Formal Languages and Automata Theory Homework Set #4

William Shoaff

Summer 2018 (June 5, 2018)

Most languages are not regular. The pumping lemma can sometimes be used to prove a language L is not regular. <u>Theorem</u>: Pumping Lemma for Regular Languages Let L be a regular language.

- There exists a natural number *n* (depending on *L*) such that
- For all $x \in L$ with $|x| \ge n$
- There exists strings *u*, *v*, *w* such that

1.
$$x = uvw$$
,

2.
$$v \neq \epsilon \; (|v| \geq 1)$$
,

- 3. $|uv| \le n$,
- 4. and for all $i \ge 0$, $uv^i w \in L$.

The pumping lemma follows from the pigeonhole principle: If x is a sufficiently long string in L, then the path from q_0 to a final state must contain a cycle that can be pumped (traversed) an arbitrary number of times.

To use the pumping lemma, assume, by way of contradiction, that a language L is regular and construct a string that cannot be pumped deriving a contradiction to L is regular.

Show the following languages are not regular.

- 1. (2 pts) $L = \{ww : w \in \{a, b\}^*\}$ <u>Hint:</u> Picking the right string in the language that cannot be pumped is critical.
 - (a) Show that $0^n 0^n \in L$ and can be pumped using $u = \epsilon$, v = 00, and $w = 0^{2n-2}$.
 - (b) Show that $(01)^n (01)^n \in L$ and can be pumped and can be pumped using $u = \epsilon$, v = 0101, and $w = (01)^{2n-2}$.
 - (c) Show that $(0)^n 10^n 1 \in L$ and cannot be pumped.
- 2. (2 pts) Let $L = \{w : w = w^r\}$ be the set of palindromes over $\{a, b\}$.
- 3. (2 pts) Let *L* be the set of strings of digits and the symbols + and = that represent equations that are True. For example, $1 + 1 = 2 \in L$, while $3 + 5 = 9 \notin L$.

4. (2 pts) Consider the right-linear grammar

$$S
ightarrow 0A$$

 $A
ightarrow 10A |\epsilon$

Construct an NFA for the grammar and identify the regular expression defined by the grammar.

5. (2 pts) Now consider the left-linear grammar

$$S \rightarrow S10|0$$

(a) Reverse its productions to get

 $S \rightarrow 10S|0$

and construct an NFA for this grammar.

(b) Reverse the edges of the NFA constructed in problem 5 and exchange initial and final states. What regular expression does this NFA accept?

Total Points: 10