
Polynomial-Space and Complete

Multiply Asynchronous Search with Abstractions
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ABSTRACT

Problems may consist of constraints distributed among several

agents. Some problems are naturally distributed. Others were orig-

inally centralized but the distribution is expected to help for their

resolution. Among naturally distributed problems we focus on those

where the distribution is reinforced by privacy requirements. Pri-

vacy, robustness against timing variations and robustness against

hard failures are improved by asynchronism.

The tractability of centralized problems can often be ameliorated

using abstractions. No sustained research work for integrating ab-

straction schemas in asynchronous search has been done. The ex-

isting techniques suffered from the reduced propagation. In this

work we show how a high degree of asynchronism in search can

accommodate abstraction schemas for distributed problems. Three

abstraction techniques, as well as possible extensions are discussed

in the framework of asynchronous complete distributed techniques

with polynomial space requirements and asynchronous maintenance

of consistency with asynchronous reordering. The new framework

can deal even with “continuous” domains for numerical constraints.

1. INTRODUCTION

A constraint satisfaction problem (CSP) is defined as a set

of variables taking their values in particular domains and sub-

ject to constraints that specify consistent value combinations.

Solving a CSP amounts to assigning to its variables values

from their domains so that all the constraints are satisfied.

Distributed constraint satisfaction problems (DisCSPs) arise

when the constraints or variables come from a set of indepen-

dent but communicating agents.

Maintaining local consistency with dynamic reordering

during backtrack search (e.g. [15]) is one of the most pow-

erful techniques for solving centralized CSPs. While in that

setting, instantiation and consistency enforcement steps alter-

nate sequentially, more elaborate combination schemes are re-

quired within distributed CSPs for enabling the agents to act

asynchronously. Asynchronism is desirable since it gives the

agents more freedom in the way they can contribute to search

and enforce their privacy policies. Namely, before the dead-

line of an agent for giving some information, other agents’ an-

nouncements may preempt the need of undesired disclosures.

It also increases both parallelism and robustness. In particu-

lar, robustness is improved by the fact that the search may still

detect unsatisfiability even in the presence of crashed agents.

In this paper we target problems with finite domains. How-

ever, digital-computer-based approaches to problems with re-

als (elements of IR), actually use very large but finite domains

(subsets of F), due to the finite representations available for

floating-point numbers [25, 9]. The elements of F have the

form [f, f ] or (f1, f2), where f ,f1,f2∈IF, IF is the set of repre-

sentable floating-point numbers on the used system and f1, f2

are consecutive elements of IF. The successful approaches to

problems with domains from IR aggregate consecutive ele-

ments of F into intervals (elements of II). In this paper we

extend an approach that can use such aggregations for dealing

with large domains. Moreover, this approach is not necessar-

ily constrained to aggregate only consecutive elements of a

given domain [17].

We consider that each agent Ai wants to satisfy a local CSP,

CSP(Ai). The agents may keep their constraints private but

publish their interest on variables. We distinguish four facets

of asynchronism.

a) deciding instantiations of variables by distinct agents.

The agents can propose different instantiations

asynchronously (e.g. Asynchronous Backtracking

(ABT) [31]).

b) enforcing consistency. The distributed process of achiev-

ing “local” consistency on the global problem is asyn-

chronous (e.g. Distributed Arc Consistency [33]).

c) maintaining consistencies asynchronously. Actually this

corresponds to mixing the previous two asynchronisms.

Instantiations and asynchronous local consistency en-

forcements no longer alternate sequentially. Consistency

can be enforced concurrently at all levels in the dis-

tributed search trees. Domain reductions are used as

soon as available (e.g. Maintaining Hierarchical Dis-

tributed Consistency [20]).

d) performing reordering. Dynamic reordering can be de-

cided asynchronously by several agents. Asynchronous

Weak Commitment [31] is a powerful technique allow-

ing for asynchronous reordering, but requires exponen-

tial space in the number of variables for completeness.

Multiply Asynchronous Search (MAS) [21], is a generic com-

plete protocol which integrates asynchronisms of type a, b, c,

and d, and requires polynomial space. By MAS (±,±,±) are

denoted versions of MAS that behave with asynchronisms of

different types. “+” stands for presence and “−” for absence



of some type of asynchronism, respectively a, b or d, accord-

ing to the corresponding position. The asynchronism of type

c is therefore represented by MAS (+,+,±).

Paraphrasing [8] one can say that a problem only becomes

tractable when the appropriate abstractions are found. Some-

times it happens that an abstraction exists that brings impor-

tant improvements for a whole class of problems without nec-

essarily making any of its subclasses tractable. This is the

case of the dichotomous search for numerical problems. We

show in this work how asynchronism of type c allows for such

abstractions to be exploited in new ways.

The section 3 presents the basics of instantiation asynchro-

nism in Distributed CSPs while section 4 introduces the way

in which different types of asynchronism coexist in MAS. In-

tegration in MAS of a famous abstraction for numerical con-

straints, known mostly under the name of dichotomous search

is presented in section 5. Two other types of abstractions, one

of them being new for centralized CSPs as well, are described

in section 6. They are based on the actual structure of the con-

straints.

2. RELATED WORK

The first complete asynchronous search algorithm for

DisCSPs is the Asynchronous Backtracking (ABT) [30]. For

simplicity the approach in [30] considers that each agent

maintains only one distinct variable. More complex defini-

tions were given later [32, 27]. The first version of ABT has

requested the agents to store all the nogoods, but this con-

straint was easily removed in [31, 11, 27, 17], where versions

of ABT with polynomial space-complexity are mentioned.

Other definitions of DisCSPs have considered what happens

in the case where the knowledge and interest on constraints

is distributed among agents [33, 23, 17]. [23] proposes a

static ordering and distribution of the variables in ABT that

fits the natural structure of a real problem (the nurse trans-

portation problem). The Asynchronous Aggregation Search

(AAS) [17] algorithm actually extends ABT to the case where

the same variable can be instantiated by several agents and

an agent may not know all constraint predicates relevant to

its variables. AAS offers the possibility to aggregate sev-

eral branches of the search. An aggregation technique for

DisCSPs was then presented in [14] and allows for simple

understanding of the privacy/efficiency mechanisms. The or-

der on variables in distributed search was so far addressed

in [7, 1, 29, 23, 10], showing the strong impact it has on the

solving algorithms. In what concerns distributed consistency

algorithms, one of the first is presented in [33].

After the definition of asynchronous backtracking, work

has mainly concentrated on the intelligence of the backtrack-

ing by tuning the quality of the nogoods selected for stor-

age [11, 27, 24, 17]. Asynchronous maintenance of con-

sistency was difficult due to the dynamism of the instantia-

tions in asynchronous search. The first such algorithm is pre-

sented in [20, 21]. Performing asynchronous reordering was

first proposed in [28] according to a min-conflict heuristic.

The first polynomial-space complete asynchronous reorder-

ing algorithm is presented in [21] where its integration within

asynchronous maintenance of consistency is also described.

Asynchronous use of abstractions in complete search is first

described in [17].

3. BACKGROUND & DEFINITIONS

In asynchronous backtracking, the agents run concurrently

and asynchronously. Each agent, Ai, instantiates its unique

and distinct variable, xi, and communicates the variable value

to the relevant agents. Since we do not assume FIFO chan-

nels, a local counter is incremented each time a new instan-

tiation is chosen, and its current value tags each assignment.

Definition 1 (Assignment) An assignment for a variable xi

is a tuple 〈xi, v, c〉 where v is a value from the domain of xi

and c is the tag value.

Between two different assignments for the same variable,

the one with the highest tag (attached value of the counter)

is the newest. A static order is imposed on agents and we

assume that Ai has the i-th position in this order. If i>j then

Ai has a lower priority than Aj and Aj has a higher priority

then Ai.
1

Rule 1 (Constraint-Evaluating-Agent) Each constraint C
is evaluated by the lowest priority agent whose variable is

involved in C.

Each agent holds a list of outgoing links represented by

a set of agents. Links are associated with constraints. ABT

assumes that every link is directed from the value sending

agent to the constraint-evaluating-agent.

Definition 2 (Agent View) The agent view of an agent, Ai,

is a set containing the newest assignments received by Ai for

distinct variables.

Based on their constraints, the agents perform inferences

concerning the assignments in their agent view. By inference

the agents generate new constraints called nogoods.

Definition 3 (Nogood) A nogood has the form ¬N where N
is a set of assignments for distinct variables.

The following types of messages are exchanged in ABT:

• ok? message transporting an assignment is sent to

a constraint-evaluating-agent to ask whether a chosen

value is acceptable.

• nogood message transporting a nogood. It is sent from

the agent that infers a nogood ¬N , to the constraint-

evaluating-agent for ¬N .

• add-link message announcing Ai that the sender Aj

owns constraints involving xi. Ai inserts Aj in its out-

going links and answers with an ok?.

The agents start by instantiating their variables concurently

and send ok? messages to announce their assignment to

all agents with lower priority in their outgoing links. The

agents answer to received messages according to the Algo-

rithm 1[27] (except for pseudo-code delimited by ’*’).

Definition 4 (Valid assignment) An assignment 〈x, v1, c1〉
known by an agent Al is valid for Al as long as no assign-

ment 〈x, v2, c2〉, c2>c1, is received.

