
Generalized English Auctions by Relaxation in
Dynamic Distributed CSPs with Private Constraints1
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ABSTRACT

Certain lasses of negotiation problems lend themselves to

strategies ensuring that no agent an gain by lying. Truth

inentive protools, among whih Generalized Vikrey Au-

tion (GVA) is one of the most famous, an then be used

to entrally ompute fair and eÆient solutions. However,

for problems that allow no truth inentive protools (e.g.

problems with false name bids), English Autions are pref-

ered to GVA. In this paper we show how the framework of

Distributed Constraint Satisfation (DisCSP) with private

onstraints an be extended for modeling and solving ne-

gotiation problems suh as English Autions with multiple-

items where bids an orrespond to omplex ations (selling,

buying, or both).

1. INTRODUCTION
Having agents represent the interests of their owners is

desirable in many pratial appliations. One advantage of

using software agents onsists in their speed of response. Au-

tomated negotiation is a proess whereby a distributed net-

work of software agents agree on deisions on behalf of their

owners. Agents negotiate on resoures and their deisions

are onditioned by onstraints (e.g. osts, existene,...).

When the available information is suboptimally used, lo-

al deisions an lead to losses for some parties involved in

negotiations. Bad deisions an also result in a derease of

the soial welfare by ineÆient resoure alloation. There

is onsequently a demand for automated negotiation teh-

niques that are fair and aeptable to eah of the involved

parties.

In the automated multi-agent setting the work desribed

in [21℄ has brought a new and revolutionary idea, based on

onepts from Game Theory. It proves that ertain prob-

lems from the lass alled Task Oriented Domains an be

solved by truth inentive protools
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. A protool is truth in-

entive if any partiipant annot gain more than by telling

the whole truth about its problem. Additional problems

were shown to allow truth inentive protools and the best

known examples are the one item autions. They an be
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tributed under the title: Negotiation by Relaxation in Dy-

nami Distributed CSPs with Private Constraints
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solved with the Vikrey protool [16℄. An extension of this

protool, Generalized Vikrey Autions (GVA) [15℄, has also

been proposed for multiple-items autions, namely autions

where individual priing for items is di�erent from grouped

priing. Truth inentive protools naturally allow automati

entralized resolution and this is a big suess of AI in gen-

eral. Unfortunately, even if the GVA protool [15℄ guar-

antees a ertain degree of equity for many multiple-items

autions, it is not always truth inentive [19℄. The outome

for this ompliation, illustrated in [20℄, is that with pub-

li onstraints, the soial welfare is sub-optimally managed.

General autions as well as other types of negotiations may

be truth inentive even if resoures and parties are involved

in other known negotiations. However, if there exist un-

known onnetions with future negotiations, revealing the

truth presents a risk for involved parties. The unknown

onnetions of a given problem P onsist of all future nego-

tiations for whih not all details are known and that share

resoures with P . In partiular, truth inentive-ness is pe-

nalized by the following property, related to the theorem 7.1

presented in [7℄:

Property 1. If a partiular onstraint on a resoure x of

an agent an ever be involved in an unknown future problem

that allows no truth inentive protool, then no truth inen-

tive protool an be safely used for any problem requiring x.

This property does not mean that no truth inentive meh-

anism exists for the known part of the problem. Rather it

states that involved parties might prefer not to reveal their

onstraints due to external unknown onditions. We there-

fore introdue the next de�nition.

Definition 1 (Globally truth inentive). Let P

be a problem allowing a truth inentive mehanism. P is

globally truth inentive if it does not have any unknown

onnetion. The orresponding truth inentive mehanism

is then globally truth inentive.

For example, a multi-provider bandwidth reservation

problem may not be truth inentive with respet to the

struture of the internal networks (e.g. due to the meh-

anisms urrently used on the orresponding market). The

negotiation for buying ables for the providers may be truth

inentive with respet to the same strutures of the internal

networks.
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Therefore, if the autioneer of the able negoti-

ation annot be a trusted party for the routing negotiation,
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Atually it may not be truth inentive when the reservation

prie of the autioneer for future autions an be hanged.



then the able negotiation is not globally truth inentive.

This property has impliations in most problems. Making

abstration of it, even if optimal in the present, may be fatal

for the near future. For simpliity, in the remaining part of

this paper we refer problems that do not allow global truth

inentive mehanisms due to unknown onnetions as being

non-truth inentive problems.

For this kind of problems and for problems with false name

bids, English Autions are prefered to GVA sine they do

not require the agents to reveal everything.

Definition 2 (GEA). English Autions for multi-

items aution problems where bids an orrespond to om-

plex ations (selling, buying, or ombinations) are referred

as Generalized English Autions (GEA).

In this paper we present how the framework of Distributed

Constraint Satisfation (DisCSPs) an be extended to model

GEA.

In the next setion we introdue bakground de�nitions

and de�ne formally our goal. The setion 4 gives a global

view of the GEA and omments on the rational strategies

available to the agents. A new framework is introdued in

setion 5 and a parallel is drawn with the well-known notions

from English Autions. The main tehnial ontribution

of the paper is onentrated in setion 6 where a family

of distributed algorithm is adapted for generalized english

autions.

