
Distributed Asynchronous Search with Private Constraints

[Extended Abstract]

Marius C. Silaghi
EPFL

1015 Lausanne, Switzerland

silaghi@lia.di.ep¤.ch

Djamila Sam-Haroud
EPFL

1015 Lausanne, Switzerland

haroud@lia.di.ep¤.ch

Boi Faltings
EPFL

1015 Lausanne, Switzerland

faltings@lia.di.ep¤.ch

ABSTRACT
Many problem-solving tasks can be formalized as constraint
satisfaction problems (CSP). In a multi-agent setting, infor-
mation about constraints and variables may be distributed
among different agents and kept confidential. Existing
algorithms for distributed constraint satisfaction consider
mainly the case where access to variables is restricted to
certain agents, but information about constraints can be
exchanged among them. In this paper, we propose methods
where constraints are private but variables can be manipu-
lated by any agent.
We describe a new algorithm for distributed CSPs, called
asynchronous aggregation search (AAS). It differs from ex-
isting methods in that it treats simultaneously sets of partial
solutions and it exchanges information about aggregated val-
uations for combinations of variables. While the approach
we propose provides a more general framework for dealing
with privacy requirements, its overall performance is com-
parable or better than that of existing methods, as shown
by the experiments.

1. INTRODUCTION
A distributed CSP (DCSP) arises when information is dis-
tributed among several agents. In the common definition
of DCSP [3], variables are distributed among agents so that
each variable can only be assigned values by a single agent.
Several Asynchronous Search (AS) algorithms have been de-
veloped that allow solving such problems by exchanging
messages about variable assignments and conflicts with con-
straints (called nogoods) [3].
On the other hand, in the AS formulation, constraints may
need to be revealed to any other agent that controls a vari-
able in the corresponding constraint. This corresponds well
to certain real-world situations, for example distributed con-
trol, but less well to negotiation where variables are public
but constraints are private. In this paper, we consider the
converse case where certain constraints are private, but the
same variable can be set by many agents.

A1 A2 A3 A4

2: x1={0..3}|0:0|✕ x3={0}|0:0|1: x1={0..3}|0:0|

x1={0..3}✕x2={0,1}

x1={0..3}✕x3={0}

0: x3={0,1}|2:0|

T
im

e

x1={0..3}✕x3={0,1} Searching

4: x2={0,1}|1:0|

x1>x2-2 x1>x3-2 x2+x3-x4>4

Solution{x1={1..3}✕ x2={2}✕ x3={2}✕ x4={0}}

3x1+1>x3

x1={0..3}✕x3={0}

3: x3={0}|0:0|

Nogood

5: nogood{x3={0}|0:0|✕ x2={0,1}|1:0|}

x1={1..3}✕x2={2}
8: x2={2}|1:1|

6: add link(x3)

7: x3={0}|0:0|

Nogood
10: nogood{x3={0}|0:0|✕ x2={2}|1:1|}

x1={2,3}✕x2={3}

9: x1={1..3}|0:0|1:0|

12: x1={2..3}|0:0|1:1|
11: x2={3}|1:2|

Nogood
13: nogood{x3={0}|0:0|✕ x2={3}|1:2|}14: nogood{x3={0}|0:0|}

x1={1..3}✕x3={1..3}

15: x1={1..3}|0:1|✕ x3={1..3}|0:1|
16: x3={1..3}|0:1|

15: x1={1..3}|0:1|✕ x3={1..3}|0:1|

x1={1,3}✕x2={0..2}
17: x2={0..2}|1:2|

x4={0}✕x2={2}✕x3={2}

x1={1..3}✕x3={1..2}

18: x3={1,2}|0:1|2:0|

Figure 1: Trace of a search with AAS. The states of the
agents can be represented by the current solution to the local
CSP defined by their constraints. The pairs |a, b| included
in the messages are used for message ordering.

AAS differs from AS by the fact that agents exchange mes-
sages not about assignments to individual variables, but
about tuples of variables corresponding to relations. This
allows eliminating restrictions on the order in which con-
straints are treated. Coupled with the fact that the algo-
rithm allows aggregating ranges of tuples, we even obtain a
slight efficiency gain over asynchronous backtracking.

2. DISTRIBUTED AAS
Figure 1 illustrates AAS on a problem with integers. In
AAS, each agent maintains values for the set of variables in
which it is involved. Thus, A1 maintains value combinations
for x1 and x3, A2 for x1 and x2, A3 for x1 and x3, and A4

for all of x2, x3 and x4. AAS works like AS, but differs
in the fact that message arguments are not just individ-
ual assignments, but Cartesian products of assignments [2]
to different variables. More precisely, in the current im-
plementation of AAS, an assignment is a list of intervals,
one for each involved variable, which compactly represent
all the tuples of their Cartesian product. The assignment
x1 = {0..3}, x2 = {0, 1}, for example, will represent all the