1They can impose first eventual preferences they have on their values



P1
sx

P2
sx

P3
sxm1:x={..}|1:k1l|

m3:x={..}|2:k2h|

m1:x={..}|1:k1l|

m2:x={..}|1:k1f|

a)
b)

x

x

x x

x

x

P1
sx P3

sx

m3:x={..}|1:k1f|2:k2g|

P2
sx

Figure 1: Simple scenarios with messages for proposals on a re-
source, x.

A nogood is invalid if it contains invalid assignments. The

next property is mentioned in [31] and it is also implied by

the Proposition 1, presented later.

Property 1 If only one nogood is stored for a value then ABT

has polynomial space complexity in each agent, O(dn), while

maintaining its completeness and termination properties. d is

the domain size and n is the number of agents.

3.1. HISTORIES

Now we introduce a marking technique [18] that allows for

the definition of a total order among the proposals made con-

curently and asynchronously by a set of ordered agents on a

shared resource (e.g. assignment of a variable, an order on a

set of agents).

Definition 5 A proposal source for a resource R is an en-

tity (e.g. a delegated agent) that can make specific proposals

concerning the allocation (or valuation) of R.

We consider that an order ≺ is defined on proposal sources.

The proposal sources with lower position according to ≺ have

a higher priority. The proposal source with position k is noted

P sR

k , k ≥ kR
0 . kR

0 is the first position.

Definition 6 A conflict resource is a resource for which sev-

eral agents can make proposals in a concurent and asyn-

chronous manner.

Each proposal source P sR

i maintains a counter CpR

i for

each conflict resource R for which it can make proposals.

The markers involved in our marking technique for ordered

proposal sources are called histories.

Definition 7 The history is a chain h of pairs, |a:b|, that can

be associated to each proposal for R. A pair p=|a:b| in h
signals that a proposal for R was made by P sR

a when its CpR

a

had the value b, and it knew the prefix of p in h.

An order ∝ (read “precedes”) is defined on pairs such that

|i1:l1| ∝ |i2:l2| if either i1 < i2, or i1 = i2 and l1 > l2.

Definition 8 A history h1 is newer than a history h2 if a

string-like comparison on them, using the order ∝ on pairs,

decides that h1 precedes h2.

This is a generalization of the notion newer on assignments.

P sR

k builds a history for a new proposal on R by prefixing to

the pair |k:lkj |, the newest history that it knows for a pro-

posal on R made by any P sR

a , a<k. lkj is the current value

of CpR

k . The CpR

a in P sR

a is reset each time an incoming

message announces a proposal with a newer history, made by

higher priority proposal sources on R. CpR

a is incremented

each time P sR

a makes a proposal for R.

Definition 9 A history h1 built by P sR

i for a proposal on R is

valid for an agent A if no other history h2 (eventually known

only as prefix of a history h′
2) is known by A such that h2 is

newer than h1 and was generated by P sR

j , j ≤ i, for R.

For example, in Figure 1 the agent P sx

3 may get messages

concerning the same resource x from P sx

1 and P sx

2 and has to

decide which of them is the most up to date. In Figure 1 a), if

the agent P sx

3 has already received m1, it will always discard

m3 since the proposal source index has priority. However, in

the case of Figure 1 b) the message m1 will be maintained

only if k1f < k1l. In each message, the length of the history

for a resource is upper bounded by the number of proposal

sources for that conflict resource.

3.2. ASYNCHRONOUS AGGREGATION SEARCH

Asynchronous Aggregation Search (AAS) [17] is an exten-

sion of ABT where several agents are allowed to simultane-

ously propose instantiations for the same shared variable. We

assume that before search, each agent announces the shared

variables that it wants to be able to assign. This is made possi-

ble by using the histories presented in the previous subsection

where agents Ai can act as P
sxk

i for some shared variable xk.

kxk

0 = 1 for any shared variable xk.

Constraint enforcement We allow any agent Ai to own

private constraints C that are not known to all the agents that

can make proposals on the variables in C. To enforce C, Ai:

• has to announce at beginning that it wants to modify all

the shared variables in C (this is always possible), or

• has to be ordered such that some agents with lower po-

sitions want to modify all the shared variables in C that

Ai does not want to modify (as for nogoods in ABT).

An agent does not need to enforce a constraint, C, that it has

when it knows that another agent with higher position en-

forces C (this is the case of initial constraints in ABT).

Aggregations If all the agents owning constraints on some

variable xi announce at beginning that they want to make pro-

posals with assignments for xi (or at most one agent owning

constraints on xi makes exception but is ordered after the oth-

ers), than the agents can aggregate several assignments for xi

into one proposal. Several branches of the search are there-

fore aggregated. For simplicity, in the rest of the descrip-

tion we consider that this is the case for all shared variables.

In AAS, as presented further in this subsection, the agents

exchange messages about sets of values for combinations of

variables (aggregate-sets). We refer to an aggregate proposed

for a variable x by an agent Ai as a proposal of Ai on x.

Definition 10 An aggregate is a triplet (xj , sj , hj) where xj

is a variable, sj a set of values for xj , sj 6=∅, and hj a history

of the pair (xj , sj). It is a generalization of an assignment.

The history guarantees a correct message ordering. It deter-

mines if a given aggregate is more recent than another. Let

a1 = (xj , sj , hj) and a2 = (xj , s
′
j , h

′
j) be two aggregates

for the variable xj . a1 is newer than a2 if hj is more recent

than h′
j . The newest aggregates received by an agent Ai

for each variable define its view, view(Ai) (the extension

of an agent view in ABT). An aggregate-set is a set of

aggregates and can be seen as a Cartesian-product of the

sets of assignments defined by these aggregates (a set of

tuples corresponding to partial valuations). Let V be an

aggregate-set and vars(Ai) the variables of CSP(Ai). The



set of tuples disabled from CSP(Ai) by V is formally

Ti(V)={t |t=(x1=v1
t , ..., xn=vn

t ),∀j, xj∈vars(Ai); ∀u6=j,

xj 6≡xu; n=|vars(Ai)|;∃k∈[1..n], (xk, sk, hk)∈V , vk
t 6∈sk}.

Definition 11 V ′→¬Ti(V ) is a nogood entailed for Ai by

its view V, denoted NVi(V), iff V ′⊆V and Ti(V
′)=Ti(V ).

Definition 12 An explicit nogood has the form ¬V , or

“V →fail”, where V is an aggregate-set.

The information in the received nogoods that is essential for

completeness can be stored compactly in a polynomial space

structure called conflict list nogood.

Definition 13 A conflict list nogood (CL) for Ai has the

form “V →¬T”, where V⊆view(Ai) and T is a set of tuples:

T={t |t=(xt1=v1
t , ..., xtnt =vnt

t ), ∀k, xtk∈vars(Ai)}, such

that T can be represented by the structures (e.g. stack) of a

centralized backtracking algorithm.

In order to obtain instantiation asynchronism (type a), with no

infinite loops, AAS uses a strict order ≺ on agents as proposed

for ABT. In the sequel of the paper, Aj
i denotes the agent Ai

with the position j, j ≥ 1, when the agents are ordered by ≺.

If j > k, we say that Aj has a lower priority than Ak. Aj is

then a successor of Ak, and Ak a predecessor of Aj .

The AAS protocol is defined by the next messages:

• ok? messages having as parameter an aggregate-set, V .

• nogood messages announcing an explicit nogood.

• addlink(vars) messages transporting a set of vari-

ables. They are sent from agent Aj to agent Ai, j>i and

inform Ai that Aj is interested in the variables vars.

ok(V ) messages announce proposals of domains for a set

of variables and are sent from agents with higher priori-

ties to agents with lower priorities. The proposal is sent

to all successor agents interested in it. Let the set of valid

aggregates known to the sender Ai be denoted known(Ai).

V ⊆known(Ai). Any tuple not in Ti(known(Ai)) must satisfy

the local constraints of the sender Ai and its valid nogoods2.

An agent maintains its view and a valid CL and always en-

forces its CL and its nogood entailed by the view. Generally,

an aggregate has to be built and added to V by Ai only if

the newest aggregate for the same variable known by Ai does

not have the same set of values.3 nogood messages are sent

from agents with lower priorities to agents with higher prior-

ities. If given its constraints and valid nogoods an agent can

find no proposal, in finite time it sends an explanation under

the form of an explicit nogood ¬N via a nogood message

to the lowest priority agent that has built an aggregate in N .

An empty nogood signals failure of the search. On the receipt

of a valid nogood that negates its last proposed aggregate-set,

V , an agent knows that proposal V is refused. Any received

valid explicit nogood is merged into the maintained CL using

the next inference technique:

2Except for constraints about which Ai knows that a successor enforces

them (as in ABT).
3Exceptions appear for the first proposal made by Ai after nogoods of

certain types are discarded (two alternatives are presented in [26]).
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A2
A1
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level 1

level 2 A3
A2
A1

level 0

level 1

level 2
A4

level 3proposals of A1

Figure 2: Distributed search trees: simultaneous views of dis-
tributed search seen by A2, A3, and A4, respectively. Each arc
corresponds to a proposal of an agent.

V1 ∧ V2 → ¬T 1

V1 ∧ V3 → ¬T 2

⇒ V1 ∧ V2 ∧ V3 → ¬(T 1 ∨ T 2), (1)

where V1, V2 and V3 are aggregates, obtained by grouping the

elements of the nogoods, such that they have no variable in

common.

Property 2 AAS is correct, complete, terminates and only re-

quires polynomial space for its completeness.

The proof is given in [17] and is also a corollary of Proposi-

tion 1 presented later.

