown
Automata, page 227 HMU, 3rd, Section 6.2.1. Acceptance by

Final State, page 235 HMU, 3rd, Section 6.4.1. Definition of

Deterministic PDA, page 252

Linz, 6th. Definition 7.1 Nondeterministic pushdown accepter
(npda), page 183 Linz, 6th. Definition 7.2 Language accepted by a

pushdown automaton, page 186 Linz, 6th. Definition 7.3

Deterministic pushdown accepter (pda), page 203
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Pushdown Automata

A pushdown automata is a 7-tuple: 〈Q,Σ, Γ,∆, q0, z ,F 〉 where

1. Q is a finite set of states of the control unit,

2. Σ is a finite alphabet (set of symbols),

3. Γ is a finite stack alphabet (set of symbols),

4. ∆ : Q × Σε × Γ× Q × Γ∗ is a finite transition relation,

5. q0 ∈ Q is the distinguished initial state,

6. z ∈ Γ is the distinguished stack start symbol, and

7. F ⊆ Q is a set of final states
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Let M be the nondeterministic pushdown automaton
〈Q,Σ, Γ,∆, q0,Z ,F 〉. We define an instantaneous description or
ID of M to be the triple 〈q,w , γ〉 where q ∈ Q is the current state,
w ∈ Σ∗ is a string representing the unread input, and γ is the
stack.

For q ∈ Q, w ∈ Σ∗, and γ ∈ Γ∗ we define a binary relation ` on
the set of IDs

〈q, aw ,Xβ〉 ` 〈q′,w , αβ〉 if 〈q, a,X , q′, α〉 ∈ ∆

This includes as a special case:

〈q,w ,X 〉 ` 〈q′,w , αβ〉 if 〈q, ε,X , q′, α〉 ∈ ∆

The binary relation `∗ is the reflexive, transitive closure of `. So,
now we let

L(M) = {w ∈ Σ∗ | 〈q0,w ,Z 〉 `∗ 〈qf , ε, α〉 for any qf ∈ F , α ∈ Γ∗ }
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Pushdown Automaton (Initial Configuration)

input (read only)

b c d · · · a b c da

q0

q1
q2

q3

q4
q5

q6

q0

state transition table

accept

ZZ

stack
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Pushdown Automaton

input (read only)

a b c d · · · a b c db

q0

q1
q2

q4
q5

q6

q3

state transition table

accept

Z

Y

X

W

stack
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Pushdown Automata

A pushdown automata 〈Q,Σ, Γ,∆, q0, z ,F 〉 is said to be
deterministic if for all
q ∈ Q, a ∈ Σε, γ ∈ Γ the set
{ 〈q, a, γ, q′, α〉 ∈ ∆ | q′ ∈ Q, α ∈ Γ∗ } has cardinality one.

〈q0, a, γ, q′, α〉 and 〈q0, a, γ, q′′, α〉

〈q0, a, γ, q′, α〉 and 〈q0, a, γ, q′, β〉

Hmmm.
〈q0, a, γ, q′, α〉 and 〈qo , ε, γ, q′′, α〉

〈q0, a, γ, q′, α〉 and 〈qo , ε, γ, q′, β〉
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LL parsing: A Useful Variant

input (read only)

a + b $a

LL parsing engine

parsing table M

left-most
derivation

$

X

Y

X

stack
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LR parsing: A Useful Variant

input (read only)

a + b $a

LR parsing engine

action goto

right-most
derivation

$

...

sm−1

sm

stack
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Theoretical computer science has gravitated around certain models
of computation. For better or worse, the main one has been the
Turing machine.



91/ 161



92/ 161

Alan Mathison Turing, (1912-1954) was a British pioneering
computer scientist, logician, cryptanalyst, and marathon runner.
He was highly influential in the development of computer science,
providing a formalization of the concepts of “algorithm” and
“computation” with the Turing machine, which can be considered
a model of a general purpose computer. Turing is widely
considered to be the father of theoretical computer science.
During the Second World War, Turing worked for the Government
Code and Cypher School (GC&CS) at Bletchley Park, Britain’s
code-breaking center. This section played a pivotal role by enable
the decryption of German messages.
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Alan Mathison Turing (1912–1954)

Turing wrote in 1936 that it is possible to invent a single machine
which can be used to compute any computable sequence.
This finding is now taken for granted, but at the time it was
considered astonishing. The model of computation that Turing
called his “universal machine”—”U” for short—is considered by
some (cf Davis (2000)) to have been the fundamental theoretical
breakthrough that led to the notion of the stored program
computer. In the words of Minsky (1967), page 104:

