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Abstract. The desk-mates matcher application solves the need of placing stu-
dents in pairs of two for working in projects (need that is similar to the well
known problems of stable matchings or stable roommates). Each of the persons
in the previous application has a (hopefully stable) secret preference between ev-
ery two possible partners. The participants want to find an allocation satisfying
their secret preferences and without leaking any of these secret preferences, ex-
cept for what a participant can infer from the identity of the partner that was
recommended to her.
The peculiarities of this problem requires solvers based on old distributed CSP
frameworks to use models whose search spaces are higher than those in central-
ized solvers, with bad effects on efficiency.
We introduce a distributed weighted constraint satisfaction (DisWCSP) frame-
work where the actual constraints are secrets that are not known by any agent.
They are defined by a set of functions on some secret inputs from all agents. The
solution is also kept secret and each agent learns just the result of applying an
agreed function on the solution. The new framework is shown to improve the
efficiency (O(2m

3−log(m)) times) in modeling and solving the aforementioned
problem with m participants. We show how to extend our previous techniques to
solve securely problems modeled with the new formalism, and exemplify with
the problem in the title. An applet-based solver is available [Sil04a].

1 Introduction

The desk-mates matcher application groups a set of students in stable working teams
of two, such that whenever one person wants to change her partner for a third one, the
third one prefers her current partner to the change (similar to stable matchings or stable
roommates [IM02]). The students have a secret preference between any pair of potential
partners, and between working with any given partner or working alone.

Versions of these problems, without privacy requirements, have been long known
and studied. It is an example of constraint satisfaction problem (CSP) [GP02].1 A CSP
is described by a set of variables and a set of constraints on the possible values of those
variables. The CSP problem consists in finding assignments for those variables with
values from their domains such that all constraints are satisfied. The centralized CSP

1 Operations research has provided very efficient solutions to some instances without privacy.



techniques require every eventual participant to reveal its preferences (e.g. to a trusted
server), to compute the solution. Therefore, they apply only when the participants ac-
cept to reveal their preferences to the trusted party.

There exist frameworks and techniques to model and solve distributed CSPs
(DisCSPs) with privacy requirements, namely when the domains of the variables
are private to agents [YDIK98,MJ00], or when the constraints are private to
agents [SSHF00a,Sil03b,SR04].

However, the desk-mates problem seem not to be modeled efficiently (i.e. with a
reduced search space) with any of the two known types of distributed CSP frameworks.
In this article we propose a new framework for the distributed constraint satisfaction
problems. It can model naturally existing distributed constraint satisfaction problems,
and also the desk-mates (stable matchings problems). The new framework assumes
that the constraints are not known to absolutely any agent but they are computable
from secret inputs, by applying public functions on them. These functions use secret
inputs provided securely by the different participants. Similarly, the final assignments
are secret and each agent can retrieve just the result of applying some agreed function
on the secret solution.

We also show how secure multi-party computation techniques that we have recently
developed for solving DisCSPs with private constraints can be extended to solve prob-
lems described in the new framework. We start introducing formally the CSP problem.

CSP. A constraint satisfaction problem (CSP) is defined by three sets: (X , D, C).
X = {x1, ..., xm} is a set of variables and D = {D1, ..., Dm} is a set of finite domains
such that xi can take values only from Di = {vi1, ..., vidi}. C = {φ1, ..., φc} is a set
of constraints. A constraint φi limits the legality of each combination of assignments to
the variables of an ordered subset Xi of the variables in X , Xi ⊆ X . An assignment is
a pair 〈xi, vik〉 meaning that the variable xi is assigned the value vik.

A tuple is an ordered set. The projection of a tuple ε of assignments over a tuple of
variablesXi is denoted ε|Xi . A solution of a CSP (X ,D,C) is a tuple of assignments, ε∗,
with one assignment for each variable in X such that each φi∈C is satisfied by ε∗|Xi .
The search space of a CSP is the Cartesian product of the domains of its variables.