Distributed Consistency (DC) A centralized local con-

sistency algorithm prunes from the domain of variables lo-

cally inconsistent values. A computed restricted domain is

called label. Let the union of CSPs and constraints be a

CSP containing all the constraints and variables referred in

arguments. Let P be a Distributed CSP with the agents

Ai, i∈{1..n} and let C(P ) be ∪i∈{1..n}CSP(Ai). Let A
be a centralized local consistency algorithm that computes

unary labels (e.g. arc-, bound-consistency). We denote by

DC(A) a distributed consistency algorithm that computes by

exchanging value eliminations the same labels for P than A
for C(P ). If such labels were computed for P , we say that

P becomes DC consistent. Generic instances of DC(A) are

denoted by DC. Typically with DC, the maximum number

of generated messages is a2vd and the maximum number of

sequential messages is vd (v:number of variables, d:domain

size, a:number of agents).

Each agent has its own perception of the distributed

search. In this perception, the search spaces associated to

arcs of the search tree are defined by proposals from its pre-

decessors. In Figure 2 is shown a simultaneous view of three

agents. Only A2 knows the fourth proposal of A1. A3 has

not yet received the third proposal of A2 consistent with the

third proposal of A1. However, A4 knows that proposal of

A2. Since it has not received anything valid from A3, A4 as-

sumes that A3 agrees with A2. In practice it may happen that

an agent sees only partly the valid proposal of another agent.

The depth in distributed search trees is referred to as level.

Histories help agents to eventually get coherent views at the

same level.

4. MULTIPLY ASYNCHRONOUS SEARCH

In this paper, instantiation asynchronism (type a) is under-

stood as in AAS. Consistency asynchronism (type b) is ob-

tained using DC algorithms. In a distributed setting, asyn-

chronous maintaining of consistency (type c) cannot be done

in a straightforward manner if the instantiations are modified



asynchronously. The classical techniques require instantia-

tion and consistency maintenance stages to be interleaved se-

quentially and this induces synchronism of the instantiations.

A solution proposed in [20] consists in considering con-

sistency maintenance as a hierarchical task. The consistency

at any given level k in the ’distributed’ search trees, denoted

DC(k), corresponds to a level k in a hierarchy of concur-

rent and asynchronous DC processes. DC(k) computes la-

bels based on the newest instantiations proposed by the agents

A1, ..., Ak.

For making a proposal (aggregate), there is no need to wait

in a node until all the consistencies in the previous levels on

the same branch converge. Equivalent labels can be computed

asynchronously. In fact, at a given level value elimination re-

sults from one of the following processes: instantiation, DC

at this level, or inheritance from DCs at previous levels along

the same branch. A first version of MAS (+,+,−) is called

Maintaining Hierarchical Distributed Consistency (MHDC)

and runs all these processes concurrently [20].

We assume that a message does not necessarily need to

head directly to its target agent. Its content can travel indi-

rectly to the target via several agents. However, we require

the content to arrive at destination in finite time. Parts of the

content of a message may become invalid due to newer avail-

able information. The receiver can discard the invalid incom-

ing information, or can reuse invalid nogoods with alternative

semantics (e.g. as redundant constraints). However, we allow

the channel (intermediary agents) to discard information that

it knows invalid.

4.1. MAINTAINING CONSISTENCY

ASYNCHRONOUSLY

The ok, nogood and addlink messages are as in AAS.

In addition, the agents may exchange information about no-

goods inferred by DCs. This is done using propagatemes-

sages.

Definition 14 A consistency nogood for a level k and a vari-

able x has the form V →(x∈lkx) or “V →¬(x∈s\lkx)”. V is

an aggregate-set and may contain for x an aggregate (x,s,h),

lkx⊂s. Any aggregate in V must have been proposed by agents

Av, v≤k. lkx is a label, lkx 6=∅.

The propagatemessages are sent to all interested agents

Ai, i>k. They take as parameters the reference k of a level

and a list of consistency nogoods. Each consistency nogood

for a variable x and a level k is tagged with the value c of a

counter C
k

x
maintained at sender. The consistency nogoods

are meant to allow at any agent Ai computation of DC con-

sistent labels on the problem obtained by integrating the most

recent proposals of the agents Aj , j≤k. Ai may receive valid

consistency nogoods of level k with aggregates for the vari-

ables vars, vars not in vars(Ai). Ai must send addlink

messages to all agents Ak′

, k′≤k not yet linked to Ai for all

vars. In order to achieve consistencies asynchronously, be-

sides the structures of AAS, implementations can maintain at

any agent Au
i , for any level k, k<u (some instances may also

do for k=u):

• The aggregate-set, V i
k , of the newest valid aggregates

proposed by agents Aj , j≤k, for each interesting vari-

able.

• For each variable x, x∈vars(Ai), for each agent At
j , t>k,

the last consistency nogood sent by Aj for level k, de-

noted cnk
x(i, j), if valid. It has the form V k

j,x→(x∈sk
j,x).

Ck
x is incremented each time a new cnk

x(i, i) is stored. Let

cnk
x(i, .) be (∪t≤k

t,j V t
j,x)→(x∈∩t≤k

t,j st
j,x). If:

Pi(k) := CSP(Ai) ∪ (∪xcnk
x(i, .)) ∪ NVi(V

i
k ) ∪ CLi

k

then on each modification of Pi(k), cnk
x(i, i) is recomputed

by inference (e.g. using local consistency techniques) for

each variable x for the problem Pi(k). cnk
x(i, i) is initialized

as an empty constraint set.

CLi

k
is the set of all nogoods known by Au

i and having

the form V →¬T where V ⊆V i
k and T is a set of tuples in

CSP(Ai). CLi

k
may contain the CL of Au

i . An agent can

manage to maintain one CL for each instantiation level and

the space requirements do no change. cnk
x(i, i) is stored and

sent to other agents by propagate messages iff any con-

straint of CSP(Ai) or CLi

k
was used for its logical inference

from Pi(k) and its label shrinks.

We now give the proof the correctness, completeness and

termination properties of MAS (+,+,−). We only use DC tech-

niques that terminate. Techniques to achieve such a behavior

are outside the scope of this paper. (see [33, 3]). By qui-

escence of a group of agents we mean that none of them will

receive or generate any valid nogoods, new valid assignments,

or addlink messages. We start by proving the following prop-

erty:

Property 3 ∀i in finite time ti either a solution or failure

is detected, or all the agents Aj , 1≤j≤i reach quiescence

in a state where they are not refused a proposal satisfying

CSP(Aj)∪NVj(view(Aj)).
Proof. The proof is by induction on i. Let this be true for the agents

Aj , j<i. Let τ be the maximum time taken by a message. After ti−1 + τ ,

Ai no longer receives ok messages. Ai receives the last valid ok message at

time tio≤ti−1 + τ . ∃tiv , ti−1 + τ≥tiv such that after tiv , view(Ai) and all

V u
k

, k≤i of any agent Au are no longer modified.

The set of disabled tuples in CLu
k
, k≤i can contain only a bounded number

of elements for each agent Au and even if they can be discarded, they can-

not be invalidated after tio. CLu
k
, k≤i cannot be invalidated after tiv . Since

DCs were assumed to terminate, they terminate after each modification of a

CLu
k

. Since the number of such modifications that can generate a new consis-

tency nogood after tiv is bounded, after a finite time no consistency nogood

is received any longer by Ai for levels k≤i.
Since the domains are finite, Ai can make only a finite number of different

proposals satisfying view(Ai). Once any of them is sent, the total number

of consistency nogoods that can be received before the proposal is modified

is finite (this results by inference to i + 1 of the reasoning in the previous

paragraph).

Only one valid explicit nogood can be received for a proposal since the pro-

posal is immediately changed on such an event. Therefore, there is a finite

number of valid nogoods that can be received by Ai for any of its proposals

made after tiv (and after tio).

1. If one of the proposals is not refused by incoming nogoods, and since

the number of such nogoods is finite, the induction step is correct.

2. If all proposals that Ai can make after tio are refused or if it cannot find

any proposal, Ai has to send according to rules inherited from AAS a valid

explicit nogood ¬N to somebody. ¬N is valid since all the assignments of

Ak, k < i were received at Ai before tio.



2.a) If N is empty, failure is detected and the induction step is proved.

2.b) Otherwise ¬N is sent to a predecessor Aj , j<i. Since ¬N is valid,

the proposal of Aj is refused, but due to the premise of the inference step,

Aj either

2.b.i) finds a new proposal modifying at least one of the elements of N or

2.b.ii) discards ¬N which does not completely fit CL, or Aj discards ¬N
after merging it to a CL invalidated later,or

2.b.iii) announces failure by computing an empty nogood (induction

proven).

In the case (i), since ¬N was generated by Ai, Ai is interested in all its vari-

ables, and it will be announced by Aj of the modification by an okmessages.

In the case (ii), according to the rules of AAS for merging valid nogoods to

CLs, all the variables of Aj not reassigned by its predecessors are reassigned

by itself and either the reassignment from predecessors, or the one from Aj

will be sent to Ai.

Both cases (i and ii) contradict the assumption that the last ok message was

received by Ai at time tio and the induction step is therefore proved for all

alternative cases. The property can be attributed to an empty set of agents

and it is therefore proved by induction for all agents.

Proposition 1 MAS (+,+,−) is correct, complete, terminates.

Proof.
Completeness: All the nogoods are generated by logical inference from ex-

isting constraints. Therefore, if a solution exists, no empty nogood can be

generated.