2. PROBLEM STATEMENT
The English Aution negotiation mehanism is a good

andidate for non-globally truth inentive problems sine

it o�ers a ertain degree of privay. For example, an agent

may win the aution without revealing the highest prie it

an pay. Contrary to GVA, English Autions are inherently

distributed. The one item English Autions mehanism is

well understood and widely used in pratie. Due to the

omplexity of the English Autions for multiple-items au-

tions, GVA has been the most used solving mehanism even

when it leads to less suitable solutions.

We show in this paper how English Autions an be auto-

mated when multiple-items negotiation problems are mod-

eled using an extension of the Distributed Constraint Satis-

fation framework.

Distributed Constraint Satisfation (DisCSPs) as de�ned

in Arti�ial Intelligene provides a exible framework for

representing stati distributed ombinatorial problems.

Definition 3 (DisCSPs). A DisCSP is omposed of:

(d1) A set of agents A = fA

1

; A

2

; :::A

n

g.

(d2) A set of k variables V = fv

1

; v

2

; :::v

k

g, eah of them

under the ontrol of the agents interested in it. The

variables in V are alled external variables.

(d3) A set of external variables V

i

= fv

i1

; v

i2

; :::; v

im

g,

V

i

� V , and a set of onstraints C

i

= f

i1

; 

i2

; :::

ik

i

g

for eah agent A

i

, suh that any external variable on-

strained by a onstraint in C

i

is also ontained in V

i

.

The domain of a variable v

i

is D

i

. All the variables x

j

onstrained by onstraints in C

i

, and suh that x

j

62 V

i

are said to be internal.

Solving a DisCSP amounts to assigning values to both

external and internal variables so that the onstraints of

all the agents are satis�ed. The agents therefore need to

oordinate their deisions on the external variables.

Powerful omplete algorithms for solving DisCSPs have

been proposed reently [2, 14, 18, 11℄. In partiular, the

framework of Asynhronous Aggregation Searh (AAS) [11℄

allows for a natural modeling and a highly parallelized solv-

ing of general problems with private onstraints, whih is

adapted to non globally truth inentive negotiation prob-

lems. In AAS, eah agent is interested in enforing a set

of (private) onstraints. Eah agent an assign values to

the variables involved in its onstraints. The information

exhanged via di�erent types of messages oordinate assign-

ments on shared variables.

2.1 Negotiation using DisCSPs
We propose to implement automated negotiation us-

ing an extension of the Asynhronous Aggregation Searh

with Asynhronous Reordering AASR (also denoted

MAS

(+;�;+)

) [13℄. AASR has been hosen for its exibil-

ity and generality. However, as presently de�ned, it annot

model some important aspets of negotiation:

� Dynamism: In negotiation, the existene of the on-

straints, as well as the partiipation of the agents are

onditioned by time and environment.

� Evaluation of alternatives: A fundamental element of

negotiation is the ability to assoiate (ask) pries to al-

ternatives. In our ase, an alternative orresponds to

an assignment that an be agreed by an agent. Eah

agent must be able to ask a prie for any of its pos-

sible agreements. In pratie, an agent may also have

to pay something for eah alternative it hooses. This

orresponds to the ost, whih is often a hidden in-

formation. Moreover, two alternatives with the same

prie an be disriminated using preferenes.

� Relaxation: Due to new information aquired during

resolution, the agents will aept to relax their on-

straints. By onstraint relaxation we mean that an

agent an renoune to parts of its onstraints (e.g. an

redue pries).

We show how pries, preferenes and onstraint relaxation

an be integrated in DisCSPs in order to provide the nees-

sary framework for multiple-items English Autions.

2.2 Fairness
The quality of an automated negotiation protool mainly

depends on its ability to ompute fair solutions. In the fol-

lowing we give a set of de�nitions for haraterizing solutions

in problems with hidden osts. These de�nitions mainly

adapt the ommonly used ones to our framework.

The ost of a solution is given by the sum of the osts

of the agents. Note that sine requested pries are negative

osts, the sum of all the osts paid by all the agents in A is

equal to the sum paid by the agents inA to fators outside A.

Any negotiation is started by a subset of A alled initiators.

We assume that the initiators are self-interested. The sum

of the osts paid by the initiators to some agent is alled

prie.

Definition 4 (Solution Cost). The ost of a solu-

tion is given by the sum of the pries asked by the agents to



the initiators for agreeing on the alternatives omposing the

solution.

Definition 5 (Utility). The utility of an agent is de-

�ned as the di�erene between the prie it asks and the ost

it pays for the hosen alternative.

A rational agent prefers to o�er alternatives that inrease

its utility

4

. Therefore, even if the utilities are hidden, it is

usually bene�ial for the agents to reveal the order of their

preferenes.

Definition 6 (Pareto-optimal solution). A solu-

tion is pareto-optimal if any other solution is either equally

preferred for all agents, or worse for at least one agent, given

the order de�ned by the utilities of eah agent on solutions.

We all delared-pareto-optimal solution, a pareto op-

timal solution omputed for the DisCSP delared by the

agents.

Definition 7 (Delared-Pareto-optimal). A so-

lution is delared-pareto-optimal if any other solution is ei-

ther equally preferred for all agents, or worse for at least

one agent, given the order de�ned by pries and delared

preferenes.