Turing’s paper ... contains, in essence, the invention
of the modern computer and some of the programming
techniques that accompanied it.
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Turing Machine

input (read/write)

. . . a b c d e . . .b

q0

q1
q2

q4
q5

q6

q3

state transition table

accept
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Turing Machines

http://www.youtube.com/watch?v=cYw2ewoO6c4

http://www.youtube.com/watch?v=cYw2ewoO6c4
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Turing Machines (Single Final State Variation)

A Turing machine is a 7-tuple 〈Q,T , I , δ, , q0, qf 〉 where

1. Q is a finite set of states,

2. T is a finite set of tape symbols,

3. I is a finite set of input symbols, I ⊆ T ,

4. δ : Q × T → Q × T × {L,R} is the transition function,

5. ∈ T \ I is the designated symbol for a blank (the symbol
always beyond the ends of the two-way infinite tape),

6. q0 ∈ Q is the distinguished initial state, and

7. qf ∈ Q is the distinguished final or accepting state.
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Turing’s original paper contains a programming
language, just as Gödel’s paper does, or what we would
now call a programming language, But these two
programming languages are very different. Turing’s isn’t
a high-level language like LISP; it’s more like a machine
language, the raw code of ones and zeros that are fed to a
computer’s central processor. Turing’s invention of 1936
is, in fact, a horrible machine language, one that nobody
would want to use today, because it’s too rudimentary.

Gregory J. Chaitin [CHY-t@n], “Computers, Paradoxes and the
Foundations of Mathematics,” American Scientist, 2002, page 168.
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Furthermore

Modern stored-program computers are not accurately modeled by
Turing machines. Other abstract machines such as the random
access stored program machine (RASP) are closer. The RASP
stores its “program” in ”memory” external to its finite-state
machine’s “instructions”. But unlike the Turing Machine, the
RASP has an infinite number of distinguishable, numbered but
unbounded “registers” or memory ”cells” that can contain any
integer. There are computational optimizations that can be
performed based on the memory indices, which are not possible in
a general Turing Machine; thus when Turing Machines are used as
the basis for bounding running times, a ’false lower bound’ can be
proven on certain algorithms’ running times (due to the false
simplifying assumption of a Turing Machine). An example of this
is binary search, an algorithm that can be shown to perform more
quickly when using the RASP model of computation rather than
the Turing Machine model.
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Turing Machine

Let m be the Turing machine 〈Q,T , I , δ, , q0, qf 〉.
We define an instantaneous description or ID of M to be the triple
〈u, q,w〉 where q ∈ Q is a state and u,w ∈ T ∗ are strings. The
string u is a (finite) string containing all the non-blanks symbols to
the left of the read head, and the string w is a (finite) string
containing all the non-blanks symbols to the right of the read
head. The read head is positioned at the first character of w .

We define a binary relation ` on the set of IDs:

〈uc , q, av〉 ` 〈u, q′, cbv〉 if δ(q, a) = 〈q′, b, L〉
〈uc , q, ε〉 ` 〈u, q′, cb〉 if δ(q, ) = 〈q′, b, L〉
〈ε, q, av〉 ` 〈ε, q′, bv〉 if δ(q, a) = 〈q′, b, L〉
〈ε, q, ε〉 ` 〈ε, q′, bv〉 if δ(q, ) = 〈q′, b, L〉
〈u, q, av〉 ` 〈ub, q′, v〉 if δ(q, a) = 〈q′, b,R〉
〈u, q, ε〉 ` 〈ub, q′, ε〉 if δ(q, ) = 〈q′, b,R〉
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The binary relation `∗ is the reflexive, transitive closure of `.

L(M) = {w ∈ I ∗ | 〈q0,w〉 `∗ 〈qf , ε〉 }
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Turing modeled computation after mathematical office workers
performing simple calculations on sheets of paper.
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Automata compute Expressions denote

Trees demonstrate Grammars construct
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Many other computational models:

I Herbrand-Gödel µ recursive functions [5, 2],

I universal register machine,

I lambda calculus,

I combinators [16, 1]

I Post systems [13],

I and, many others.
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computation

Church-Turing Thesis:

All sufficiently powerful models of computation are equivalent!

So, we define computation as being that which can be computed
by a Turing machine.
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Herbrand-Gödel
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Universal Register Machines
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Lambda Calculus

Beta reduction:
(λx .b)a→ b[x := a]
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Lambda Calculus
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Combinators

The combinatory calculus is constructed out of two combinators S
and K such that

Sxyz = xz(yz)

Kxy = x

S is Schönfinkel’s “Verschmelzungsfunktion” or “fusion”
combinator and K is his “Konstanzfunktion” or “constancy”
combinator.