No infinite loop: The result follows from property 3.

Correctness: All valid proposals are sent to all interested agents and stored

there. At quiescence all the agents know the valid interesting assignments

of all predecessors. If quiescence is reached without detecting an empty no-

good, then all the agents agree with their predecessors and their intersection

is nonempty and correct as proved for AAS.

If the agents using MAS (+,+,−) maintain all the valid

consistency nogoods that they have received, then DCs in

MAS (+,+,−) converge and compute a local consistent global

problem at each level. If not all the valid consistency nogoods

that they have received are stored, but some of them are dis-

carded after inferring the corresponding cnk
x(i, i), some valid

bounds or value eliminations can be lost when a cnk
x(i, i) is

invalidated. Different labels are then obtained in different

agents for the same variable. These differences have as re-

sult that the DC at the given level of MAS (+,+,−) can stop

before the global problem is DC consistent at that level.

Among the consistency nogoods, cnk
x(i, i), that an agent

computes itself from its constraints let it store only the last

valid one for each variable. Let Ai also store only the last

valid consistency nogood, cnk
x(i, j), sent to it for each vari-

able x∈CSP(Ai) at each level k from any agent Aj . Then:

Proposition 2 DC(A) labels computed at quiescence at any

level with the help of propagate messages are equivalent

to A labels when computed in a centralized manner on a pro-

cessor. This is true whenever all the agents reveal consistency

nogoods for all minimal labels, lkx, which they can compute.

Proof. In each sent propagate message, the consistency nogood for

each variable is the same as the one maintained by the sender. Any aggregate

invalid in one agent will eventually become invalid for any agent. There-

fore, any such nogood is discarded at any agent, iff it is also discarded at

its sender. The labels known at different agents, being computed from the

same nogoods, are therefore identical and the distributed consistency will not

stop at any level before the global problem is local consistent in each agent.

Proposition 3 The minimum space an agent needs with

MAS (+,+,−) for ensuring maintenance of the highest degree

of consistency achievable with DC is O(a2v(v + d)). With

bound consistency, the required space is O((av)2).

Proof. The space required for storing all valid aggregates is O(dav) for

values and O(av) for histories (stored separately). The agents need to main-

tain at most a levels, each of them dealing with v variables, for each of them

having at most a last consistency nogoods. Each consistency nogood refers at

most v aggregates in premise and stores at most d values in label. The stack

of labels requires therefore O(a2v(v + d)). The space required by CL and

by the algorithm for solving the local problem depends on the corresponding

technique (e.g. chronological backtracking requires O(v)). CL also refers

at most v aggregates in its premise. An agents has to maintain at most av

counters Ck
x for tagging consistency nogoods.

The consistency maintaining computations performed by

each agent in MAS (+,+,−) reuses available nogoods. In our

knowledge, this is new even for centralized algorithms.

Nogoods detected by consistency The domain wipe-outs

generated due to consistency nogoods may be detected by

several agents simultaneously. This happens when infer-

ence from consistency nogoods generated concurrently by

two agents leads to a domain wipe-out represented as an ex-

plicit nogood. We call the result of this inference consistency

explicit nogood. Versions of MAS can be designed where

all consistency nogoods are sent to all agents generating the

corresponding consistency level. Moreover, the algorithm de-

sign can be such that any consistency nogoods of level i has

in its premise an aggregate generated by the agent Ai. (This is

the case for the version described here when Au stores consis-

tency nogoods for k=u and or all variables.) In such versions,

a consistency explicit nogood for level i does not have to be

sent by nogood messages since it is guaranteed that the tar-

get agent, Ai detects the nogood itself.

If only the condition of having premises generated by Ai

in consistency nogoods at level i is not respected, the target

may not be Ai, but an improvement is still possible by assign-

ing only to Ai the task of sending corresponding consistency

explicit nogoods by messages.

However, even if none of the conditions of algorithm de-

sign just mentioned are fulfilled, a convention can be estab-

lished for sending by a nogood message from an agent Ak a

consistency explicit nogood detected at level i for a domain

wipe-out on the variable v and having as target an agent Aj .

The convention requires Ak to send such a message only if

none of the agents Al,l∈[i,k) is interested in v.

After computing a consistency explicit nogood from con-

sistency nogoods at level i, an agent Ak does not have to wait

for this nogood to be invalidated. Ak is allowed to use the oth-

erwise idle time for a search where the consistency nogoods

of level i and upper are not used.

Consistency nogoods enforcement In ABT, parallelism

is increased by discarding the assignment of the agent to

which a nogood is sent. In MAS the same technique can be

applied. However, other sources of parallelism are available

in MAS due to consistency maintenance. As we have shown

for Generalized Partial Order Backtracking (GOB) [16], it is



sometimes useful to keep valid even nogoods for which a no-

good message is sent, while the space complexity does not

change. In MAS, when a consistency explicit nogood, ck
i , is

computed by an agent Ai at a level k, Ai continues to keep

all assignments in all consistency levels. However, as long

as ck
i is valid, Ai only enforces in its proposals consistency

nogoods at levels lower than k. This is a simplification since

some consistency nogoods at higher levels may not depend

on Ak.

4.2. REORDERING WITH RESTARTS

The importance of reordering has been highlighted in both

centralized and distributed environments. In centralized set-

tings special efforts have been made to introduce reordering

in dynamic backtracking [4]. That algorithm reuses an impor-

tant quantity of previous work after reordering. In distributed

environments, [27] proposes several algorithms based on re-

ordering such as: the “Distributed Breakout” algorithm and

the “Asynchronous Weak-Commitment Protocol” (AWC). Of

these, only AWC has a version offering completeness. How-

ever, the complete version needs exponential space and main-

tains no consistency.

One of the simplest approaches to reordering consists of

using timeouts for restarting the search with random agent,

variable and value order. In this context, completeness is

ensured by monotonously increasing the timeout after each

restart. The random reordering refers to agents, to their vari-

ables or constraints and to the sequence of the values in do-

mains. Even if this is a quite simple method, within cen-

tralized settings of satisfiability problems it was shown to be

sometimes comparable in efficiency to more complex reorder-

ing strategies [2].

4.3. REORDERING AGENTS ASYNCHRONOUSLY

In the presence of private constraints, besides efficiency

considerations, the order of the agents have an additional im-

portance. The last agent has a better position from the point

of view of the security of its privacy. It has to reveal at most

one feasible tuple, after which a solution is found. The last

agent can also refuse all the proposals it receives and this way

it can find the whole set of solutions for the other agents. In

turn, when the agents are honest then the first agents are ad-

vantaged. They can launch the search first on the alternatives

they prefer. If solutions are found, they are not interested in

declaring alternatives that are less good for them. From the

point of view of privacy it is interesting to let disadvantaged

higher priority agents reorder lower priority ones. Security

considerations can also require special orders on the partici-

pants and such orders change dynamically and their need is

detected asynchronously.

Reordering with dedicated agents Besides the agents

A1, ..., An in the DisCSP we want to solve, we consider

now that there exist n−1 other agents, R0, ..., Rn−2, that are

solely devoted for reordering the agents Ai.

Definition 15 An ordering is a sequence of distinct agents

Ak0
, ..., Akn

.

An agent Ai may receive the position j, j 6=i, j>0. Let us

assume that the agent Al, knowing an ordering o, believes that

the agent Ai, owning the variable xi, has the position j. Al

can refer Ai as either Aj , Aj(o) or Aj
i . The variable xi is also

referred to by Al as either xj , xj(o) or xj
i .

We propose to consider the ordering on agents as a con-

flict resource. We attach to each ordering a history as de-

fined in section 3.1. The proposal sources for the ordering on

agents are the agents Ri, P sorder

i =Ri, where Ri≺Rj if i<j

and xorder
0 =0. Ri is the proposal source that when knowing

an ordering, o, can propose orderings that reorder only agents

on positions p, p > i.

Definition 16 (Known order) An ordering known by Ri (re-

spectively by Ai) is the order ocrt with the newest history

among those proposed by the agents Rk, 0≤k<i and received

by Ri (respectively Ai). Ai has the position i in ocrt. This or-

der is referred to as the known order of Ri (respectively of

Ai).

Definition 17 (Proposed order) An ordering, o, proposed

by Ri is such that the agents placed on the first i positions

in the known order of Ri must have the same positions in o. o
is referred to as the proposed order of Ri.

Let us consider two different orderings, o1 and o2, with

their corresponding histories: O1 = 〈o1, h1〉, O2 = 〈o2, h2〉;
such that |h1| ≤ |h2|. Let pk

1 = |ak
1 :bk

1 | and pk
2 = |ak

2 :bk
2 | be

the pairs on the position k in h1 respectively in h2. Let u be

the lowest position such that pu
1 and pu

2 are different and let

v = |h1|.
Definition 18 (Reorder position) The reorder position of

h1 and h2, denoted R(h1,h2), is either min(au
1 , au

2 ) + 1 if

u > v, or av+1
2 + 1 otherwise. This is the position of the

highest priority reordered agent between h1 and h2.