We consider that a set of participants are the source of such CSPs and one has
to find agreements for a solution, from the set of possible alternatives, that satisfies
a set of (secret) requirements of the participants. This view suggests a concept of a
distributed CSP. Several frameworks were proposed so far for Distributed Constraint
Satisfaction [ZM91,CDK91,YSH02a,MJ00]. Some versions consider that each agent
owns a constraint of the CSP [ZM91,SGM96]. This constraint could model the private
information of the agent [SSHF00a]. Other versions consider that each agent owns the
domain of a variable while the constraints are shared [YDIK98]. The secret domains
can also model some private constraints of the agent.

None of the two approaches, namely private variables or private domains, can model
efficiently the stable matching problems. This is because the private data of these prob-
lems does not directly constrain the allocation of the natural shared resources (the
matching). An indirect relation exist with such a constraint. Redundant variables would
need to be introduced in the system, modeling the secret preferences, but reducing ef-
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ficiency. A new framework will be introduced in this article to avoid these redundant
variables.

2 The Desk-mates Matcher Application

In some of our classes students are grouped in teams of two, for solving laboratory
excercises as well as for working on projects. It is desirable for these teams to be stable
for the duration of the project. Otherwise discontinuities and changes may reduce the
efficiency of the learning process. Some students insist to work alone, and it is typically
difficult for students to refuse other’s offers of partnership. In fact students sometimes
prefer to keep private their preferences between colleagues, to avoid hurting others. We
decided that it is needed to provide students with a support in solving this situations. We
therefore built a web-application that insures their privacy using cryptographic solvers
of distributed constraint satisfaction problems, as proposed in this paper.

Our web-application works as follows. An organizer of the computation, e.g. an in-
structor or a student, uses the web form at [Sil04a] to generate (for the included JAVA
applets) parameters that are customized for the computation at hand. This process re-
quires the organizer to input the size of the class, the names of the students, and a
cryptographic public Paillier key provided by each student. Students can generate Pail-
lier key pairs using the corresponding applet linked from the form, and keep the secret
keys while handing the private ones to the organizer.

When the customized problem description is generated, a website is automatically
built and provided for this problem instance. The organizer is offered an opportunity
to email its URL to the students. The organizer can also specify which algorithm to be
used for the computation.

Each student browses the received URL, and downloads the applet with customized
parameters. The browser can verify the integrity of the applet. Each student provides
the applet with his secret key, and inputs his secret preferences. Then he launches his
applet into the computation. The applets retrieve each-other’s network IP number and
port by using a directory server installed on the same host as the web-application. The
applets solve the problem securely, and display for each student only the name of her/his
partner.

The Distributed Configurator Application Our approach can also be applied to the
problem of distributed configuration of products based on components from several
providers, with secret configuration requirements.

3 Background

Our techniques here apply only to problems whose constraints and outputs can be rep-
resented as first order logic expressions, or as arithmetic circuits on inputs. Actually,
we propose a procedure to translate first order logic definitions of constraints/outputs
into arithmetic circuits. In the following we introduce arithmetic circuits and a short
overview of the literature and techniques that made them relevant.
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Fig. 1. An arithmetic circuit, g = yz + (x− z) and f=(xz + yz)g. Each input can be the secret
of some participant. The output may not be revealed to all participants. All intermediary values
remain secret to everybody.

3.1 Secure Arithmetic Circuit Evaluation

Secure multi-party computations can simulate any arithmetic circuit [BOGW88] or
boolean circuit [Kil88,Gol04] evaluation. An arithmetic circuit can be intuitively imag-
ined as a directed graph without cycles where each node is described either by an addi-
tion/subtraction or by a multiplication operator (see Figure 1). Each leaf is a constant.
In a secure arithmetic circuit evaluation, a set of participants perform the operations
of an arithmetic circuit over some inputs, each input being either public or an (en-
crypted/shared) secret of one of them. The result of the arithmetic circuit are the values
of some predefined nodes. The protocol can be designed to reveal the result to only
a subset of the agents, while none of them learns anything about intermediary values.
One says that the multi-party computation simulates the evaluation of the arithmetic
circuit. A boolean circuit is similar, just that the leafs are boolean truth values, false
or true, often represented as 0 and 1. The rest of the nodes are boolean operators like
AND or XOR. A function does not have to be represented in this form to be solvable
using general secure arithmetic circuit evaluation. It only needs to have such an equiv-
alent representation. For example, the operation

