Formal Languages and Automata Theory

Homework Set \#3
William Shoaff
Summer 2018 (May 27, 2018)
Definitions: The language of a DFA M is

$$
L(M)=\left\{w: \hat{\delta}^{*}\left(q_{0}, w\right) \in \mathbb{F}\right\}
$$

That is, a string w is in the language of M if there is a path from the start state q_{0} to a final state in \mathbb{F} found by repeatedly following state transitions using the transition function δ. For NFA's the transition function maps (state, character) pairs to subsets of states. ϵ-transitions are also allowed.

The language of an NFA N is

$$
L(N)=\left\{w: \hat{\delta}^{*}\left(q_{0}, w\right) \cap \mathbb{F} \neq \varnothing\right\}
$$

That is, some path labeled w from the start state to a final state exists. Theorem: The class of languages recognized by DFA's and NFA's are equivalent.

Proof. 1. Every DFA is also an NFA so

$$
\{L(M): M \text { is a DFA }\} \subseteq\{L(N): N \text { is a NFA }\}
$$

2. The Rabin-Scott subset construction algorithm establishes the other inclusion (states become subsets of states).

Regular Expressions: The empty set \varnothing, empty string ϵ, and each character $c \in \Sigma$ is a regular expression. If r_{1} and r_{2} are regular expressions, then the following are regular expressions:

$r_{1}+r_{2}=r_{1} \mid r_{2}=r_{1} \cup r_{2}$	(precedence o)
$r_{1} \cdot r_{2}$	(precedence 1)
r_{1}^{*}	(precedence 2)
$\left(r_{1}\right)$	(precedence 3)

Problems:

1. (2 pts) Give an NFA with ϵ-transition that recognizes binary numbers: An optional + or - sign; a string of bits; a binary point; and another string of bits, where at least one of the bit strings is non-empty.
2. (2 pts) Use the Rabin-Scott algorithm to convert the NFA of problem (1) into a DFA.
3. (2 pts) Let A and B be finite automata. Show how to construct a finite automata that accepts
(a) The union of their languages $L(A) \cup L(B)=L(A)+L(B)$
(b) The intersection of their languages $L(A) \cap L(B)$
(c) The concatenation of their languages $L(A) \cdot L(B)$
(d) The Kleene closure $L(A)^{*}$ of $L(A)$.
4. (2 pts) A general transition graph (GTG) is a transition graph with edges labeled by regular expressions. It is complete (on n states) when all n^{2} edges are present.
(a) Prove that a complete, directed, generalized transition graph with self-loops on n nodes has n^{2} edges.
(b) What regular expression is equivalent to the two-state finite automata below? How does your answer depend on choice of final state?

5. (2 pts) Consider 3-state the incomplete graph below.
(a) Complete the generalized transition graph (GTG) by adding regular-expression labeled edges as needed.
(b) Show how to remove a state q_{1}, converting the complete GTG to a 2-state machine.
(c) Finally, find a regular expression, from the 2-state machine, that describes the language of the machine.