Definition 8 (Estimated Soial Welfare). An

estimated soial welfare solution (ESW) is a delared-

pareto-optimal solution with minimal Solution Cost.

Guaranteeing that a solution is ESW is possible with om-

plete searh tehniques. We also want the ESW solution to

be hosen impartially (fairness).

Definition 9 (Fairness). When several ESWs are

andidate, fairness onsists in giving them equal probability

to be hosen.

Real Soial Welfare

Definition 10 (Equivalent Solutions). A problem

with equivalent solutions is a problem where the di�erene

between the quality (value) of its solutions is equal to the

di�erene between the ost or the respetive solutions (the

solutions are equally good).

It is worth mentioning that for problems with equivalent

solutions an ESW gives the best possible estimation of the

real Soial Welfare (SW). This is the ase of a bandwidth

alloation problem where any two paths in the network are

equally good as long as it has the required bandwidth and

quality of servie. One of our goals is to help in reahing a

soial welfare solution.

Definition 11 (Soial Welfare Solution). For

problems with equivalent solutions, a soial welfare solution

(SW) for a set of agents A is de�ned as a solution mini-

mizing the sum of all the osts paid by all the agents in A

for agreeing on the alternatives omposing the solution.

4

Alternatively, the notion of worth [21℄ an be similarly used.

3. RELATED WORK
Researhers have already related negotiation and Dis-

tributed CSPs from both sides. On one side, the negotiation

is seen as tehnique for solving distributed CSPs. The au-

thors of [6℄ propose a min-onit heuristi tehnique alled

negotiation searh as a means of onverging towards a so-

lution in a distributed problem with heterogeneous ompo-

nents. On the other side agents have also been proposed

for solving by negotiation over-onstrained resoure alloa-

tion problems in [3, 5℄. Frameworks for over-onstrained

distributed problems with publi onstraints are presented

in [17, 4℄. Our approah shares ommon onepts with

the framework proposed in [9℄ for resoure alloation. An

overview of known types of autions was given in [8℄.

4. THE NEGOTIATION PROTOCOL
A negotiation is viewed as a multi-riteria optimization

problem where the agents have to �nd a solution maximizing

their utilities while respeting their onstraint on resoures.

Autions are speial ase of negotiations where the negotia-

tion ends when a subset of the agents (autioneers) annot

improve any longer their utility. In GEA suh problems are

solved by iterative improvement of ESW solutions aording

to the following protool.

a1 Compute the best solutions (ESW) satisfying the on-

straints so far imposed by the agents and retain one of

them.

a2 If any solution was found at a1, publish the ESW as

an any-time solution.

a3 If any agent wants to relax the onstraints it imposes,

go to a1.

a4 If any solution was found at a1, return the estimated

ESW and stop.

a5 Return failure and stop.

The solution of a GEA is a global optima (i.e. no better

solution an be onstruted by the agents).

If the pries are modi�ed with a minimal inrement and

the set of alternatives is �nite, the previous protool is safe

to onverge in �nite time as long as the agents are stable

in the order on their preferenes and ommit to their agree-

ments (monotoniity in �nite domains).

A solution S of a distributed problem may not need the

agreement of some partiular agent A

i

. In that ase we

say that A

i

is inative for S. Conversely, we say that A

i

is ative for S if its agreement is neessary for hoosing S.

This provides a means to model a faet of ompetition useful

for ameliorating the ESW. An agent, inative for the urrent

solution, may indeed want to make onessions to beome

ative.

Rational Strategies If any agent A has means of es-

timating the will to risk of all the agents, the following re-

laxation strategy an be proposed.

� A wants to propose its best alternative �rst. If it is

not satis�ed with the urrent solution, S, and has the

lowest will to risk by aepting S, A will do a minimal

onession.



This strategy is not in equilibrium when A knows well the

strategies and data of the others. In that ase, A's rational

strategy an be:

� If A knows that some other agent will make a minimal

onession, getting involved with A in the best ESW

solution, then A makes no onession.

Commitment of initiators If the initiators are re-

quested to ommit to their urrently imposed onstraints,

meaning that the �rst hosen ESW solution is the �nal one,

the rational negotiation strategies hange.

� If A knows that no solution an be found where A is

inative, then if A has the lowest will to risk, it will

make a minimal onession, otherwise A will wait.

� If a solution, S, an be found without A in ative state,

A proposes all its aeptable alternatives.

If A knows well the strategies and data of the others, A's

rational strategy would rather be:

� If A knows that no solution an be found where A is

inative, then if A has the lowest will to risk, A will

make a minimal onession, otherwise A will wait. If

this is the last round, and others will make some next

relaxation leading to a solution, A waits for them.

� If a solution an be found with A in inative state,

sine A an ompute a quality of the solution S that

an be obtained without A, then A proposes the alter-

native being the minimal onession leading to a global

solution better than S (if any exists).

5. EXTENDING DisCSPs
In order to model pratial negotiation problems, we

introdue a formalism that enrihes the DisCSP frame-

work with dynamism, preferenes and onstraint relaxation.

The extended framework builds on the notion of Valued

CSPs [10℄. First we desribe the problem of an agent, A

u

,

as a Negotiation Valued CSP, (NVCSP

u

). NVCSP

u

onsists

of:

� A minimal inrement, ".

