
1/ 37

Math Preliminaries
Introduction

Ryan Stansifer

Department of Computer Sciences
Florida Institute of Technology

Melbourne, Florida USA 32901

http://www.cs.fit.edu/˜ryan/

19 January 2017

http://www.cs.fit.edu/~ryan/

2/ 37

De Morgan Laws

P andQ iff not((notP)or(notQ))

P orQ iff not((notP)and(notQ))

A∪B = A∩B

A∩B = A∪B

3/ 37

Leopold Kronecker (1823–1891)

Jasper Johns
Numbers in Color

Leopold Kronecker (December 7, 1823 – December 29, 1891) was a
German mathematician and logician who argued that arithmetic and
analysis must be founded on “whole numbers,” and was quoted by
Heinrich Weber as having said, “God made the integers; all else is the
work of man.” Kronecker’s finitism made him a forerunner of
intuitionism in foundations of mathematics.

4/ 37

Heinrich Martin Weber, “Leopold Kronecker,” Jahresbericht der
Deutschen Mathematiker-Vereinigung, Zweiter Band, 1891–92, Berlin:
Druck und Verlag von Georg Reimer, 1893, pages 2–29. Also in
Mathematische Annalen, volume 43, number 1, 1892, pages 1–25.

5/ 37

Theorem
(Mathematical Induction on Natural Numbers.) Let P(n) be a property
that pertains to natural numbers n ∈ N. If the following are true:

P(0) is true

For any k ∈ N,P(k) implies P(k + 1)

Then for any n ∈ N, P(n) is true.

6/ 37

Example

Theorem
For all n ∈ N, Σn

i=1 = n(n+1)
2 .

7/ 37

Theorem
(Mathematical Induction on Natural Numbers – Noetherian [strong,
complete].) Let P(n) be a property that pertains to natural numbers
n ∈ N. If the following are true:

P(0) is true

For any i,k ∈ N, if i < k and P(i), then P(k)

Then for any n ∈ N, P(n) is true.

8/ 37

Example

Theorem
For all natural numbers p with p > 1, p is the product of one or more
prime numbers.

9/ 37

Example

Induction works on natural numbers because the set of natural
numbers is well-founded by the less-than relations.

A binary relation ≺ on a set X is said to be well-founded or notherian,
if every non-empty subset of X has a minimal element with respect to
the ≺ relation.

for all S ⊆ X , S 6= /0 implies for some m ∈ S, and all s ∈ S, not s ≺m

10/ 37

Inductive Set

But it easy to construct sets which are well-founded, these sets are
said to be inductive sets and the principle of induction applies to such
sets. The natural numbers are a special case.

An inductive definition of a set consists of two steps:

I Basis. Some set elements are explicitly asserted to belong to the
set.

I Construction. One or more rules for constructing new elements of
the set from existing elements

It is implied that nothing else is in the set except those which can be
demonstrated are in the set by the means.
See, Hein, 2nd, Section 3.1 [2]

11/ 37

Example

The natural numbers is the set constructed from zero and the
successor constructor.

A string of an alphabet is the set constructed from the empty string
and the family of constructors (one for each letter of the alphabet)
which extend the string by a letter.

12/ 37

Sometimes inductive sets are described by other means like
judgments of Post system proofs, or sentential forms of CFG
derivations. Constructing sets these ways leads immediately to using
induction to prove properties of all Post system judgments or CFG
sentential forms.

Also, the Haskell programming language provides a great way to
construct inductive sets by ways of algebraic data types.

13/ 37

Unit

In Haskell new data types can be created by enumerating all the
values in them.

data Bool = True | False

The data type Bool has two values: True and False.
A type may only have one value in it as the Haskell data type called
unit:

data () = ()

The data type and the value of the data have the same notation in
Haskell (Since data types are values are not easily confused, this is
not a big problem.)

14/ 37

Consider the constructive definition of data values as in this Haskell
example:

data Nat = Zero | Succ Nat

This definition defines two methods for constructing data values of
type Nat—one of which is simple enumeration and the other is
recursive. Constructable values include Zero, Succ(Zero),
Succ(Succ(Zero)), and so on.