However, application is still required and so this is actually a
special case of the lambda calculus. Book: Hindley, J. R., and
Seldin, J. P. (2008) λ-calculus and Combinators: An Introduction.
Cambridge Univ. Press.
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Post System

Post canonical system, or Post System.
A Post system is a quadruple 〈ΣV ,Σc ,P,Ax〉.
Arto Salomaa, Computation and Automata, Cambridge University
Press, 1985.
Ryan Stansifer, The Study of Programming Languages,
Prentice-Hall, 1995.
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Post Systems
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Unrestricted Grammars

A grammar is a 4-tuple 〈T ,N,P, S〉:
I T is the finite set of terminal symbols;

I N is the finite set of nonterminal symbols, T ∩ N = ∅, also
called variables or syntactic categories;

I S ∈ N, is the start symbol;

I P is the finite set of productions.

A production has the form α→ β where α and β are strings of
terminals and nonterminals (α can’t be the empty string, but β
might be).
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Unrestricted Grammars
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Many Others

Unrestricted grammars, µ-recursive functions, Markov algorithms
(string rewriting system), biologically inspired models of
computation (membrane systems, protein-centric interaction
systems), quantum computers, and so on.

I Fernández, Maribel (2009). Models of Computation: An
Introduction to Computability Theory. Undergraduate Topics
in Computer Science. Springer. ISBN 978-1-84882-433-1.

I Savage, John E. (1998). Models Of Computation: Exploring
the Power of Computing.
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Which model is the right one?

Church-Turing Thesis:

All sufficiently powerful models of computation are equivalent!

How do we know? Every model proposed so far is equivalent to all
the others.
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Automata versus Models

I chose pictures of automata rather than their mathematical
models as the pictures are more suggestive. Indeed automata (as
the name suggests) are motivated by the material world as
opposed to the intellectual, mathematical world. Each approach
has advantages and disadvantages.
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Just what is in this course and why is called Formal Languages and
Automata?
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Definition. A formal language is a set of strings over an alphabet.

The significance is:

computational problem
=

formal language

Because we can strip computation down to

1. data – strings

2. answers – yes, or no

This approach may lack practical importance as it does not lend
itself to expressing computational solutions. Neither procedural or
data abstraction is convenient in this form. We take to study the
essential core.
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Since “problem=language”, languages and grammars get mixed up
with computation.

Title text: “[Audience looks around] ‘Just what happened?’ ’There
must have been some context we are missing.”

See Explain XKCD 1090.

http://www.explainxkcd.com/wiki/index.php/1090:_Formal_Languages


121/ 161

Since “problem=language”, languages and grammars get mixed up
with computation.

Title text: “[Audience looks around] ‘Just what happened?’ ’There
must have been some context we are missing.”

See Explain XKCD 1090.

http://www.explainxkcd.com/wiki/index.php/1090:_Formal_Languages


Outline
Goal

History

Models of Computation

Motivating Finite Automata

Deterministic Finite Automata

Variations on Automata

Pushdown Automata

Turing Machine

Other Computational Models

Overview

Courses

Grammars

Pumping Lemma

122/ 161



123/ 161

Different fields and different academic courses take different
perspectives.
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programming
languages

language design,
description, semantics

compilers

implementation,
recognition

formal
languages

expressivity
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formal
languages,
automata

models

computabilty

limits

complexity

efficiency
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Summary

Here at the outset we summarize many of the final results.

I Chomsky hierarchy

I Recursive versus r.e.

I Closure properties of language families

I Decision algorithms
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Noam Chomsky
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Summary

Here at the outset we summarize many of the final results.
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Chomsky Hierarchy
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Properties of Language Families

REG DCFL CFL CSL REC RE

union

complement

intersection L̄1 ∪ L̄2

set difference L1 ∩ L̄2

concatenation

Kleene star

intersection with REG
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Textbooks

An introduction to some textbooks.
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“Cinderella” Book
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John Hopcroft, 1986 Turing Award Recipient
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Overview of Course

The field of computer science includes a wide range
of special topics, from machine design to programming.
The use of computers in the real world involves a wealth
of specific detail that must be learned for a successful
application. This makes computer science a very diverse
and broad discipline. But in spite of this diversity, there
are some common underlying principles. To study these
basic principles, we construct abstract models of
computers and computation.

Linz
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Overview of Course

Loosely speaking we can think of automata,
grammars, and computability as the study of what can be
done by computers in principle, while complexity
addresses what can be done in practice. In this book we
focus almost entirely on the first of these concerns. We
will study various automata, see how they are related to
languages and grammars, and investigate what can and
cannot be done by digital computers. Although this
theory has many uses, it is inherently abstract and
mathematical.