� A set of external variables, V(u). The domain of eah

variable ontains a value F

5

meaning unhanged and

indi�erent.

� An ordered set of global onstraints 

1

(u),...,

n

u

(u).

� Eah pair (valuation v, onstraint 

i

(u)) has assoiated

a tuple:

T

v

i

(u) = (feasible

v

i

(u); prie

v

i

(u); preferene

v

i

(u)):

T

v

i

(u) is suh that for eah onstraint 

i

(u),

prie

v

i

(u)�ost

v

(u) and if n

u

�i>j>0 then:

� for any valuation v, feasible

v

j

(u) ! feasible

v

i

(u) and

prie

v

i

(u) � prie

v

j

(u);
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or a set of values.

� there exists a valuation v suh that either

feasible

v

i

(u) 6= feasible

v

j

(u), or

feasible

v

i

(u) = feasible

v

j

(u) = T

and

prie

v

i

(u) + " � prie

v

j

(u)

A Dynami DisCSP

6

(DyDisCSP) is de�ned by:

� A set of agents A

0

,...,A

n

. A

k

; k 2 [0; h); n � h > 0;

are h agents alled initiators.

� Eah agent A

j

owns a NVCSP, NVCSP

j

.

� Eah agent A

j

is interested in a set of external vari-

ables V(j).

� ost

v

(j) is private to the agent A

j

for any valuation v.

Given a valuation v for all the external variables, S(v) is

the set of agents owning a variable not instantiated in v to

F . By onvention, the initiators always belong to S(v).

Definition 12 (Aeptable valuation). A valua-

tion v is aeptable if eah agent in S(v) proposes for v a

feasible assoiated tuple, (feasible

v

k

i

(i) = T ).

By �v we denote a valuation obtained from the valuation

v by reassigning a subset of variables to F suh that v 6=�v.

Definition 13 (Stable valuation). v is stable if

there exists no aeptable �v.

Intuitively, a stable valuation is minimal in the sense that

it orresponds to a agreement of the agents in S(v), and by

eliminating any subset of agents from S(v), no agreement

an be obtained with the initiators.

When v is stable we say that all the agents in S(v) are

de�ned by v as ative.

Definition 14 (Solution). A solution of a Dy-

DisCSP is a stable valuation v of all the external variables

suh that if eah agent A

i

in S(v) proposes for v an assoi-

ated tuple (T; prie

v

k

i

(i); preferene

v

k

i

(i)), k

i

�n

i

, and if

A = fbj b = argmin

a

(

X

A

i

2S(v);i�h

prie

a

k

i

(i))g;

then v2A, v is pareto-optimal for S(v) over A. and no agent

A

i

, i>0, wants to reveal a onstraint 

j

, j>k

i

.

The feasibility ondition is

P

A

i

2S(v)

prie

a

k

i

(i) � 0.

The feasibility ondition veri�es that the solution is a-

eptable to the initiators. If v is a solution of a DyDisCSP,

then S(v) is the solver set for v.

In our framework, the step a1 of GEA amounts to solving

a DyDisCSP where the k

i

of any A

i

is �xed.
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We propose to all DyDisCSP a DisCSP where the par-

tiipation of agents is dynami. An alternative is to all

this framevork dynami distributed valued CSP (DyDis-

VCSP). A DyDisCSP where the agents own dynami CSPs

an then be alled dynami distributed dynami CSP (Dy-

DisDyCSP).



5.1 Relation with existing negotiation frame
works

In [8℄ was presented a framework for Multi-Unit Combi-

natorial Exhanges. The harateristi of these autions is

that in one bid a bidder an be selling some items and buy-

ing other items simultaneously. The multi-unit ombinato-

rial exhange winner determination problem (MUCEWDP)

is to label the bids as winning or losing so as to maximize

surplus under the onstraint that demand does not exeed

supply. In our framework, MUCEWDP are modeled by hav-

ing exatly one initiator that owns no onstraint.

The autions enabled by our approah to GEA (Dy-

DisCSP) are an extension of MUCEWDP where the �nal

solution has to get the agreement of a prede�ned (sub)set

of agents (the initiators). We therefore all suh aution

problems Multi-Unit Supervised Combinatorial Exhanges

(MUSCEWDP).

Definition 15 (MUSCEWDP). MUSCEWDP are

Multi-Unit Combinatorial Exhanges winner determination

problems where the solution needs the agreement of a

prede�ned set of agents.

The other existing types of autions are suggested in [8℄ to

be instanes of MUCEWDP. Therefore, they an also be

modeled as MUSCEWDP.

5.2 Modeling English Auctions
The dynamism enabled by DyDisCSPs an be used to

model English Autions. We draw now a parallel between

the introdued framework and typial English Autions.

The equivalene of notions is:

� external variable , transation for the alloation of a

good to an agent, other than the urrent owner.

Eah variable is in the NVCSPs of the urrent owner

and of the target owner of the good.

values 2 fT; Fg, showing if the transation is hosen.

� initiator , autioneer.

� prie , minus of the bids for a ombination of alloa-

tions

The ost in DyDisCSPs is the minus of the worth in

English Autions.

� prie � ost , utility or worth.

