Four basic concepts where presented in the introductory material: Two machines (DFAs and NFAs) and two language descriptors (regular expressions and regular grammars). DFAs and NFAs can be described by transition graphs or transition tables. An overarching theorem is that each of these representations define exactly the same language class: Regular languages. A basic skill is the ability to construct a reduction from any one of these representations to any other. In practice, the typical sequence of reductions is:

$$
\text { Regular expression } \mapsto \mathrm{NFA} \mapsto \mathrm{DFA} \mapsto \text { minimal DFA }
$$

Regular expression can describe numbers and names (identifiers, password, ...) and can be useful in many applications.

Another basic idea is that regular languages are closed under many common operations: Union, intersection, complement, concatenation, star, and reversal. And another basic idea: The pumping lemma can be used to show some languages are not regular. And, yet another basic idea: Decision problems about regular languages are usually decidable. That is, decision problems usually have terminating algorithms that always correctly answers the question.

1 Induction, Contradictions, \& Relations

1. (5 pts) In graph theory, a complete graph G has an (undirected) edge from every node to every other node. But, a transition graph $T G$ is complete only if there is an (directed) edge from every node to every node. Let $|\mathbb{V}|=n$ be the number of nodes in a graph. Prove that $|\mathbb{E}|=\binom{n}{2}$ for a complete graph G. Prove that $|\mathbb{E}|=n^{2}$ for a complete transition graph $T G$.
Answer: As a basis, if $n=1$ a complete graph has no edges and $\binom{1}{2}=0$. On the other-hand a complete transition graph has $1=n^{2}$ edge (a loop).
Now assume the statements are True for some $n \geq 1$. and consider what happens when another vertex is added to a graph. To make the (undirected) graph complete, $n=\binom{n}{1}$ (undirected) edges must be added. And, the number of edges in the new graph is the number of edges in the old plus the n new edges. That is,

$$
\binom{n}{2}+\binom{n}{1}=\binom{n+1}{2} \quad \text { by Pascal's identity. }
$$

When a new vertex is added to a transition graph, there are several new edges to count:

- There are n new edges from the old nodes to the new node.
- There are n new edges from the new node to the old nodes.
- There is 1 from the new node to itself.

An additional $2 n+1$ (directed) edges must be added to complete the new transition graph. And, $n^{2}+(2 n+1)=(n+1)^{2}$.

Score 2. (5 pts) One Gradiance question caused me to wonder: Is it possible to construct an NFA over $\Sigma=$ $\{0,1\}$ such that $n(k)$, the number of strings of length k, is F_{k+1}, a Fibonacci number? I think it is. Prove me right or wrong. Recall, the Fibonacci sequence is

$$
\left\langle F_{0}, F_{1}, F_{2}, F_{3}, F_{5}, F_{6}, \ldots\right\rangle=\langle 0,1,1,2,3,5, \ldots\rangle
$$

Answer: I recalled that certain binary strings are related to Fibonacci numbers. A quick search revealed the number binary strings without double zeros 00 is a forms the Fibonacci sequence.
A regular expression that describes all bit strings with a double zero is $(0+1)^{*} 00(0+1)^{*}$. And a finite automata that accepts the double zero language is

The complement must be the strings without double zeros and its finite automata is

Score
3. (5 pts) Pretend that a string w of length n is accepted by DFA M. Pretend $n \geq m$ where m is the cardinality of states Q. Use the pigeonhole principle to prove that the transition graph for M has a cycle of length 1 or more.
Answer: A walk of length n in a graph transverse a sequence of states

$$
\left\langle q_{0}, q_{\pi_{1}}, q_{\pi_{2}}, \ldots, q_{\pi_{n}}\right\rangle
$$

This is a sequence of $n+1>m$ states, and by the pigeonhole principle some state, call it q_{k} must occur twice. That is, there is some cycle of states q_{k}, \cdots, q_{k} in the walk. The graph contains a cycle.
4. (5 pts) Let M be a DFA. Say strings x and y in Σ^{*} are indistinguishable, written $x \equiv y$ if and only if

$$
\delta^{*}\left(q_{0}, x\right)=\delta^{*}\left(q_{0}, y\right)
$$

Prove that the indistinguishable relation is an equivalence, that is it is reflexive, symmetric, and transitive.