Note: These are the only values you can construct of type Nat in Haskell. But
we may have to contend with other expressions of type Nat in Haskell. For
example, the expression f(-2) where

f (0) = Zero
f (n) = Succ (f (n-1))

has type Natin Haskell but no value–it does not terminate.

15/ 37

The same methods of construction can be restated as a Post system:

Zero ∈ Nat
v ∈ Nat

Succ(v) ∈ Nat

0 ∈ N
n ∈ N
n′ ∈ N

Alternatively, we can use what might be called tally notation:

N
Nx
Nx |

In this system an alternative set of constructable values is created in
one-to-one correspondence to the previous values: N, N |, N ||, N |||,
and so on.

16/ 37

Numerals

These four well-defined systems for constructing numerals are all
equivalent representations of the natural numbers.

0 Zero 0 N
1 Succ(Zero) 0′ N |
2 Succ(Succ(Zero)) 0′′ N ||
3 Succ(Succ(Succ(Zero))) 0′′′ N |||
4 Succ(Succ(Succ(Succ(Zero))) 0′′′′ N ||||
5 Succ(Succ(Succ(Succ(Succ(Zero)))) 0′′′′′ N |||||

17/ 37

Additionally, yet another formal, description of those values is possible
using context-free grammars:

1 S→N
2 N→N |

The set of sentential forms is exactly the same tally notation as the
earlier Post system.

18/ 37

Inductively Defined Structures

0

1

2

19/ 37

Inductively Defined Structures

a
b

y1

y2

y3

t

u

v

w2

20/ 37

Inductively Defined Structures (Regular Expressions

a
b

y1

y2

y3

t

u

v

w2

21/ 37

Back to proofs by induction

22/ 37

Consider the Haskell data type Nat:

data Nat = Zero | Succ Nat

Theorem
(Mathematical Induction on the Haskell type Nat.) Let P(v) be a
property that pertains to value v in data type Nat. If the following are
true:

P(Zero) is true

For any v ∈ Nat, P(v) implies P(Succ(v))

Then for any v ∈ Nat, P(v) is true.

23/ 37

Everything in the inductive type/set is constructed by a finite number of
constructor applications.
The strict subterm relation, i.e., the thing/expression/term t
constructed from x by any of the constructors is a partial-order. There
are some null-ary constructors, i.e., somethings/expressions/terms
constructed out of nothing, then the partial-order is a well-founded
order, and the induction principle applies.

24/ 37

Lists

In Haskell types have kind *. Type constructors (as opposed to value
constructors or just constructors) which construct a new kind of type
from an existing type have kind *->*.
Consider the Haskell data type constructor Fwd of kind *->*:

data Fwd a = F0 | a :> (Fwd a)

Consider the Haskell data type Bwd of kind *->*:

data Bwd a = B0 | (Bwd a) :< a

Consider the predefined, Haskell data type constructor for polymorphic
lists (kind *->*):

data [a] = [] | a : [a]

25/ 37

Consider the Haskell data type FwdA:

data Fwd a = F0 | a :> (Fwd a)

Theorem
(Mathematical Induction on the Type FwdA.) Let P(v) be a property
that pertains to value v in data type FwdA. If the following are true:

P(F0) is true

For all v ∈ FwdA and for all a ∈ A, P(v) implies P(a:>v)

Then for any v ∈ FwdA, P(v) is true.

26/ 37

Consider the Haskell data type BwdA:

data Bwd a = B0 | (Bwd a) :< a

Theorem
(Mathematical Induction on the Type BwdA.) Let P(v) be a property
that pertains to value v in data type BwdA. If the following are true:

P(F0) is true

For all v ∈ BwdA and for all a ∈ A, P(v) implies P(v:<a)

Then for any v ∈ BwdA, P(v) is true.