The initiator launhes the searh in the spae of alloa-

tions. At eah step, an agent A

u

imposes the onstraint



k

u

(u); k

u

�n

u

. A relaxation of the imposed onstraints or-

responds to inreasing k

u

.

6. EXTENDING AASR
In this setion we introdue an algorithm alled Se-

ure Asynhronous Searh (SAS) whih is an adaptation of

AASR to the DyDisCSP framework. SAS an be used to

�nd all ESW at step a1 of GEA. First we reall the basi

elements of the AAS [11℄ protools. The system agent is a

speial agent that reeives the subsriptions of the agents

for the searh. It deides an initial order of the agents and

announes the termination of the searh. If the agent A

i

is

ordered before A

j

, then we say that A

i

is an anestor of A

j

.

We denote with A

i

the agent that has the position i; i � 0.

Definition 16 (Assignment). An assignment is a

triplet (v; set; h) where v is a variable, set a set of values

for v and h a history of the pair (v; set).

A history h for an assignment a = (v; set; h) proposed by

an agent A

k

takes the form of a list of pairs ji : lj where i is

the index of an anestor of h that has made a proposal on v

and l is the value of a ounter. These pairs are ordered in h

aording to the asending value of i. The last pair in h has

the form jk : l

k

j

j. An order / is de�ned on pairs suh that

ji

1

: l

1

j / ji

2

: l

2

j means either i

1

< i

2

, or i

1

= i

2

and l

1

> l

2

.

An assignment requests higher priority agents to omply

with a proposal, therefore it de�nes by itself of a nogood.

All the values that do not omply with the assignment are

nogoods. Suh nogoods are alled nogoods entailed by

the view.

Definition 17 (Newer history). A history h

1

is

newer than a history h

2

if a string-like omparison on them,

using the order / on pairs, deides that h

1

preedes h

2

.

An assignment with history h

j

x

built by A

j

for a variable

x is valid for an agent A

m

; m�j if no other history known

by A

m

and built by agents A

k

; k�j for some assignment

of x, is more reent than h

j

x

. A nogood is valid if all the

assignments ontained in its premise are valid.

Definition 18 (Expliit nogood). An expliit no-

good has the form :V , where V is a list of assignments.

Definition 19 (Ordering). An ordering is a se-

quene of agent names.

The agents ommuniate, using hannels without message

loss, via:

� ok messages, sent from agent A

j

to agent A

i

, and hav-

ing as parameter a list of assignments for variables in

whih A

i

is interested.

� nogood messages whih have as parameter an expliit

nogood.

� add-link(vars) messages, sent from agent A

j

to agent

A

i

, informing A

i

that A

j

is interested in the variables

vars. They are always answered.

� reorder messages whih have as parameter an order-

ing.

� heuristi messages whih have as parameter data for

omputing heuristis.

In AAS, eah agent is allowed to keep its onstraints seret

and has to delare from start the external variables for whih

it has onstraints.

AASR [13℄, allows the agents to asynhronously propose

new orders among themselves. An order is represented by a

sequene of agents and is tagged by a history. An agent an

only propose new orders within a bounded delay after having

reeived a new proposal. We onsider here the ase where

an agent does not reorder agents having lower positions than

itself.

When used in ompetitional situations (e.g. within nego-

tiation), the AASR tehnique is no longer appropriate. The

reason is that a solution of suh problems does not need



to be an aeptable solution for all the agents, as long as

some of them are not ative in the solution and do not gain

anything

7

.

6.1 Secure Asynchronous Search
In AASR, both ok and nogood messages transport some

kind of nogoods. These are the nogoods entailed by the

view, respetively the expliit nogoods. In order to allow the

agents detet messages that are potentially harmful for the

quality of the omputed solution, we introdue the notions

of legal nogood and legal assignment. We want to prevent

the agents from disturbing the searh by generating illegal

messages. A message (ontaining a nogood :N) is illegal if

it is generated by an agent that an be inative in a valuation

extending the partial valuation in the Cartesian-produt de-

�ned by N . SAS requests agents to build messages in suh

a way that their lawfulness an be proved.

Definition 20 (Legal expliit nogood). Any legal

expliit nogood generated by an agent A

i

, where A

i

is not an

initiator, must ontain at least one assignment of a variable

v

j

from V (i) suh that v

j

does not ontain F .

Definition 21 (Justifiation). Eah assignment I

i

generated by an agent A

i

that is not initiator needs a jus-

ti�ation. The justi�ation of the assignment I

i

onsists of

a pair (v,h) built from an assignment (v,s,h) that ativates

A

i

.

The justi�ation of an assignment, a, orresponds to a

relaxation of the nogood entailed by the view given by a

and is stored in the history of the assignment, attahed to

the pair orresponding to the agent that has generated a. A

history has now the form ji

1

;l

1

; j

1

ji

2

;l

2

; j

2

j::: where i

k

is the

index of an agent, l

k

is the value of an instantiation ounter

and j

k

is the justi�ation of the orresponding instantiation.

Property 2. The spae needed by an agent to store all

the assignments is O(nv), where n is the number of agents

and v is the number of variables.

Proof. The number of possible simultaneous valid assign-

ments is nv sine eah agent an generate at most v valid

assignments at a time (one per variable). All assignments

and justi�ations an be represented as a direted graph

having the valid assignments as nodes. The maximum num-

ber of ars in this graph is 2nv sine there annot be more

than 2 ars getting out of a node.