Answer: Since $\delta^{*}()$ is a function, the following hold
Reflexive $\quad \delta^{*}\left(q_{0}, x\right)=\delta^{*}\left(q_{0}, x\right)$
Symmetric $\quad\left(\delta^{*}\left(q_{0}, x\right)=\delta^{*}\left(q_{0}, y\right)\right) \Rightarrow\left(\delta^{*}\left(q_{0}, y\right)=\delta^{*}\left(q_{0}, x\right)\right)$
Transitive $\quad\left(\left(\delta^{*}\left(q_{0}, x\right)=\delta^{*}\left(q_{0}, y\right)\right) \wedge\left(\delta^{*}\left(q_{0}, y\right)=\delta^{*}\left(q_{0}, z\right)\right)\right) \Rightarrow\left(\delta^{*}\left(q_{0}, x\right)=\delta^{*}\left(q_{0}, z\right)\right)$

Therefore, indistinguishable is an equivalence relation on strings.

2 Machines and Languages

Consider the transition graph below for machine M (drawn using JFLAP).

Score

Score
\square

1. (5 pts) Does graph describe a DFA or an NFA?

Answer: Machine M is a DFA: There is only one transition from each state on a given input and there are no λ transitions.
2. (5 pts) Create a transition table for the machine Answer:

	a	b
q_{0}	q_{0}	q_{1}
q_{1}	q_{1}	q_{2}
q_{2}	\emptyset	\emptyset

3. (5 pts) Is $L=L(M)$ regular? If so, answer the questions below. Otherwise, why is L not regular?
(a) Write an English description of the strings w accepted by L.

Answer: The string $w \in L$ if and only if it has exactly two b 's and ends in a b. (It can have any number of a 's.
(b) Write a regular expression that describes strings w accepted by L.

Answer: A regular expression for L is

$$
r=a^{*} b a^{*} b
$$

(c) Construct a right-linear grammar for L.

Answer: Use the state names as non-terminals (variables). The production rules are:

$$
\begin{aligned}
q_{0} & \rightarrow a q_{0} \\
q_{0} & \rightarrow b q_{1} \\
q_{1} & \rightarrow a q_{1} \\
q_{1} & \rightarrow b q_{2} \\
q_{2} & \rightarrow \lambda
\end{aligned}
$$

3 Reduce NFA to DFA

Consider the transition table for NFA N :

	a	b	λ
q_{0}	$\left\{q_{0}, q_{1}\right\}$	\emptyset	$\left\{q_{2}\right\}$
q_{1}	\emptyset	$\left\{q_{1}, q_{2}\right\}$	\emptyset
q_{2}	$\left\{q_{2}\right\}$	\emptyset	$\left\{q_{1}\right\}$

Score \square

1. (5 pts) Draw a transition graph for machine N. Consider using JFLAP unless you have another tool you know for the problem. (I guess by hand will do, but that is so nineteenth century)
Answer: (drawn using JFLAP)

Score
2. (5 pts) Convert N into a DFA.

Answer: (drawn using JFLAP)

4 Reduce an NFA to a Regular Expression

- (5 pts) Eliminate state q_{1} from the transition graph below by:

- Create an edge from q_{0} to q_{0} and appropriately label it with a regular expression r_{00} that describes all walks from q_{0} to q_{0}.

$$
r_{00}=00
$$

- Create an edge from q_{0} to q_{2} and appropriately label it with a regular expression r_{02}.

$$
r_{02}=1+01
$$

- Create an edge from q_{2} to q_{0} and appropriately label it with a regular expression r_{20}.

$$
r_{20}=1+00
$$

- Create an edge from q_{2} to q_{2} and appropriately label it with a regular expression r_{22}.

$$
\begin{gathered}
r_{22}=01 \\
\left((00)^{*}(1+01)(01)^{*}(1+00)\right)^{*}(00)^{*}(1+01)(01)^{*}
\end{gathered}
$$