New optional messages for reordering are: heuristic

messages for heuristic dependent data, and reorder mes-

sages announcing a new ordering, 〈o, h〉.
An agent Ri announces its proposed order o by sending

reorder messages to all agents Ak(o), k > i, and to all

agents Rk, k > i. Each agent Ai and each agent Ri has

to store an ordering denoted ocrt. ocrt contains the ordering

with the newest history that was received. For allowing asyn-

chronous reordering, each ok? and nogood message receives

as additional parameter an order and its history (see Algo-

rithm 1). The ok? messages hold the newest known order of

the sender. The nogood messages hold the order in the ocrt at

the sender Aj that Aj believes to be the newest known order

of the receiver, Ai. This ordering consists in the first i agents

in the newest ordering, ocrt, known by Aj and is tagged with

a history obtained from the history of its ocrt by removing all

the pairs |a:b| where a≥i.4

When a message is received which contains an order with

a history h that is newer that the history h∗ of ocrt, let the

reordering position of h and h∗ be Ir (Ir=R(h,h∗)). The as-

signments for the variables xk, k ≥ Ir, are invalidated.5

4The agents absent from the ordering in a nogood are not needed by Ai.

Ai receives them when it receives the corresponding reorder message.
5Alternative rule: Ai can keep valid the assignments of new variables

xk(h), i ≥ k ≥ Ir but broadcasts assignments of xi again. In AAS, his-

tories of assignments kept valid have to be updated by removing pairs for

predecessors that become successors and updating the indexes for predeces-



x1(1,2) x2(2)

x3(1,2)

====

A1 A2

A3

R
0

R
1

A1/A1 ok?〈x1, 1, 1〉(A1, A2, A3) → A3

A3/A3 heuristic〈x1, 1, 1〉〈x3, 2, 1〉(A1, A2, A3)→ R3

A1/A1 heuristic〈x1, 1, 1〉(A1, A2, A3) → R1

A2/A2 ok?〈x2, 2, 1〉(A1, A2, A3) → A3

A3/A3
—nogood¬(〈x1, 1, 1〉, 〈x2, 2, 1〉)(A1, A2)—→ A2

A2/A2 add-link → A1

R1 reorder (A1, A3, A2)|1 : 1| → A3

R0 reorder (A3, A1, A2)|0 : 1| → A3

R1 reorder (A1, A3, A2)|1 : 1| → A2

R0 reorder (A3, A1, A2)|0 : 1| → A1

R0 reorder (A3, A1, A2)|0 : 1| → R1

A3/A1 ok?〈x3, 1, 2〉(A3, A1, A2)|0 : 1| → A1

A3/A1 ok?〈x3, 1, 2〉(A3, A1, A2)|0 : 1| → A2

Figure 3: Simplified example for ABT with random reordering based on dedicated agents (R0, R1). Ai/A
j in the left column shows that Ai

has believed to have the position j when it has sent the message. The time increases downwards.

The agents Ri can modify the ordering in a random manner

or according to special strategies appropriate for a given prob-

lem.6 Sometimes it is possible to assume that the agents want

to collaborate in order to decide an ordering.7 The heuris-

tic messages are intended to offer data for reordering pro-

posals. The parameters depend on the used reordering heuris-

tic. The heuristic messages can be sent by any agent to

the agents Rk. heuristic messages may only be sent by

an agent to Rk within a bounded time, th, after having re-

ceived or decided a new assignment for xj , j≤k. Agents can

only send heuristic messages to R0 within time th after

the start of the search. Any reorder message is sent within

a bounded time tr after a heuristic message is received.

Besides C
porder
k and ocrt, the other structures that have to

be maintained by Rk, as well as the content of heuristic

messages depend on the reordering heuristic. The space com-

plexity for Ak remains the same as with ABT.

ABT with Asynchronous Reordering (ABTR) In fact, we

have introduced the physical agents Ri in the previous subsec-

tion only in order to simplify the description of the algorithm.

Any of the agents Ai or other entity can be delegated to act for

any Rj . When proposing a new order, Ri can also simulta-

neously delegate the identity of Ri, ..., Rn−2 to other entities,

Pk, by attaching a sequence R0→Pki
, ..., Rn−2→Pkj

to the

ordering. At a certain moment, due to message delays, there

can be several entities believing that they are delegated to act

for Ri based on the ordering they know. However, any other

agent can coherently discriminate among messages from si-

multaneous Ris using the histories that Ris generate. The Ri

themselves coherently agree when the corresponding orders

are received. The delegation of Rj , j > i from a physical en-

tity to another poses no problem of information transfer since

the counter C
porder
j of Rj is reset on this event. The counter

of a new Ri delegated by a previous different Ri is set to the

incremented value of the counter for the pair with index i in

the history that tags the reorder message.

Other examples of heuristics In the example in Figure 4

we describe the case where the activity of Ri is always per-

sors that change their position.
6e.g. first the agents forming a coalition with Ri, or first the agents that

are suspected to be actually trying to spy the constraints of others.
7This can aim to improve the efficiency of the search. Since ABT per-

forms forward checking, it may be possible to design useful heuristics.

when received (ok?,(xj ,dj *,cxj
, 〈o, h〉*)) do

*if(¬getOrder(〈o, h〉) or old cxj
) return*; //ABTR;

add(xj ,dj*,cxj
*) to agent view; check agent view;

end do.

when received (nogood,Aj ,nogood*,〈o, h〉*) do

*if(¬getOrder(〈o, h〉)) return*; //ABTR;

*discard nogood if it contains invalid assignments else*; //ABTR;

when (xk ,dk ,ck), where xk is not connected,

is contained in nogood

send add-link to Ak; add (xk ,dk ,ck) to agent view;

add nogood to nogood-list;

add other new assignments to agent view;

old value← current value; check agent view;

when old value = current value

1.1 send (ok?,(xj ,current value,cxi
)) to Aj ;

end do.

procedure check agent view do

when agent view and current value are not consistent

if no value in Di is consistent with agent view then

backtrack;

else

select d ∈ Di where agent view and d are consistent;

current value← d; cxi
++;

send (ok?,(xi,d,cxi
)) to lower priority agents in outgoing

links;
end

end do.

procedure backtrack do

nogoods← {V | V = inconsistent subset of agent view};
when an empty set is an element of nogoods

broadcast to other agents that there is no solution,

terminate this algorithm;

for every V ∈ nogoods;

select (xj ,dj*,cxj
*) where xj has the lowest priority in V ;

send (nogood,xi ,V ) to Aj ;

remove (xj ,dj*,cxj
*) from agent view;

check agent view;
end do.

function getOrder(〈o, h〉)→ bool //ABTR

when h is invalidated by the history ocrt then return false;

when not newer h than ocrt then return true;

I ← reorder position for h and the history of ocrt;

invalidate assignments for xj , j ≥ I (or alternative in footnote 5);

〈o, h〉 → ocrt;

make sure that send (ok?,(xi ,d,cxi
)) will be performed

to all lower priority agents in outgoing links;

return true;
end.

Algorithm 1: Procedures for Receiving Messages in ABT and

ABTR.



x1(1,2) x2(2)

x3(1,2)

====

A1 A2

A3

A1/A1/R1 ok?〈x1, 1, 1〉(A1, A2, A3) → A3

A2/A2/R0/R2 ok?〈x2, 2, 1〉(A1, A2, A3) → A3

A3/A3/R3
—nogood¬(〈x1, 1, 1〉, 〈x2, 2, 1〉)(A1, A2)—→ A2

A1/R1/A1 reorder (A1, A3, A2)|1 : 1| → A3

A2/R0/A3/R2 reorder (A3, A1, A2)|0 : 1| → A3

A1/R1/A1 reorder (A1, A3, A2)|1 : 1| → A2

A2/R0/A3/R2 reorder (A3, A1, A2)|0 : 1| → A1

A3/A1/R1 ok?〈x3, 1, 2〉(A3, A1, A2)|0 : 1| → A1

A3/A1/R1 ok?〈x3, 1, 2〉(A3, A1, A2)|0 : 1| → A2

Figure 4: Simplified example for ABTR with random reordering. In this example, Ri delegations are done implicitly by adopting the
convention “Ai is delegated to act for Ri”. Left column: Ai/A

j/Ri1/Ri2 ... shows the roles played by Ai when the message is sent. In bold
is shown the capacity in which the agent Ai sends the message. The addlink message in not shown.

formed by the agent believing itself to be Ai. Ri can send

a reorder message within time tr after an assignment is

made by Ai since a heuristic message is implicitly trans-

mitted from Ai to Ri. We also consider that A2 is delegated

to act as R0. R0 and R1 propose one random ordering each,

asynchronously. The receivers discriminate, based on histo-

ries, that the order from R0 is the newest. The known assign-

ments and nogood are discarded. In the end, the known order

for A3 is (A3, A1, A2)|0 : 1|.

Another interesting instantiation of ABTR is when the ac-

tivity of Ri is always performed by the agent believing it-

self to be Ai+1. In this case, Ri can delegate the sender of

any valid received nogood to be the next Ri. The condition

that ∃th, tr such that a reordering is not issued by Rk after

th + tr from the quiescence of A1, ..., Ak is respected since

as shown for GOB [16], a finite set of valid nogoods cover

the space in finite time. Actually, any nogood received by Rk

is stored in a format that only depends on assignments built

by A1, ..., Ak. This version resembles Asynchronous Weak

Commitment (AWC) and we denote it ABT-AWC.

Property 4 ∀i, in finite time ti either a solution or failure is

detected, or all the agents Aj , 0<j≤i reach quiescence in a

state where they are not refused an assignment satisfying the

constraints that they enforce and their agent view.

Proof. Let all agents Ak, k<i, reach quiescence before time ti−1. Let τ be

the maximum time needed to deliver a message.