∑E
i=B f(i) is an arithmetic circuit if

B and E are public constants and f(i) is an arithmetic circuit. The same is true about∏E
i=B f(i). Such constructs are useful when designing arithmetic circuits.

There must be some machinery to compute the result of the circuit from the inputs.
However, existing techniques allow for the secret inputs not to be revealed to this ma-
chinery. Namely the machinery works only with encrypted secrets that it cannot decrypt
(i.e. using Shamir’s secret sharing [Sha79], detailed later).

4



Aj

xi 1

xjAi

Fig. 2. A constraint between xi and xj for the desk-mates problems. An element is feasible,
value ’1’, if the correponding pairs (Ai,Axi ) and (Aj ,Axj ) are allowed in a solution given the
preferences of Ai, Aj , Axi , Axj .

4 Distributed CSPs with constraints secret to everybody

In this article we redefine the distributed CSP framework, aiming to model efficiently
(i.e. with a reduced search space) the distribution of some famous CSP problems,
namely the stable machings problems (e.g. the desk-mates problem).

Desk-mates The desk-mates problem consists in placing a set of persons A =
{A1, ..., Am} in teams of two (or two-seats desks), such that if any person Ai prefers a
person Aj to the desk-mate selected for her, then Aj prefers her current desk-mate to
Ai.

A way of modeling the desk-mates problem as a CSP is to have one variable xi for
each personAi specifying the index of the desk-mate assigned to her by the solution, or
specifying i, the index ofAi itself, if she remains alone. The constraints are obtained by
preprocessing the input from participants about their preferences. The fact that a person
Ai prefers Au to Av is specified by the first order logic predicate PAi(u, v). There is
a constraint φij between every pair of distinct variables xi and xj . In first order logic
notation, the constraint between each two variables xi and xj is:

∀xi, xj : φij(xi, xj)
def
= (PAi(xj , xi)⇒ PAxj (j, i)) ∧ (PAj (xi, xj)⇒ PAxi (i, j)) ∧

((xi = j)⇔ (xj = i)) (1)

Read: For each pair of participants Ai, Aj , (and corresponding
variables xi and xj) there is a constraint φij that allows a pair
of assignments to these variables only if:

– the fact that Ai prefers the participant assigned to Aj (Axj )
to her own match Axi implies that:

the agent assigned by these assignments to Aj (Axj ),
prefers the agent Aj to the agent Ai.

– the fact that Aj prefers the participant assigned to Ai (Axi )
to her own match Axj implies that

the agent assigned by these assignments to Ai (Axi ),
prefers the agent Ai to the agent Aj .

– Aj is the match of Ai only if Ai is the match of Aj .
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Note that this model subsumes the constraints: ∀i, j : xi 6= xj . The main complica-
tion with this kind of CSPs is that the constraints are functions of secrets that cannot be
easily elicited from the participants. Distributed CSP frameworks are meant to address
such problems.

Modeling the desk-mates problem with DisCSPs with secret constraints that are known
to some agents. One can model the desk-mates problem with secret constraints known
to some agents [ZM91,SSHF00b] by choosing as variables, x1, ..., xm, the index of
the partner associated to each agent (that has to be computed) and using one addi-
tional boolean variable for each secret preference, PAi(u, v). The total number of
boolean variables is m3, m2 of them being actually fixed by public constraints (e.g.
PAi(u, u) = 0). However, also taking into account the variables x1, ..., xm, the total
search space becomes O(mm2m

3

). This is O(2m
3

) times worse than the centralized
CSP formalization whose search space is only O(mm).

