Formal Languages and Automata Theory

Homework Set \#4

William Shoaff

Summer 2018 (June 5, 2018)
Most languages are not regular. The pumping lemma can sometimes be used to prove a language L is not regular.
Theorem: Pumping Lemma for Regular Languages Let L be a regular language.

- There exists a natural number n (depending on L) such that
- For all $x \in L$ with $|x| \geq n$
- There exists strings u, v, w such that

1. $x=u v w$,
2. $v \neq \epsilon(|v| \geq 1)$,
3. $|u v| \leq n$,
4. and for all $i \geq 0, u v^{i} w \in L$.

The pumping lemma follows from the pigeonhole principle: If x is a sufficiently long string in L, then the path from q_{0} to a final state must contain a cycle that can be pumped (traversed) an arbitrary number of times.

To use the pumping lemma, assume, by way of contradiction, that a language L is regular and construct a string that cannot be pumped deriving a contradiction to L is regular.

Show the following languages are not regular.

1. (2 pts) $L=\left\{w w: w \in\{a, b\}^{*}\right\}$ Hint: Picking the right string in the language that cannot be pumped is critical.
(a) Show that $0^{n} 0^{n} \in L$ and can be pumped using $u=\epsilon, v=00$, and $w=0^{2 n-2}$.
(b) Show that $(01)^{n}(01)^{n} \in L$ and can be pumped and can be pumped using $u=\epsilon, v=0101$, and $w=(01)^{2 n-2}$.
(c) Show that $(0)^{n} 10^{n} 1 \in L$ and cannot be pumped.
2. (2 pts) Let $L=\left\{w: w=w^{r}\right\}$ be the set of palindromes over $\{a, b\}$.
3. (2 pts) Let L be the set of strings of digits and the symbols + and $=$ that represent equations that are True. For example, $1+1=2 \in$ L, while $3+5=9 \notin L$.
4. (2 pts) Consider the right-linear grammar

$$
\begin{aligned}
& S \rightarrow 0 A \\
& A \rightarrow 10 A \mid \epsilon
\end{aligned}
$$

Construct an NFA for the grammar and identify the regular expression defined by the grammar.
5. (2 pts) Now consider the left-linear grammar

$$
S \rightarrow S 10 \mid 0
$$

(a) Reverse its productions to get

$$
S \rightarrow 10 S \mid 0
$$

and construct an NFA for this grammar.
(b) Reverse the edges of the NFA constructed in problem 5 and exchange initial and final states. What regular expression does this NFA accept?