Corolary 1. The size of an assignment is O(nv).

Property 3. SAS has polynomial spae omplexity in

eah agent.

Proof. AASR requires polynomial spae and the only addi-

tional strutures required by SAS onsist of the new assign-

ments in justi�ations. For all the referenes to assignments

in the strutures of AAS, Corolary 1 shows that a polyno-

mial mapping exists to the new form of the assignments.

Besides generating illegal nogoods, the agents an also

generate illegal assignments against their ompetitors.

7

And have to redue their preferenes.

Definition 22 (Legal assignment). An assignment

is legal if its justi�ation is valid and the variable in the

justi�ation does not ontain F in its instantiation. By on-

vention, any assignment generated by an initiator is legal.

No assignment (v; s; h) generated in SAS may aggregate

in s both the value F and some other values.

6.2 The SAS protocol
In order to enable agents to make proposals, they must be

given the opportunity to know when they are ativated. The

ative/inative state of an agent is know when either one

of its external variables is instantiated outside F (ative),

or when all its external variables are instantiated with F

(inative). For the seurity of the searh, we want to involve

on low positions in searh only agents that are known to be

ative.

Rule 1 (Initiator first). The agent A

1

has to be an

initiator.

Rule 2 (Ative first). Whenever possible, eah

agent proposes orders to make sure that the agent on the

next position is known to be ative.

In order to let agents know whih of the next agents are

ative, ative agents must announe all their instantiations

for external variables to all their suessors.

Sine in SAS the messages must prove that their sender is

ative, agents must generate only legal nogoods. Any other

nogood would be disarded. The next rule shows how legal

nogoods an be obtained.

Rule 3 (Nogood generation). Whenever an agent

A

i

omputes an expliit nogood N that is not legal, and the

set in the newest assignment it has reeived for some variable

v

j

from V (i) does not ontain F , it should add the newest

assignment of v

j

to N .

8

If this is not possible, it means that

A

i

is inative and it should refrain from sending N to other

agents. This rule does not apply to initiators.

Coalitions an still be reated in SAS. In fat any agent

that does not hek if a reeiving message is valid makes a

(temporal) oalition with the sender.

Rule 4 (Cheking). The reeiver of an expliit no-

good N should hek that N is legal. Also the reeiver of

any assignment, (when an ok message is reeived), should

hek that the new assignment is legal and the assignment is

not empty (the searh annot be voluntarily bloked).

If one of these onditions is not respeted, the messages

must be disarded.

In order to ensure ompleteness and termination of SAS,

the management of justi�ations has to be oherent. The

justi�ations trigger add-link messages in the same ondi-

tions as the assignments reeived in an expliit nogood in

AAS. Moreover, justi�ed nogoods should not be delivered to

the reeiving agent and integrated in the other strutures in-

herited from AASR before the answer to eventual add-link

messages is reeived.

8

When illegal nogoods are made legal, they are in fat re-

laxed. Agents that must relax nogoods an use heuristis

for hoosing the variable v

j

from V (i). (e.g. hoosing the

variable for whih the known assignment was generated by

an agent with the lowest priority.)



Rule 5 (Justifiation hange). Whenever the jus-

ti�ation of an agent A

i

is modi�ed, A

i

has to send again

all its assignments.

Only one assignment is used as justi�ation by an agent

at a time.

Rule 6 (Stored agent-view). Eah agent stores all

the valid assignments it reeives.

Rule 7 (Justifiation invalidation). Whenever

the justi�ation J of a stored assignment a

1

in A

i

is

invalidated by some inoming new assignment a

2

, A

i

has to

invalidate a

1

and has to apply again this invalidation rule

as if a new assignment of the variable in a

1

would have

been reeived.

Lemma 1. The information maintained by agents in Se-

ure Asynhronous Searh is onsistent with their predees-

sors.

Proof. The rules for nogoods generation and nogood hek-

ing are allowed by the AAS framework and the proof in [11℄

remains valid. Sending any (�nite) number of add-link

messages when justi�ations are reeived �ts AAS as well.

It remains to prove that the properties are maintained when

the invalidation, of a justi�ation, j, triggers the invalidation

of an assignment, x, that it justi�es.

The role of a stored assignment in AAS is to de�ne a valid

nogood entailed by the view of the agent. Therefore x de�nes

a nogood entailed by the view. In the Seure Asynhronous

Searh, the agent ativated by j has to invalidate and re-

ompute its instantiation (due to the justi�ation hange

rule). Therefore x, beomes indeed invalid. Consequently,

in all ases the information maintained by the agents will

eventually be onsistent with their predeessors.

Definition 23 (Quiesene). By quiesene of a

group of agents we mean that none of them will reeive or

generate any legal valid nogoods, new legal valid assignments,

reorder messages or add-link messages.

Lemma 2. At quiesene for the agents A

1

; :::; A

i

, an

agent A

i

, knows whether there exist any ative agent plaed

after it or not.

Proof. If any initiator is plaed after A

i

, this is known to

A

i

sine the last ordering was reeived.

Otherwise, A

i

knows all assignments outside F done by it-

self or predeessors for external variables. A

i

also knows

the variables that an ativate its suessors sine they are

announed as initial data. A

i

therefore knows when any

suessor is ativated by the agents A

1

; :::; A

i

.