Linz
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A nonterminal A ∈ V is productive if A⇒∗ w for some w ∈ T ∗.
A useless production A− > α is one with some unproductive
nonterminal in α.
For each production A ∈ X1X2 · · ·Xn, A is productive if Xi for all i
is either a terminal or a productive nonterminal.
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A nonteriminal A = inV is said to be reachable if S ⇒∗ αAβ.
S is reachable as is any A where N → αAβ and N is reachable.
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Let L be a context-free language that does not contain ε. Then
there exists a context-free languages can be made free of
ε-productions, unit-productions, and useless productions.
1. Remove ε-productions 2. Remove unit-productions. 3. Remove
useless productions.
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Find all Nullable non-terminals. Replace every production with a
nullable non-terimanl in the RHS with two productions: one with
and one without the nullable non-terminal.
If a production has n nullable non-teriminals then it is replaced by
2n productions.
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Every CFG G = (V ,N,P, S) can be (effectively) transformed to
one without cycles, non-productive or unreachable non-terminals.
(This means that unit productions are unnecessary.)

I A productive non-terminal N is one for which N ⇒∗ w for
some w ∈ Σ∗.w ∈ V ∗.

I A reachable non-terminal N is one for which S ⇒∗ αNβ for
some α, β ∈ (Σ ∪ N)∗.α, β ∈ (V ∪ N)∗.

All epsilon productions may also (effectively) be eliminated from a
CFG, if the language does not contain the empty string. If the
language contains the empty string, no epsilon productions are
necessary save one: S → ε. S → ε.
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I A⇒ B is the same as (notB)⇒ (notA)

I not∀xA(x)⇒ B(x) is the same as ∃xA(X ) and notB(x)

I not∃xA(x) andB(x) is the same as ∀xA(X )⇒ notB(x)
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For all formal languages L, the pumping lemma holds:

Regular(L)⇒
[

∃m ≥ 1 and

∀w ∈ L
(
|w | > m⇒

∃ x , y , z ∈ Σ∗
[

(w = xyz and |xy | ≤ m and |y | ≥ 1) and

∀ i ≥ 0 (xy iz ∈ L)
])]
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For all formal languages L, the contrapositive of the pumping
lemma must hold:[

∀m ≥ 1 ⇒

∃w ∈ L
(
|w | > m and

∀ x , y , z ∈ Σ∗
[

(w = xyz and |xy | ≤ m and |y | ≥ 1) ⇒

∃ i ≥ 0 (xy iz /∈ L)
])]

⇒ not Regular(L)
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Proving a Language is Not Regular

I The adversary pick a number m ≥ 1.

I We pick a string in L with length greater than m.

I The adversary picks strings x , y , z such that xyz = w ,
|xy | ≤ m, and |y | ≥ 1.

I We pick a number i such that xy iz is not in L.

I We win, if we have a winning strategy; i.e., xy iz /∈ L no
matter what choices the adversary makes.
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S

A

Au
zv

y
x

The derivation tree for the derivation:

S ⇒∗ uAz ⇒∗ uvAyz ⇒∗ uvxyz
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S

A

u
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The derivation tree for the derivation:

S ⇒∗ uAz ⇒∗ uxz
S ⇒∗ uAz ⇒∗ uvAyz ⇒∗ uvxyz

S ⇒∗ uAz ⇒∗ uvAyz ⇒∗ uvAyz ⇒∗ uvvxyyz
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For all context-free languages L, the pumping lemma holds:

CFL(L)⇒
[

∃m ≥ 1 and

∀w ∈ L
(
|w | > m⇒

∃ u, v , x , y , z ∈ Σ∗
[

(w = uvxyz and |vxy | ≤ m and |vy | ≥ 1) and

∀ i ≥ 0 (uv ixy iz ∈ L)
])]
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For all formal languages L, the contrapositive of the pumping
lemma must hold:[
∀m ≥ 1 ⇒

∃w ∈ L
(
|w | > m and

∀ x , y , z ∈ Σ∗
[

(w = uvxyz and |vxy | ≤ m and |vy | ≥ 1) ⇒

∃ i ≥ 0 (uv ixy iz /∈ L)
])]

⇒ not CFL(L)
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Proving a Language is Not Context-Free

I The adversary pick a number m ≥ 1.

I We pick a string in L with length greater than m.

I The adversary picks strings u, v , x , y , z such that
uvxyz = w , |uxy | ≤ m, and |vy | ≥ 1.

I We pick a number i such that uv ixy iz is not in L.

I We win, if we have a winning strategy; i.e., uv ixy iz /∈ L no
matter what choices the adversary makes.
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