tuples of the Cartesian product {0..3}×{0, 1}. Similarly,
a solution is no more a list of individual assignments but
a Cartesian product of intervals which represents a set of
possible valuations. On random problems, the experiments
show that AAS has an overall performance comparable to
that of AS and that it is even slightly better on average.
In scheduling and resource allocation problems with large
domains, the savings allowed by the Cartesian product rep-
resentation can be particularly interesting.
Figure 1 illustrates the behavior of AAS on our small ex-
ample. Agent A1 first selects the Cartesian product x1 =
{0..3}×x3 = {0}, and sends an ok? message with this infor-
mation to A2, A3 and A4 who manage constraints sharing
variables with A1. The algorithm now works in the same
manner as AS, except that messages refer to Cartesian prod-
ucts and agents select different Cartesian products rather
than value assignments. More specifically, A4 finds that no
combination in the Cartesian product x2 = {0, 1}×x3 = {0}
is compatible with its constraint. It therefore generates a
nogood for this combination which causes A2 to select the
next Cartesian product. Note that since this change selects
a subrange of the values allowed for x1, it is not necessary
to verify this change with A1. If it were not possible to find
such a subrange, a nogood would be generated at A2 and
sent to A1 in order to try another Cartesian-product there.
There are several ways in which the agents can build the
aggregations. In the current implementation, the aggrega-
tion mechanism guarantees a complete and non-redundant
covering of the search space determined by the local con-
straints [1]. Variants such as the ones mentioned in [2] can
also be considered.
In fact, AAS can be understood as a dynamic set of paral-
lel AS, synchronized with each other and operating on the
dual constraint graph, where the variables are relations of
the original problem and the relations ensure that identi-
cal variables take on identical assignments. Variables are
now tuple-valued and their domains are all the tuples al-
lowed by the corresponding constraint, represented more
compactly by a set of Cartesian products. Relations exist
between any pair of agents that represent constraints shar-
ing a variable. Thus, we can see that the execution of AAS
is just a parallel set of ASs, an AS for each tuple of the
current Cartesian products, on this dual problem, where:
constraint redistribution is not required, local solutions are
aggregated, non-redundant projections of aggregated dual
values on the requested original variables are transmitted as
Cartesian products. The guarantees of completeness, sound-
ness and termination are preserved.
Finally, it is worth mentioning that we do not explicitly
transform the original constraint graph into its dual form.
That would lead to formulate huge domains for loosely con-
strained problems. We only consider at each node of the
search, the local dual graph determined by the tuples active
in the current context.

3. IMPLEMENTATION
AAS has been implemented using agents running as sepa-
rate processes on different workstations. Our implementa-
tion uses a system agent to which the agents subscribe for
the search. It decides the order of the agents and announces
the termination and the result.
In AS, the messages must respect a FIFO order of delivery
to be properly treated [3]. Our algorithm requires a stronger

condition to hold since the channel for each variable is no
longer a tree but a graph. This means that several messages
can arrive to the same agent, for changing the value of the
same variable, through different paths of the graph. For ex-
ample, in Figure 1 agent A3 can receive messages concerning
variable x1 from both A1 and A2. An order must therefore
be established between these kind of messages. We associate
a history of changes to any message, that allows the agent
to properly order them. The history of changes is built by
associating a chain of pairs |a : b| to each variable of a mes-
sage (see Figure 1). Such a pair means that a change of the
variable’s domain was performed by the agent with index
a when its counter for the corresponding variable had the
value b. To ensure termination, we use the next conventions:
The history of changes where the agent with the smaller in-
dex or the counter with the larger value occurs first is the
most recent. If a history is the prefix of the other, then the
longer one is the most recent.
AAS has been evaluated on randomly generated problems
with 10, 15 and 20 agents. The constraints have been dis-
tributed to the agents in the same way that they would have
been in AS, so that the two algorithms can be compared.
The size of domains is of 8 values and the problems are gen-
erated near the peak of difficulty with a density of 30% and
a tightness of constraints of 35%. Three heuristics for build-
ing the Cartesian products have been evaluated. The cost of
search is evaluated using the longest sequence of constraint
checks. Each test is averaged over 50 instances. AAS per-
forms slightly better than AS on average for problems with
20 variables. Similar results are obtained for 10 and 15 vari-
ables. Of course, depending on the problem generated and
on the heuristic used for aggregation, there are specific cases
where AS performs better for finding the first solution. How-
ever, for discovering that no solution exists AAS performs
steadily better than AS since the whole search space needs
to be expanded. AAS also reduces the longest sequence of
messages as well as the number of nogoods stored by a factor
of 2 on average.
We have presented AAS, a new asynchronous backtrack
search algorithm. AAS is a generalization of asynchronous
search (AS) [3]. It requires no artificial redistribution of con-
straints and allows for aggregating the information trans-
mitted using the Cartesian product representation. AAS
provides a natural support for enforcing privacy require-
ments on constraints. In the current implementation, the
agents with the lower priority have to reveal more informa-
tion about their constraints. If undesirable, such a behavior
can be avoided using random or cyclic agent reordering.

4. REFERENCES

[1] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Frac-
tionnement intelligent de domaine pour CSPs avec do-
maines ordonnés. In Proc. of RFIA2000, 2000.

[2] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Ways
of maintaining arc consistency in search using Cartesian
representation. In Proc. of ERCIM’99, 99.

[3] M. Yokoo and T. Ishida. Multiagent Systems, A Mod-

ern Approach to Distributed Artificial Intelligence, chap-
ter Search Algorithms for Agents, pages 165–199. MIT
Press, 99.