If no suessor is ativated by A

1

; :::; A

i

and no suessor is

initiator then, sine an inative agent annot ativate an-

other agent, no suessor of A

i

is ative.

Lemma 3. In Seure Asynhronous Searh, let a set of k

agents reah quiesene in �nite time t

k

and at quiesene

they take positions 1; :::; k where eah of them agrees with its

preseessors. Then, if some of the other agents are ative,

either failure is deteted or an ative agent will reah qui-

esene on position k + 1 in �nite time after t

k

having an

instantiation that agrees with its predeessors.

Proof. The number of possible add-link messages is

bounded so we do not need to onsider them.

Let � be the maximum delay for delivering a message. Af-

ter t

k

+� , all the agents know the instantiations of A

i

; :::; A

k

.

Within time t

k

h

= t

k

+ � + t

h

+ � , no heuristi message is

reeived any longer by the agents R

0

; :::; R

k

. The �nal order

that deides the agent taking the position A

k+1

is therefore

issued before t

k

h

+ t

r

and if any suessor is ative, an a-

tive agent beomes A

k+1

. After t

k

h

+ t

r

+ � , the identity of

A

k+1

no longer hanges and its view remains stable after

t

o

; t

o

< t

k

h

+ t

r

+ � . Sine the domains are �nite, in �nite

time after t

o

either some proposal of A

k+1

is no longer re-

fused, or all its proposals are refused and A

k+1

infers at time

t

n

; t

n

> t

o

a legal valid nogood :N .

Sine :N is valid and legal, either:

I. N it is empty and the searh fails, or

II. when t

o

< t

k

, its reeiver hanges its instantiation for a

variable, v, and either it or its predeessors announe A

k+1

of the new assignment for v. But suh an announement

arrives at A

k+1

after t

n

+ 2� > t

o

. This ontradits the

hypothesis that the view is stable after t

o

and that t

o

< t

n

.

III. The predeessor reeiving :N detets failure and the

searh ends.

Therefore in all possible ases the lema holds.

Lemma 4. In Seure Asynhronous Searh, the ative

agents reah quiesene on onseutive positions 1 to k, and

all inative agents are plaed after A

k

.

Proof. Due to the lemma 1, eah agent knows when some

suessor is ative and aording to the rule 2 (Ative �rst),

the ative agents are ordered onseutively.

The solutions omputed by Seure Asynhronous Searh

orrespond to an agreement among the tuples revealed by

the ative agents. This agreement onsists in the instantia-

tion of the shared external variables to the same value. The

optimality of the pries has to be heked separately by the

broker.

Proposition 1. The Seure Asynhronous Searh is

omplete, orret, and terminates. The solutions it om-

putes orrespond to an agreement on the tuples revealed by

the ative agents.

Proof. Quiesene of the ative agents: is a result of

lemma 3. In bounded time, the ative agents �nd a solution

and reah quiesene letting the broker to detet it, or a

failure is deteted.

Completeness: All the nogoods are generated by infer-

ene and therefore no empty nogood is generated if a solu-

tion exists. An erroneous inferene made by an agent A

i

annot eliminate a solution that does not instantiate out-

side F a variable ativating the agent A

i

. Therefore those

solutions needed the aeptane of A

i

.

Corretness: The assignments that ativate the ative

agents at quiesene and the other variables set by these

agents to values that do not ontain F is a Cartesian-produt

C. Eah element in C de�nes a stable valuation v when it

is expanded by instantiating any other external variables to

F . The ative agents orrespond to S(v). They all know the

instantiations of their predeessors and they an generate

legal valid nogoods sine they are ative. Sine at quiesene

the ative agents agree with their predeessors (Lemma 3),

then all the agents in S(v) agree on v.



For the Seure Asynhronous Searh, the termination de-

tetion algorithms from AAS an no longer be used sine

the agents are not trusted. The messages for announing

the solution may be sent via inative agents and therefore

they an be orrupted. For the general ase, the solution an

be deteted by the system agent. Eah agent has to send its

solution to the system agent. The system agent has to �nd

the solver-sets, namely all the subsets of agents agreeing

with the initiators that are onsistent and together de�ne

a solution. This is a problem with polynomial omplexity.

For some real problems, alternative tehniques for solution

detetion an be used.

Property 4. ESW solutions an be omputed using the

Seure Asynhronous Searh.

Proof. The ompleteness of the Seure Asynhronous

Searh ensures that all ESW solutions are omputed to-

gether with other solutions. They are �ltered out during

omputation aording to the de�nition of ESW, yielding

the step a1.

7. PRACTICAL CONSIDERATIONS
In order to enhane the salability of Seure Asynhronous

Searh, speial are must be devoted to managing the size of

the problem. Sine the total number of agents in the world,

ready to be involved in a negotiation an be huge, we want to

maintain the set of involved agents to a minimum, without

losing ompleteness. The urrent tehniques an be adapted

to this new requirement. In order to redue omputation

e�ort, the agents have the interest to use aeptable value

ordering heuristis for guiding the searh.

Definition 24 (MIS). An agent belongs to the mini-

mal interesting set if, during searh, at least one partial so-

lution, better than the lowest bound has been found, whih

requires the partiipation of this agent.