∃tip < ti−1 after which no ok? is sent from Ak , k<i. Therefore, no

heuristic message towards any Ru, u<i, is sent after ti
h

= tip + τ + th.

Then, each Ru becomes fixed and announces its last order before a time

tir = ti
h

+ τ + tr . After tir + τ the identity of Ai is fixed as Al. Ai
l

receives

the last new assignment or order at time tio < tir + τ .

Since the domains are finite, after tio, Ai
l

can propose only a finite number

of different assignments satisfying its view. Once any assignment is sent at

time tia > tio, it will be abandoned when the first valid nogood is received

(if one is received in finite time). All the nogoods received after tia + 2τ are

valid since all the agents learn the last instantiations of the agents Ak, k < i
before tia + τ . Therefore the number of possible incoming invalid nogoods

for an assignment of Ai is finite.

1.If one of the proposals is not refused by incoming nogoods, and since

the number of such nogoods is finite, the induction step is correct.

2.If all proposals that Ai can make after tio are refused or if it cannot find

any proposal, Ai has to send a valid explicit nogood ¬N to somebody. ¬N
is valid since all the assignments of Ak, k<i were received at Ai before tio.

2.a) If N is empty, failure is detected and the induction step is proved.

2.b) Otherwise ¬N is sent to a predecessor Aj , j<i. Since ¬N is valid,

the proposal of Aj is refused, but due to the premise of the inference step,

Aj either

2.b.i) finds an assignment and sends ok? messages, or

2.b.ii) announces failure by computing an empty nogood (induction

proven).

In the case (i), since ¬N was generated by Ai, Ai is interested in all its

variables (has sent once an add-link to Aj ), and it will be announced by Aj

of the modification by an ok? messages. This contradicts the assumption that

the last ok? message was received by Ai at time tio (induction proved).

From here, the induction step is proven since it was proven for all alternatives.

In conclusion, after tio, within finite time, the agent Ai either finds a solution

and quiescence or an empty nogood signals failure.

After th + tr , R0 is fixed and the property is true for the empty set. The

property is therefore proven by induction on i

Proposition 4 ABTR is correct, complete and terminates.
Proof. Completeness: All the nogoods are generated by logical inference

from existing constraints. Therefore, if a solution exists, no empty nogood

can be generated.

No infinite loop: This is a consequence of the Property 4 for i = n.

Correctness: All assignments are sent to all interested agents and stored

there. At quiescence all the agents know the valid interesting assignments

of all predecessors. If quiescence is reached without detecting an empty no-

good, then according to the Property 4, all the agents agree with their prede-

cessors and the set of their assignments is a solution.

Asynchronous reordering in MAS An order is given by a

sequence o of distinct agents A1..Ak. All the agents that do

not appear in o are considered to be ordered by their name

and follow Ak. All the decisions (aggregates and labels)

taken within a certain order are tagged with that order. Fig-

ure 6 shows how for the problem in Figure 5 dynamic asyn-

chronous reordering is achieved at each node. The problem

has 3 variables and is defined by 3 agents with one constraint

each. The heuristic in this example consists of choosing the

next agent as the one with the least number of allowed tuples

(least volume). To allow an agent Ak compute the volumes of

its successors, heuristicmessages are used. For example,

if Ak acts for Rk, heuristic messages are sent to Ak by

all agents that prove value eliminations for levels lower than

or equal to k+1. The reordering decisions are communicated

to agents Aj , j > k. In Figure 6 the ovals represent decisions

taken by an agent. We assume that before the shown trace,

some agent has decided the order:{A1}|0:0| establish-

ing the identity of A1 as A1. Agent A1 decides the shown

instantiation and order and informs appropriately its succes-

sors by sending reorder and ok messages. Upon receipt of

an ok message from A1, A3 sends a propagate message to A2

with a reduced domain for c. Once A2 receives this reduction,

the domain of a becomes {3}. This information is reported to

A1 by messages 6 and 7 and allows A1 to reconsider the or-

der. The reordering decision sent by agent A1 via message
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Figure 5: A problem with 3 agents.

2 is discarded at A3 when the decision in message 10 arrives

with a newer history.

heuristicmessages may only be sent by an agent to Rk

in a bounded time after having received an ok from Aj , j≤k
or a propagate message of level k′′, k′′≤k+1.

addlink messages are no longer sent only to predeces-

sors, but to successors as well. When the heuristic in the ex-

ample of Figure 6 is used, addlinkmessages are redundant.

In our example (Figure 5), we consider the case where

agents announce all the interested reordering leaders of all

the labels they send. In Figure 6, the reordering leader of

level k, Rk corresponds to the agent Ak. R0 corresponds to

the agent A1. The volume of Ai is estimated as the product of

the size of domains for all variables in vars(Ai). Ri maintains

for all variables and for the levels k, k≤i+1 similar struc-

tures to those of MAS (+,+,−) at agent Au
j for vars(Au

j ) and

levels t, t≤u. The space complexity remains the same as with

MAS (+,+,−).

Proposition 5 MAS is correct, complete and terminates.

Proof summary. Completeness and correctness are proved using the

same reasoning as for Proposition 1.

No infinite loop: We prove by induction on increasing i the Property 3

where quiescence now also refers to reorder messages and to any prop-

agate message of level k≤i+1. Let all agents Aj , j<i reach quiescence

before time ti−1. Reasoning as for property 3, ∃ti
h

after which no propagate

of level k, k≤i and therefore no heuristic message toward any Ru, u<i is

exchanged. Then, Ru becomes fixed, receives no message, and announces

its last order before a time tir . After tir the identity of Ak, k≤i is fixed. Ai

receives the last new aggregate or order at time tio. Reasoning as in prop-

erty 3 for Ai and Ri, it follows that after tio, within finite time, the agent Ai

either finds a solution and quiescence or exhausts its possibilities and sends

a valid explicit nogood to somebody. From here, the induction step is proven

immediately. R0 is fixed in finite time th + tr and the property is true for

the empty set. The termination results by induction on i.

We see in Figure 6 that the solution detection method pro-

posed for AAS can detect solutions before quiescence. How-

ever, if all the solutions are required, that solution detection

algorithm may detect several times the same solutions. A qui-

escence detection algorithm can avoid this inconvenient.

Property 5 If all the aggregates proposed by reordered

agents are invalidated on the receipt of a new ordering,

the strength of the consistency maintained by DC(A) in

MAS (+,+,+) equals the strength of the one maintained by A

in centralized algorithms.

Proof. This holds since a label is invalidated by one agent iff

it is invalidated by all agents

4.4. HARD FAILURES

Hard failures are failures where the agents have acted cor-

rectly until a certain moment when they disappear. The fail-

ure of agents can be usually detected with failure detectors.

The failure detectors are not always safe. However, in this

section we consider only the case when safe failure detectors

are available. We present now an algorithm for recovering of

agents in MAS from hard failures. The new messages used by

this algorithm are recovery messages telling the receiver that

the sender needs recovery-data. recovery-data messages are

sent in answer to recovery messages and transport informa-

tion that the receiver should know.

In the case of hard failures, the agents that do not crash can

continue the inference work on all consistency levels. The

search for exhausting the space allowed by the proposals of

the crashed agents also continues whenever no answer to no-

good messages is waited from them. On recovery, a crashed

agent Ai can easily reintegrate itself in the distributed com-

putation. It has to request (by recovery messages) from any

other agent Ak: the last aggregates, order and labels that Ai

and Ak have built respectively sent at all levels l ≤ u. u is the

position known by Ak for Ai in the moment when it sends the

recovery data. All this data is sent to Ai via recovery-data

messages. Ak can clear all the add-links towards Ai and has

to request again all add-links from Ai. During recovery, the

recovering agent Ai must process only the incoming recov-

ery and recovery-data messages. All other messages have to

be stored and processed after the recovery stage.

After recovery data is obtained from all correct agents, the

labels, order, aggregates and add-link messages generated by



Ai are sent back to all interested agents that did not reported

them. Counters that are not restored can be safely reinitialized

to 0. Any message m received by Ak from Ai after the n-th

recovery request of Ai is answered, is discarded if m was sent

before the n-th recovery request of Ai. If we don’t have FIFO

channels, this condition has to be ensured (e.g. by attaching

to all messages a counter of the crashes of the sender).

Proposition 6 After the recovery data is received, the recov-

ered agents are fully integrated in search and their instantia-

tion, view and counters are coherent with the other agents.

The consistency labels they get are also coherent with the

other correct agents, ensuring that the maximum degree of

consistency allowed by DC is reached at quiescence if all

crashed agents recover.
Proof sketch. It is only the last labels, the valid aggregates and the last

add-links known by other agents that need to be known. All these are received

in the recovery data. If an agent knows something newer than the others, the

only case when it will not send that information is if it crashes before. But

in this case the crashed agent forgets that information. All the received infor-

mation is then broadcasted back so that everybody that is interested knows

it.

Another agent Aj may be simultaneously in the recovery stage. Aj does

not yet know all its own generated data but will broadcast it at the end of its

recovery. If the last aggregates and labels sent by Ai before the crash were

sent successfully to all other alive agents and were not meanwhile invalidated

by other agents, then that data is received back for recovery and the situation

is coherently reestablished.

However, data may have been successfully sent to only a subset of the

interested agents before the crash. If any agent has received it correctly, that

information will be received back on recovery if it was not invalidated. The

last sent data is then resent, if valid, to all the other agents so that the views

of the correct agents become coherent.