We propose now a distributed constraint satisfaction framework that allows to model
these problems with the same search space size as the CSP framework, O(mm).

4.1 Redefining the Distributed Constraint Satisfaction Framework

In the previous part of this section we have exemplified CSP models for the stable
matchings problem. We have seen that it is difficult to model efficiently these problems
using existing private variable-, or private constraint- oriented distributed constraint
satisfaction frameworks.

Let us propose a framework for modeling distributed CSPs, where a constraint is not
(necessarily) a secret known to an agent, or public, but can also be a secret unknown to
all agents.

Any distributed problem is essentially (in our view) described by a set of inputs and
expected outputs from/to each participant. A distributed CSP is a specialization in the
sense that the inputs are used to specify constraints/domains of a CSP, and the outputs
are derived from the solution of that CSP. As shown elsewhere, sometime the inputs are
also needed (in combination with the solution) to provide meaningful outputs [Sil04b].

Definition 1. A Distributed CSP (DisCSP) is defined by six sets (A,X,D,C, I ,O) and
an algebraic structure F .A={A1, ..., An} is a set of agents.X ,D, and the solution are
defined like for CSPs.

I={I1, ..., In} is a set of secret inputs. Ii is a tuple of αi secret inputs (defined on
F ) from the agent Ai. Each input Ii belongs to Fαi .

Like for CSPs,C is a set of constraints. There may exist a public constraint inC, φ0,
defined by a predicate φ0(ε) on tuples of assignments ε, known to everybody. However,
each constraint φi, i>0, in C is defined as a set of known predicates φi(ε, I) over the
secret inputs I , and the tuples ε of assignments to all the variables in a set of variables
Xi, Xi ⊆ X .

O={o1, ..., on} is the set of outputs to the different agents. Let m be the number of
variables. oi : D1 × ... ×Dm → Fωi is a function receiving as parameter a solution
and returning ωi secret outputs (from F ) that will be revealed only to the agent Ai.
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Theorem 1. The framework in the Definition 1 can model any distributed constraint
satisfaction problems with private constraints [SSHF00b].

Proof. The new DisCSP framework can be used to model any of the DisCSP problems
with constraints private to agents, by defining Ii as the extensional representation of the
private constraint of Ai (assuming the simple but sufficient case of one constraint per
agent). φi(ε, I) is then given by the corresponding value for ε in Ii (true/1 or false/0).
The outputs are going to be oi(ε) = ε for all i. q.e.d.

Theorem 2. The framework in the Definition 1 can model distributed constraint satis-
faction problems with private domains [YDIK98].

Proof. A private domain of an agent can also be modeled as a private unary constraint,
in a DisCSP where each domain is the maximum possible domain for the variable.
Then, the Theorem 1 applies. q.e.d.

We do not claim that the new framework is more general than the existing frame-
works. It enables us to model naturally and efficiently the desk-mate (stable matchings)
problems. One can also model these problems with the old frameworks, but they seem
to yield much larger search spaces, and therefore less efficient solutions. Let us now
exemplify how this framework can model the new problems.

Modeling the desk-mates problem as a DisCSP. A way of modeling the desk-mates
problem as a DisCSP is to have one agent, Ai, and one variable, xi, for each participant
in the problem description. xi specifies the index of the desk-mate assigned to Ai by
the solution, or specifies i if she remains alone. The inputs Ii of each agent are given
by the set of preferences PAi(u, v), specifying whether Ai prefers Au to Av, for each
u and v. The set F , to which belong the inputs and the outputs, is {true, false}.

There is a constraint φij between every pair of variables xi and xj , defined as in

Equation 1. The output functions are defined as: oi(ε)
def
= ε|{xi}. Namely, each agent

learns only the name of her desk-mate. There is a public constraint:

φ0
def
= ∀i, j, ((xi = j)⇔ (xj = i)) ∧ (xi 6= xj) (2)

4.2 Distributed Weighted Constraint Satisfaction Problems

Definition 2. A distributed constraint satisfaction problem (DisWCSP) is defined by
six sets (A,X,D,C, I, O), and algebraic structure F , and a set of acceptable solution
qualities B, that can be often represented as an interval [B1, B2].