Definition 25 (Involved agent). An agent is in-

volved in a urrent omputation if it has been sent at least

one proposal for that omputation.

An agent is involved only if it belongs to the minimum

interesting set. Usually, agents an be added in a natural

manner to a omputation. In several existing protools, it

is less easy to eliminate agents. We have introdued the

notions of minimum interesting set and involved agent to

guarantee that an agent is involved only when this is needed

for ompleteness. For example, in Figure 1 the ative agents

at node n

4

are A and F . The involved agents are A, B, C,

D, F , the MIS also ontains H and L. G has not been in

MIS.

Let us onsider that the agents with right to ontrol eah

external variable an be found in some yellow pages. The

system agent maintains a set of involved agents, empty in

the beginning. Whenever a set of initiator agents pose a

new problem, they are inserted in the set of involved agents.

Eah time that the involved agents reah quiesene, but

instantiated variables in the partial solution orrespond to

the ativation of some agents not yet involved in the searh,

the system agent heks that the partial solution built so

far has a lower value than the best solution found so far. If

this ondition is not respeted, a nogood is generated for the

urrent valuation. Otherwise, the system agent sends them a

n3:A,B,C

n2:A,B,D

n4:A,F
n1:A,B

n0:A

n5:A,F,H

n8:A,B,D,F n9:A,B,D,G

n6:A,F,L

Figure 1: The solid irles orrespond to visited

nodes, up to node n

4

. The list of agents ative at

eah of them is shown under the node. The urved

dashed line show the lower bound for ESW.

request to get involved (an involve message). The involve

takes as parameter the urrent priority of the reeiving agent

in the searh, the set of initiators, and the priorities (and

information on external variables) for all the other agents

involved in the searh.

When new agents aept to get involved in the omputa-

tion, all the existing agents should reeive information on

the priority and the external variables of the new agents via

an involved message. They will have to send their propos-

als to the new agents.

If some agents annot be ontated or refuse to get in-

volved in the searh, the system agent announes it to the al-

ready involved agents by an update-yellow-pagesmessage

mentioning the name of the removed agents and the vari-

ables they ontrol. The alternatives on variables ontrolled

by removed agents have to be disabled from all agents.

The nogoods an also be reused between rounds by using

the tehnique proposed in [12℄. That tehnique onsists of

explaining inferenes with referenes to onstraints (CR).

The CRs do not neessarily stand for a given onstraint,

but provides a way to signal when due to relaxations, a

nogood is invalidated. The algorithms remain polynomial

spae only if the number of CRs in use is bounded. The

reuse of CRs an be enabled by attahing to them ounters.

Branh and Bound an also be used dynamially during

the searh. However, in order to use it, the AAS protool

has to be run on the dual representation of the problem

where all the onstraints of eah agent are represented by

a variable. The values (pries and preferenes) for all the

tuples in the sent aggregate have to be attahed to the tuples

in the aggregate-set. If aggregations are done in suh a

way that all values in an assignment have equal values, then

this value needs to be sent only one. The trimming of

Branh and Bound is more informed if eah agent sends its

proposed aggregate to all the agents with higher priority.

The trimming takes into aount only ative agents.

8. EXAMPLE OF APPLICATION
The problem of Multi-Provider Interations as desribed

in [1℄ onsists of reserving requested bandwidth aross a het-

erogeneous network of self-interested providers that have se-

ret onstraints. The problem of the existene of solutions

has been modeled as a Distributed CSP [1℄.

Sine providers are anxious about revealing details on-

erning their network links, osts and apaity, this prob-

lem is a natural andidate for solving with GEA. The prob-

lem is not globally truth inentive. The initiators onsist

in the lients requesting some bandwidth reservation aross



the network. The minimal involved set expands itself as

long as the sum of the osts does not reah the best found

solution. For the Multi-Provider Interations problem, the

preferenes an be used for dealing with previsions of future

traÆ or with internal maintenane sheduling.

9. CONCLUSIONS
We present an approah to negotiation for problems where

no globally truth inentive mehanism is available. The on-

ept of Dynami Distributed Constraint Satisfation is pro-

posed and we show how it allows for modeling omplex har-

ateristis of suh problems. In partiular we show that it is

suÆient to add a simple set of rules to asynhronous on-

straint satisfation protools (e.g. AASR) in order to meet

new requirements on seurity, dynamism and evaluation of

alternatives (SAS).

We illustrate how Dynami DisCSPs an be used in gen-

eral negotiation problems (e.g. GEA) to provide fair en-

vironments. The problems that an be modeled by Dy-

nami DisCSPs, MUSCEWDPs, are identi�ed as being

a generalization of Multi-Unit Combinatorial Exhanges

(MUCEWDP). The presented framework inherits from Con-

straint Reasoning generality and exibility in modeling.

As shown in [13℄ for MAS, usually asynhronous searh

algorithms are generalizations of synhronous versions and

behave like the last ones for:

� ertain delays in message delivery,

� ertain strategies of the agents onerning:

{ aggregation hoies and

{ delays in answering to messages

� and when the hannels an transit by intermediary

agents.

Therefore, the SAS algorithm presented here has suh a syn-

hronous equivalent, Seure Synhronous Searh (SSS).
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