Even if the search continues in a clean manner after crashed

agents recover, the explicit and conflict-list nogoods that they

lose due to the crash cannot be automatically recovered from

others. The lost is important especially if the agent had a high

priority. Therefore the agents need to make backups of their

explicit and conflict-list nogoods so that they are enabled to

recover as much as possible of the already spanned search

space. If nogoods in backups contain newer or older aggre-

gates than the received recovery data, the corresponding no-

goods have to be invalidated. The validity of an aggregate

in the nogoods in backups can be checked by testing whether

their set of values is the same with the set in some valid aggre-

gate received at recovery for the same variable. If this holds,

than the history of the valid aggregate substitutes the one of

the recovered one. If no valid aggregate can be found for

some aggregate a, then a and the nogood that contains a are

invalidated. The set of messages required in order to recon-

nect to broker, to get the addresses of the other agents and to

request recovery data are obvious and are not presented here.

4.5. ONE SHOT LINKS

In MAS, the links added dynamically during the search be-

come redundant when nogoods are discarded. It is known

that the nogoods are invalidated on the first change of the his-

tory of an aggregate. A convention can be established such

that an agent eliminates another agent from its dynamically

added outgoing-links immediately after an aggregate with a

new history is broadcasted for the variable defining that link.

However, this strategy is acceptable only for problems where

the link does not reappear frequently.

5. DOMAIN SPLITTING

One of the ways of approaching large problems is by suc-

cessively solving increasingly detailed abstractions of it, un-

til the original problem is solved. In the following sec-

tions we show how distributed search can be performed asyn-

chronously and in parallel over all abstractions. The approach

is inspired from the techniques used in numerical CSPs.

The approaches that enumerate values in domains, feasi-

ble tuples in constraints or aggregates of such feasible tuples

are called here enumeration techniques. The inherent disad-

vantage of enumeration techniques is the dependence of the

efficiency of the search for finding a solution on the order of

the elements. Their efficiency for proving unsatisfiability is

also dependent on the size of the problems. The heuristics for

value reordering theoretically can help, but are seldom suf-

ficiently informed. For hard problems with large domains

and weak value reordering heuristics, the enumeration tech-

niques are therefore hopeless. However, when the domains

are “naturally” ordered, which means that the constraints have

a high density of the current value order [19], dichotomous

techniques that recursively split domains into halves often im-

prove efficiency on difficult problems. The best known exam-

ples consist of the numerical constraint satisfaction problems

that can be solved when dichotomous techniques are com-

bined with some kind of bound consistency [22].

5.1. REPLICAS-BASED DISTRIBUTED CSP

Implementing asynchronous dichotomous behavior in the

distributed context of MAS (+,+,+) requires special treat-

ment. The main impediment comes from the fact that the

number of consistency levels in MAS (+,+,+) equals the num-

ber of agents. In MAS (+,+,+) the constraints are private to

agents and simple dichotomous behavior would hinder the

agents with high priority from requiring the satisfaction of

their constraints. To overcome this problem, each agent Ai

owning private constraints can be represented in the search by

a set of ki +1 replicas denoted Ai0 , ..., Aiki
. Assume that at a

given moment t, Aiot
is ordered after all other replicas of Ai.

Then the replica Aiot
is at time t called checking replica of Ai

and has the goal usually taken by Ai in MAS (+,+,+), namely

to make sure that the subproblem proposed to its followers is

consistent with all the private constraints of Ai. All the ar-

tificial replicas (namely agents that are not checking replica

of any agent) have to behave according to conservative split-

ting and reduction operators, and send messages consistent

with the MAS (+,+,+) protocol. Each artificial replica of Ai

tries to enforce a set of constraints that is a relaxation of the

constraints of Ai.

∪0≤u≤ki
CSP (Aiu

) = CSP (Ai)

Typically (e.g. this is not the case of dichotomous split-

ting, but it is the case for the other abstraction tech-

niques presented later), a replica A
tij

ij
of Ai is useful
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Figure 7: Domain Splitting.

at moment t if, ∪u,tiu <tij
CSP (A

tiu

iu
) is a relaxation of

∪u,tiu≤tij
CSP (A

tiu

iu
).

We call the framework defined by this architecture,

Replicas-based Distributed CSP (RDisCSP) and is shown fur-

ther to allow for many interesting instances and algorithms.

The fact that artificial replicas belong to some participant

rather than being neutral was chosen in order to give the

agents a leverage in the coordination of the search.

5.2. ASYNCHRONOUS DOMAIN SPLITTING

In Figure 7 is given a small example where domain split-

ting is used to solve a problem with two agents. The agent

A1 has two replicas A10
and A11

. A10
proposes the halves of

the domain of variable a. The search space is exhausted with

4 sequential messages. Without domain splitting the mini-

mal number of sequential messages is 6. In the given trace,

we consider that consistency nogoods are sent to all agents,

according to the heuristic used in the example of Figure 6.

Therefore, the consistency-based domain wipe-out can be de-

tected by the agent generating the faulty level. Otherwise,

nogood messages would be sent by the agents A11
and A2 to

the agent A10
.

A second aspect is that the number of consistency levels de-

pends on the pruning computed by bound consistency during

search and cannot be safely estimated in advance. A straight-

forward way to solve this problem is by using a number of

artificial agents equal with the maximal number of consis-

tency levels (
∑

i∈X log2 Di). However, this is a rather ex-

pensive solution for large problems. Two alternative solu-

tions are studied here. The first alternative, static agent con-

figuration, consists of allowing existing artificial agents to

abandon their current proposal and generate new splits. Some

nogoods are lost due to this procedure. The second one, dy-

namic replica spawning, consists of dynamically spawning

new replicas whenever the current search space of the check-

ing replicas is not contained in the solution space.

The role of the artificial agents is to make sure that the vol-

ume of the search space that they propose is (with a certain

tolerance) half of the volume of the search space that they

were proposed. Namely, checking replicas must generate ag-

gregates such that:

|volume(Ai)/2-volume(known(Ai))| < threshold.

Whenever this condition is not respected due to modifications

brought to the domains by distributed consistency, the artifi-

cial agents will generate a new proposal. When a proposal of

an artificial agents is refused by some nogood message, half

of the other half (or the other half, when the maximum resolu-

tion –an element of F for numerical constraints– is reached)

of the search space is proposed. When its whole search space

is similarly refused, an artificial agent sends an explicit no-

good generated by inference from the received nogoods, the

nogood entailed by the view and those entailed by consis-

tency. Whenever the whole search space of an artificial agent

Aik
is feasible for the corresponding agent Ai, Aik

does not

need to split its search space (by generating new proposal).

The feasibility test can be done for continuous domains in Nu-

merical CSPs using the technique of Benhamou&Goualard

employed in [22]. The variable that will be split first can be

chosen to be the one with biggest impact on the future search

(see [19, 22]). The heuristic in [19] is available since the

agents declare their interest on variables. Alternatively to the

dichotomous one, splitting techniques can be based on con-

straint analysis. Namely, each artificial agent Aik
can choose

a constraint of Ai and devise a split according to heuristics

based on the constraint structure as described in [22]. The ar-

tificial agents need not generate consistency nogoods since

their work would be redundant to the one of the checking

replicas which enforce all the corresponding constraints.

A replica spawning method is described in Annexes since

we conjecture that for large problems, they generate a large

number of agents and increase the number of exchanged mes-

sages. Therefore, we only describe in this section static agent

configuration methods.



5.3. STATIC AGENT CONFIGURATION

In order to avoid generating new agents, a solution is to let

an agent Aik
act for several replicas of Ai. Messages are then

sent in only one transmission to all the replicas for which the

receiver agent acts. In terms of internal structures, letting an

existing agent act for a new replica amounts to storing new

consistency levels, an additional CL and an additional order.

We have used the described MAS (+,+,+) protocol in order

to obtain asynchronous domain splitting. The search starts

with a predefined number of replicas for each agent (e.g. es-

timated by previous negotiation on the declared size of the

internal problems of the agents). A timeout is monitored by

artificial replicas (e.g. by the last artificial replica of each

agent). On such a timeout, that agent abandons its current

proposal and generates a new proposal by splitting again a

variable. Therefore on each timeout, volume(known(Ai)) is

divided by two. Whenever a message is received, the counter

that generates the timeout is reset. If after receiving and pro-

cessing a message, volume(Ai) is modified and

|volume(known(Ai)) − volume(Ai)/2| > threshold,

then the current proposal is abandoned and a new proposal is

generated.

6. ABSTRACTIONS

The RDisCSP framework can be used in a different con-

text than dichotomous splitting. The domain splitting tech-

niques are proven as being efficient for numeric constraints.

In a more general view, the domain splitting can be viewed

as a special type of global abstraction for ordered domains,

abstraction suggesting that one half of a domain behaves dif-

ferently from the other half. For other types of constraints,

different abstractions can be used within the same RDisCSP

framework. Two such algorithms are presented in the rest of

this section.

6.1. CONSTRAINTS SPLITTING

The private problem of an agent can often be represented as

a set of constraints. Let us consider that CSP(Ai) can be split

in ki+1 problems CSP(Ai0),...,CSP(Aiki
) (e.g. correspond-

ing to variables or constraints of CSP(Ai)). Ai can therefore

have ki+1 replicas, each of them dealing with a subproblem

of CSP(Ai) in such a way that ∀j, CSP(Aij
)⊆CSP(Ai) and

∪j∈0,ki
CSP(Aij

)=CSP(Ai). We mention that such a distri-

bution makes sure that any solution space accepted by all the

agents Aij
is acceptable to Ai. MAS solves the problem mod-

eled this way, and the additional consistency levels introduced

by replicas are a means for reusing nogoods at backtracking.