– A={A1, ..., An} is a set of agents.
– X = {x1, ..., xm} is a set of variables and D = {D1, ..., Dm} is a set of finite

domains such that xi can take values only from Di = {vi1, ..., vidi}. An assignment
is a pair 〈xi, vik〉 meaning that the variable xi is assigned the value vik. A tuple is
an ordered set.

– I={I1, ..., In} is a set of secret inputs. Ii is a tuple of αi secret inputs (defined on
a set F ) from the agent Ai. Each input Ii belongs to Fαi .
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– C = {φ0, ..., φc} is a set of constraints. A constraint φi weights the legality of
each combination of assignments to the variables of an ordered subset Xi of the
variables in X , Xi ⊆ X . φ0 is a public constraint defined by a function φ0(ε)
on tuples of assignments ε, known to everybody. Each constraint φi, i>0, in C is
defined as a known function φi(ε, I) over the secret inputs I , and the tuples ε of
assignments to all the variables in a set of variables Xi, Xi ⊆ X . φi(ε, I) maps
secret inputs and tuples into weights.

– The projection of a tuple ε of assignments over a tuple of variables Xi is de-
noted ε|Xi . A solution is ε∗ = argmin

ε∈D1×...×Dn

∑c
i=0 φi(ε|Xi ), if

∑c
i=0 φi(ε∗|Xi ) ∈

[B1...B2].
– O={o1, ..., on} is the set of outputs to the different agents. oi : I×D1×...×Dm →
Fωi is a function receiving as parameter the inputs and a solution, and returning
ωi secret outputs (from F ) that will be revealed only to the agent Ai.

Solvers developed in our previous work require that the functions in sets O and C
are input either in first order logic form, or in the form of arithmetic circuits.

The inputs are not revealed to the solving machinery, as it manipulates only en-
crypted data (in difference from a classic monolithic system with a trusted server).

The public constraint φ0 can be input into the system using a set of constraints
{φ1

0, φ
2
0, ...}, and the tuples of assignments accepted by φ0 can be obtained separately by

each agent, when needed, using any systematic search technique that finds all solutions
of a CSP, e.g. backtracking or lookahead algorithms (BT, BM, CBJ, FC, MAC, EMAC,
etc.).

5 Adapting existing secure solvers to the new DisCSP framework

There exist a large set of algorithms addressing distributed CSPs with privacy of con-
straints [Sil02,HCN+01,FMW01,WS04,YSH02b,Sil03b]. Note that none of the exist-
ing techniques involves propagation, except for a very old variant in [Sil02]. The ones
that we succeed to extend to the new framework are:

– Finding the set of all solutions of a distributed constraint problem with secret con-
straints [HCN+01].

– Finding the first solution in a lexicographic order for a distributed constraint satis-
faction problem with secret constraints that are known to some agents [Sil03a].

– Finding a random solution for a DisCSP with secret constraints that are known to
some agents [Sil03b].

When a solution is returned to the desk-mates problem, each agentAi can infer that:
any agent Ak preferred by Ai to her current desk-mate Aj , prefers her current partner
to Ai. If only one solution is returned (picked randomly among the existing solutions),
then no other secret preference can be inferred with certainty.

Theorem 3. The desk-mates problem can have several solutions.
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Proof. Consider a case with three agents, A1, A2, A3 where PA1
(2, 3), PA2

(3, 1),
PA3

(1, 2). This is a loop of preferences, and has three stable solutions, the sets of teams
{(A1, A2), (A3)}, {(A2, A3), (A1)}, {(A3, A1), (A2)}. Such an example can be con-
structed out of any similar loop of preferences, of any size.