1. Why can you eliminate state q_{1} and all edges from or to it to create a reduced 2 -state transition graph?
Answer: Every path from the initial state to the final state that passes through q_{1} has been captured by these regular expressions.
2. Why does the regular expression

$$
r_{00}^{*} r_{02}\left(r_{22}+r_{20} r_{00}^{*} r_{02}\right)^{*}
$$

describe the regular expression of the automaton?
Answer: Written out, the expression is

$$
(00)^{*}(1+01)\left(01+(1+00)(00)^{*}(1+01)\right)^{*}
$$

To summarize, you can state in state q_{0} reading double 0 's for as long as you like. There are then two paths to the final state q_{2} : Directly by 1 and indirectly by 01 through q_{1}. Once in the final state you stay there reading 01 or go back to state q_{0} via $1+00$, stay there for a while, and then come back to the final state q_{2} via $1+01$. And you can do this any number of times.

5 Reduce Regular Expression to NFA

Score (5 pts) Construct an NFA that accepts the language $L\left((b b)^{*} a^{*}+b^{*}(a a)^{*}\right)$.
Answer: The idea is to glue together simple parts to construct the machine. (drawn using JFLAP).

6 A NFA to a Regular Grammar

Score

1. (5 pts) Define: Right-Linear Grammar

Answer: All productions have the form $A \rightarrow w B$ or $A \rightarrow w$ where $w \in \Sigma^{*}$.

Score 2. (15 pts) Consider the grammar $G=(S, T, V, P)$ with production rules

$$
\begin{aligned}
& S \rightarrow a A \\
& A \rightarrow a a A \mid \lambda
\end{aligned}
$$

(a) Construct a DFA that accepts/recognizes, strings derived from the grammar G. Answer:
(b) What is the language $L=L(G)$ defined by the above grammar G ? Answer:
(c) What is a regular expression describes the grammar G ?

Answer:

7 The Pumping Lemma

Score

Score

Score

Score
3. (5 pts) Let L be a regular language with m states. Clearly, if its DFA M accepts some string of length less than m, then L is non-empty
Prove that if L is non-empty, then M accepts a string w with $|w|<m$. (Hint: If L is non-empty, let $w \in L$ be as short as any word in L. If $|w| \geq m$, use the pumping lemma to derive a contradiction that w is among the shortest words accepted by M.

8 Applications

Answer: It may be a good idea to review ways to write fixed-point numbers.

- No sign: 123.321
- Signs: ± 123.321
- No point: 123
- No fractional part: 123.
- No integer part: . 321
- Full: (Sign part)(Integer + Integer. + .Integer + Integer.Integer)

This suggests the expression

$$
(\operatorname{sign})\left(\text { digit }^{+}+\text {digit }^{+} \text {point }+ \text { point digit }+\operatorname{digit}^{+} \text {point } \operatorname{digit}^{+}\right)
$$

The Hopcroft-Ullman book (Hopcroft and Ullman, 1979) gives this answer:

$$
(\text { sign })(\text { digit })^{+}(\text {point })\left(\text { digit }^{*}+\lambda\right)+(\text { point })(\text { digit })^{+}
$$

2. (5 pts) Describe the following passwords rules using regular expressions.
(a) A password must be 5 or more characters long.

Answer: The set of characters is undefined. Based on the question, I assume it is the set of lower and upper case English letters and the digits. Let l and u, and d represent arbitrary lower and upper case letters, an digits. The regular expression is

$$
(l+u+d)^{5}(l+u+d)^{*}
$$

(b) A password must be contain at least one lower case and one upper case English letter.

Answer: Either the first l is before the first u, or vice versa. Before these distinguished characters any number of d 's can occur. So the regular expression is

$$
d^{*} l(d+l)^{*} u(d+l+u)^{*}+d^{*} u(d+u)^{*} l(d+l+u)^{*}
$$

(c) A password must contain at least one digit.

Answer: The regular expression is

$$
(l+u)^{*} d(l+u+d)^{*}
$$

Comment: Put these three rules (regular expressions) together as an and phrase?

References

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory, Languages, and Computation. Addison-Wesley. [page 9]