27/ 37

Consider the predefined, Haskell data type for polymorphic lists (kind
->):

data [a] = [] | a : [a]

Theorem
(Mathematical Induction on the Haskell lists.) Let P(v) be a property
for a list value v. If the following are true:

P([]) is true

For all v ∈ [A] and for all a ∈ A, P(v) implies P(x : v)

Then for any v ∈ [A], P(v) is true.

28/ 37

0 Zero 0 N
1 Succ(Zero) 0′ N |
2 Succ(Succ(Zero)) 0′′ N ||
3 Succ(Succ(Succ(Zero))) 0′′′ N |||
4 Succ(Succ(Succ(Succ(Zero))) 0′′′′ N ||||

The type Fwd and Bwd are identical to the pre-defined, polymorphic
Haskell list type (of kind *->*). In the special case of the pre-defined
Haskell unit type:

data () = ()

lists are isomorphic to natural numbers.

0 F0 B0 []
1 ():>F0 B0:<() ():[]
2 ():>():>F0 B0:<():<() ():():[]
3 ():>():>():>F0 B0:<():<():<() ():():():[]
4 ():>():>():>():>F0 B0:<():<():<():<() ():():():():[]

29/ 37

Consider the Haskell data type TreeA:

data Tree a = Leaf | Node (Tree a) a (Tree a)

Theorem
(Mathematical Induction on the Type TreeA.) Let P(r) be a property
that pertains to value r in data type TreeA. If the following are true:

P(Leaf) is true

For all v ,w ∈ TreeA and for all a ∈ A, P(v) implies P(Nodev aw)

Then for any r ∈ TreeA, P(r) is true.

30/ 37

Consider the Haskell data type RegexA:

data Regex a = Empty | Sym a |
Alt (Regex a) (Regex a) | Star (Regex a)

Some example values of type RegexA are:

Empty
Sym ’a’
Sym ’b’
Alt Empty (Sym ’c’)
Star (Alt (Sym ’d’) (Sym ’e’))

Note: We omitted the final, recursive case in the definition of regular
expressions, because it did not add different structure to this example.

31/ 37

The same methods of construction can be restated as a Post system:

/0 ∈ Rx
a ∈ Σ
a ∈ Rx

r1 ∈ Rx r1 ∈ Rx
(r1 + r2) ∈ Rx

r1 ∈ Rx
(r1)∗ ∈ Rx

Or for that matter a CFG:

1 R→ /0

2 R→a
3 R→(R + R)
4 R→(R)∗

32/ 37

Theorem
(Mathematical Induction on the Type RegexA.) Let P(r) be a property
that pertains to value r in data type RegexA. If the four following
statements are true:

P(Empty) is true; and for all a ∈ A, P(Syma)

For all v ∈ RegexA, P(v) implies P(Starv)

For all v ,w ∈ RegexA, P(v) implies P(Altv w)

Then for any r ∈ RegexA, P(r) is true.

Outline

Relations

33/ 37

34/ 37

Definition
The binary, infix, relation ≺ is defined by n ≺ n + 1 for all N ∈ N.

35/ 37

Transitive Closure

The successor constructor (operation) gives rise to (well-ordered)
relation ≺:

n ∈ N
n ≺ n′

Reflexive and transitive closure of an existing (arbitrary) ≺ relation.

n ≺m
n ≺+ m

n ∈ N
n ≺+ n

n ≺+ m m ≺ p

n ≺+ p

n ∈ N
n ≤ n′

n ∈ N
n ≤ n

n ≤m m ≤ p
n ≤ p

36/ 37

Transitive Closure

The transitive closure of a well-founded relation is well-founded.
The reflexive, transitive closure of a relation can never be
well-founded. (So we cannot do induction on the relation.)
Hence, the need to do induction on the proof that a pair is in the
reflexive, transitive closure of a relation.

37/ 37

References I

Jean H. Gallier.
Logic for Computer Science: Foundations of Automatic Theorem
Proving.
Harper & Row, New York, 1986.

James L. Hein.
Discrete Structures, Logic, and Computability.
Jones and Bartlett, Sudbury, Massachusetts, second edition,
2002.

John Clifford Mitchell.
Foundations of Programming Languages.
MIT Press, 1996.

	Relations