If there exist several solutions, the agents will prefer not to reveal more then one of
them. The remaining solutions would only reveal more secret preferences:

– Typically there is no other fair way, except randomness, to break the tie between
several solutions.

– If the single solution that is returned is selected as the first one in some given lex-
icographic order on the variables and domains of the problem, then additional in-
formation is leaked concerning the fact that tuples placed lexicographically before
the suggested solution do not satisfy the constraints [Sil03b].

As it follows, if it is known that a certain problem has only one solution, then any
technique is acceptable among either:

– Finding and returning all solutions using the technique in [HCN+01], or
– Returning only the first solution (e.g. by sequentially checking each tuple in lexi-

cographical order until a solution is found).

Otherwise, strong privacy requirements make techniques returning a random solu-
tion [Sil03b] desirable, despite their potential of having a lower efficiency.

5.1 General Scheme

We will note that the main difference between the new DisCSP framework, and the one
with secret constraints that are known to some agents, is that now the constraints need
to be computed dynamically from secrets inputs. All the techniques we extend to the
new framework contain a component based on Shamir’s secret sharing [Sha79]. It is
the achievement of this sharing which is most affected by the change in framework. We
will start by describing Shamir’s secret sharing, its importance in distributed multi-party
computations, and them we will introduce our changes.

The secure multi-party simulation of arithmetic circuit evaluation proposed
in [BOGW88] exploits Shamir’s secret sharing [Sha79]. This sharing is based on the
fact that a polynomial f(x) of degree t−1 with unknown parameters can be recon-
structed given the evaluation of f in at least t distinct values of x, using Lagrange
interpolation. Absolutely no information is given about the value of f(0) by revealing
the valuation of f in any at most t−1 non-zero values of x. Therefore, in order to share
a secret number s to n participants A1, ..., An, one first selects t−1 random numbers
a1, ..., at−1 that will define the polynomial f(x) = s+

∑t−1
i=1(aix

i). A distinct non-
zero number τi is assigned to each participant Ai. The value of the pair (τi, f(τi)) is
sent over a secure channel (e.g. encrypted) to each participantAi. This is called a (t, n)-
threshold scheme. Once secret numbers are shared with a (t, n)-threshold scheme, eval-
uation of an arbitrary arithmetic circuit can be performed over the shared secrets, in
such a way that all results remain shared secrets with the same security properties (the
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number of supported colluders, t−1) [BOGW88,Yao82]. For [Sha79]’s technique, one
knows to perform additions and multiplications when t ≤ (n− 1)/2. Since any bn/2c
participants cannot find anything secret by colluding, such a technique is called bn/2c-
private [BOGW88].

We do not try to encode functions, but only their inputs. All functions (more exactly,
arithmetic circuits) that will be computed are public and known by all participants. Their
inputs, intermediary values, and outputs are shared secrets. The functions that we are
able to compute belong to the class of arithmetic circuits. The techniques computing
these function do not reveal any information to anybody, and work by letting agents
processing the Shamir shares that they know, and by sharing additional secret values.

The techniques solving DisCSPs with private constraints can be used as a black box,
except for the secret constraint sharing. Namely, instead of simply sending encrypted
Shamir shares [Sha79] of one’s constraint, those shares of the constraints have to be
computed from the secret inputs of the agents. We therefore propose to replace the secret
sharing/reconstruction steps with simulations of arithmetic circuit evaluation which will
compute each φk(ε, I) for each tuple ε and for the actual inputs I . This step is called
preprocessing. Intuitively, preprocessing is the step of computing the encrypted initial
parameters of the CSP (i.e. acceptance/feasibility value of a tuple from the point of view
of each constraint), out of the provided secret inputs. Preprocessing prepares “the pairs”
(y,f(y)) that encode the 0/1 values of the constraints. It is done by evaluating arithmetic
circuits.

