Formal Languages and Automata Theory

Homework Set \#1

William Shoaff
Summer 2018 (May 16, 2018)
Definition: A set S is countable if (1) it is finite or (2) there is a one-toone, onto function $f: \mathbb{N} \rightarrow \mathrm{S}$. Otherwise, S is uncountable.

1. (2 pts) Prove the set $\{n \in \mathbb{N}: n \geq 0 \wedge n$ is odd $\}$ is countable.

Proof by Contraction: To prove P is True: (1) Assume P is False and construct a proposition Q such that both Q and $\neg \mathrm{Q}$ are True.
2. (2 pts) Let S be the set of all infinite sequences over the alphabet $\Sigma=\{a, b\}$. Prove that S is uncountable.
3. (2 pts) Let S be a set and let 2^{S} be the power set of S. Prove there is no one-to-one and onto function from S to 2^{S}.

Proof by Induction: To prove $\kappa(n)$ is True for all naturals $n \geq k$: (1) Base case establish the $\kappa(n)$ is True and (2) Inductive case show that $(\forall n \geq k)(\mathrm{\kappa}(n) \Rightarrow \mathrm{K}(n+1))$
4. (2 pts) Prove the number of leaves in a full binary tree with height h is 2^{h}.
5. (2 pts) Prove that $n!>2^{n}$ for all $n \geq 4$.
6. (2 pts) Use mathematical induction to prove that

$$
\sum_{0 \leq k \leq n}(n-k) k=\binom{n+1}{3}
$$