6.2. TUPLES CLUSTERING METHOD

Let us assume that each agent owns exactly one constraint

(either obtained by the composition of several constraints, or

by problem splitting with replicas as in section 6.1). Let us

now assume that for each agent Ai owning exactly one con-

straint we use ki + 1 replicas, ordered Ai0 ,...,Aiki
, such that

CSP(Aiki
)=CSP(Ai) while any CSP(Aij,j<ki

) is a relaxation

of CSP(Ai). For a constraint with infinite domains, such re-

laxations can be built by merging elements of some rough

outer covering. For any constraint with finite domains, such

a relaxation can be obtained by means of clustering methods

(Binary splitting, WARD, etc.) with seeds usually employed

in automated classification techniques (e.g. speech recogni-

tion) [5]. One such technique consists of distributing a prede-

fined number of points (seeds) uniformly in the search space

defined by the variables in the constraint. Iteratively, each

feasible tuples is associated with the closest seed (Euclidean

distance) and then each seed is moved to the center of mass for

the partition that the seed i defines on feasible tuples. When

this iteration converges, for each seed i we compute the min-

imal box Bi that encloses the whole partition it defines. Bi

is given by the minimal and maximal values of each variable

over the feasible tuples associated to the seed i. Therefore we

get a relaxation composed of a number of potentially overlap-

ping boxes at most equal with the number of initial seeds.

Proposition 7 A constraint obtained by clustering can be de-

composed in maximum ks2 disjoint boxes (covers) where k is

the arity of the constraint and s is the number of seeds.

Proof. Each box needs at least one cover. For each already

covered box, a not yet covered box may need 2k − 1 addi-

tional disjoint boxes to be covered. The total number is there-

fore s + (2k − 1)(s − 1)s/2 = ks2 + s(1 − k) + s(1 −
s)/2≤ks2, ∀s, k≥1.

Each CSP(Aij,j<ki
) can be built with a number of seeds

that is a strictly monotonically ascending function on j. This

heuristically yields an increasing detail of the abstraction.

One of the problems that appear with tuples clustering is that

with a small number of seeds, random constraints with high

tightness may become total constraints (completely feasible).

The covering boxes can be computed either statically or dy-

namically. Statically computed covering boxes can either be

used without modification or they can be reaggregated if that

is possible when given proposals are made. In this last case,

care has to be taken to avoid reducing the number of boxes.

A second problem is that when many seeds fall out during

the clustering, it is possible to obtain the same abstraction in

different replicas. Figure 8 shows an example where tuples

clustering is used with one replica for A1.

Both the constraint splitting and the tuples clustering

method are complete and correct since there exist equivalent

problems for which they are identical to MAS (+,+,+). The

overhead consists of the communication with the new agents

and can be reduced when the replicas are explicitly colocated.

The tuples clustering is a special case of domain splitting.

7. CONCLUSIONS

Many of the contributions of this paper are enabled by the

definition of a new simple framework called Replicas-based

Distributed CSP (RDisCSP). It consists of distributing the ini-

tial problem of an agent to a set of logical agents. These logi-

cal agents can either be represented during search by a phys-

ical agent each, or the role of several logical agents can be

played by the same physical agent. We have presented three

abstraction techniques for RDisCSPs. They are integrated

in MAS, a new distributed search protocol, which allows
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Figure 8: Tuples Clustering Method.

for maintaining distributed consistency with a high degree of

parallelism and allows for asynchronous dynamic agent re-

ordering. MAS is a generalization of the best-known dis-

tributed complete search algorithms with polynomial space

requirements. In fact MAS is an extension of MHDC [20]

with dynamic reordering without losing completeness and

space complexity. This paper also describes MAS in de-

tails, describing its techniques for crash recovery and con-

sistency nogood announcement. Additional results are given

concerning the implications of reusing instantiations and cor-

responding nogoods across reordering and a couple of new

enabled reordering heuristics (random, least volume, ABT-

AWC) are described. RDisCSP helps to integrate new ab-

straction schema in asynchronous search. Several alternatives

for implementing MAS for RDisCSP have been detailed. The

Domain Splitting is a successful abstraction famous for cen-

tralized numerical constraints. Tuples Clustering is a new

abstraction technique inspired from automatic classification

methods. It seems appropriate for certain discrete constraints.

Constraints Splitting is an abstraction that fits naturally for

MAS. The proposed abstraction techniques have been im-

plemented and partially tested using versions of MAS for

RDisCSP with a static agent configuration.
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9. ANNEXES

9.1. DYNAMIC REPLICA SPAWNING
Here we present a method for dynamically spawning replicas. The next

new messages are introduced:

• spawn? messages: are send from broker at quiescence to ask checking

replicas if they are satisfied with the current solutions.

• replicate messages: are send from checking replicas to broker as an-

swer to spawn? messages. They signal the existence of infeasible tu-

ples in the newest proposals known by the sender and have as parame-

ter the address of a new replica.

• satisfied messages: are send from checking replicas to broker in an-

swer to spawn? messages. They signal that the space defined by the

newest proposals known by the sender is feasible.

• spawn messages are sent by the broker to all agents and announce the

insertion of the new replicas in search.

Dynamic replica spawning (DRS) is achieved by running MAS (+,+,+)

in parallel with a solution detection and a termination/quiescence detection

process. For this approach, the checking replicas need not create corre-

sponding consistency levels by enumerating proposals, but only generate

accepted messages when the whole space that was proposed to them is

feasible for their constraints. For, the solution detection algorithm, the same

technique can be used as for AAS. The termination/quiescence detection uses

counters similarly with synchronous MDC [20, 21] as presented later. When

the termination detection algorithm signals silence on the network, the bro-

ker sends spawn? messages to the checking replicas. The checking replicas

that are not satisfied by the current domains send a replicate message to the

broker, while the others send a satisfied message. Each replicate message

contains the address of a new replica of the sender. The broker will then send

a spawn message to all the agents, establishing a priority for the new replicas

between the old artificial replicas and the checking replicas. The artificial

replicas treat spawn messages as addlink() for the common variables.

The checking replicas initialize the new corresponding consistency levels.

To maintain coherence of the views and consistency levels of the agents, they

must not restart the search before the broker acknowledges them that every-

body has received the spawn message.8

The termination is ensured by the fact that whenever all agents answer

with satisfied, it is guaranteed that a solution will be detected in finite time.

An algorithm with static agent configuration can also be obtained from

DRS when a neutral agent Ar acts as a replica and is positioned between

artificial and checking replicas. Whenever quiescence is detected, no agent

is added, rather Ar is requested to split a domain for a variable of some

agent that has sent a replicate message. The splitting is conservative, so that

the eliminated space is tried on backtracking. It is no longer the broker that

detects quiescence but Ar . The disadvantage consists in the confidence in

the fairness of Ar .

9.2. TERMINATION DETECTION
In the previous algorithms (as in synchronous MDC) we need to detect the

quiescence of the agents. In previous work, distributed CSP algorithms have

detected quiescence using the techniques for distributed snapshot presented

in [6]. That algorithms have the characteristic that termination tests need

to be initialized by agents suspecting quiescence. If the interest is to detect

quiescence as quickly as possible, other methods are more appropriate.

We present here a termination detection method which only requests one

sequential message after the quiescence of the monitored protocol. This tech-

nique is well adapted to consistency maintenance procedures for distributed

CSPs. Related termination detection protocols are already known to the dis-

tributed systems community [12, 13] and their proof also applies here.

Each agent Ai maintains a counter ci,j for outgoing messages towards

each other agent Aj and a counter cj,i for incoming messages from each

agent Aj . When Ai becomes idle, this counters are sent at any modification

to the agent T checking the termination. When T detects that ci,j = ci,j

for all i and j, then T can announce termination. Since the counters can only

increase, there is no need of time stamps or FIFO channels since the high-

est counter value is always the newest. Several termination detection stages

can succeed synchronously one after another, as happens with the successive

consistency rounds in synchronous MDC. We may want to distinguish them.

A simple flag with two values that switches at the start of a new round has to

be attached to each message. If each agent receives a message in each round,

this is sufficient to announce the agents that a new stage begins and that the

local counters must be reset to 0. Otherwise the flag has to be replaced by an

increasing counter of the stages.

The termination detection messages need not be sent directly to T . Each

agent keeps a list Lc of counters that it has received. Lc contains only the

last received pair of vectors of counters for each agent. If Ai has to send

a messages to a set of agents A, it chooses an agent Aj in A. Ai attaches

to the message sent to Aj the modified counters in Lc, received from other

agents, as well as and its own updated counters. Then Ai clears Lc. If

A was empty after Ai has received some messages, it sends its counters

and its Lc to T and also clears Lc. When Lc is large enough to fill the

payload of a message, the network charge is reduced if an agent can sent

the modified counters to T rather than sending them further to other agents.

The size of Lc when the behavior has to change is a function of the size

|m| of the messages sent to agents in A and also depends on the maximum

unfragmented payload (MTU) that can be sent to T . The threshold should be

|Lc| = (MTU − |m|modMTU)modMTU .

8Alternatively, an ID of the last spawn message can be attached to any

message. No message is then processed before the corresponding spawn is

received.