Similarly, instead of just reconstructing the assignments to variables in a solution ε,
one will have to design and execute secure computations of the functions ok(ε). This
step is called post-processing. Intuitively, post-processing is the step of computing the
outputs to be revealed to agents, from the obtained encrypted solution of the DisCSP
and secret inputs. We show that in our cases this can also be done using simulations of
arithmetic circuit evaluations.

Assume A is some algorithm using Shamir’s secret sharing for securely finding
a solution of a distributed CSP (with secret constraints known to some agents). The
generic extension of the algorithm A to solve the DisCSP in the new framework is:

– Preprocessing: Share the secrets in I with Shamir’s secret sharing scheme. Com-
pute each φk(ε|Xk , I) for each tuple ε|Xk and for the actual inputs I by designing it
as an arithmetic circuit and simulating securely its evaluation. The public constraint
φ0 can be shared by any agent.

– Run the algorithmA as a black-box, for finding a solution ε∗ shared with Shamir’s
secret sharing scheme, for a DisCSP with parameters (i.e. constraints) shared with
Shamir’s secret sharing scheme.

– Post-processing: Compute each oi(ε∗) by designing it as an arithmetic circuit and
simulating securely its evaluation. Reveal the result of oi(ε∗) only to Ai.

5.2 Pre- and post- processing for desk-mate problems

In the remaining part of the article we will prove that it is possible to design the needed
preprocessing and post-processing to solve our example of DisCSPs, the desk-mates
problem, using the general scheme defined above.

10



Preprocessing for the desk-mates problem. We assume the same choice of variables, as
for the CSP formalization of this problem in Section 4. Let us now show how simple
arithmetic circuits can implement the required preprocessing.

Each variable xi specifies the index of the desk-mate associated to Ai. The input of
each agent Ai is a preference value PAi(j, k) for each ordered pair of agents (Aj , Ak),
and specifying whetherAi prefersAj toAk. PAi(j, k)=1 if and only ifAi prefersAj to
Ak. Otherwise PAi(j, k)=0. A constraint φij is defined between each two variables, xi
and xj . I.e. φij [u, v] is the acceptance value of the pair of matches: (Ai, Au), (Aj , Av).
One synthesizes m(m− 1)/2 such constraints:

φi,j [u, v] =





0 when u = v

(1− PAi(v, u) ∗ (1− PAv (j, i)))∗
(1− PAj (u, v) ∗ (1− PAu(i, j))) when u 6= v

The public constraint φ0 (same as in Equation 2) restricts each pair of assignments:

∀ε, ε=(〈xi, u〉, 〈xj , v)〉 : φ0(ε)
def
= ((u=j)⇔ (v=i)) ∧ (u 6= v)

φ0 is known by everybody, and therefore there is no need to compute it with arithmetic
circuits. The complexity of this preprocessing is O(m4) multiplications of secrets (for
m2 binary constraints with m2 tuples each).

The desk-mates problem does not require any arithmetic circuit evaluation for the
post-processing, as each agent Ai learns a value existing in the solution, oi(ε) = ε|{xi}.
The participants just reveal to Ai their shares of xi in the solution.

6 Transforming first order logic in arithmetic circuits

Based on the experience with the examples analyzed so far, we conclude that with the
new DisCSP framework it is useful to have a mechanism for automatic translation of
first order logic sentences about secrets, into arithmetic circuits.

The main constructs in first order logic whose translation to arithmetic circuits will
be given here are: ∀i ∈ [1..n]P (i), ∃i ∈ [1..n]P (i), P ∧ Q, P ∨ Q, ¬P , minP (i)(i),
and f = k, where P and Q are predicates with a true (1) or false (0) value, f is a secret
integer in a given interval, [1..n], i is a quantified variable that can take integer values in
a given interval, [1..n], and k is a constant. They can also apply to variables and secrets
from any finite set of numbers, S = {a1, ..., an}. minP (i) i is the function returning
the minimum i such that P (i) holds. The equivalent arithmetic circuits are shown in
Table 1.

6.1 Complexity

For a problem with size of the search spaceΘ and c constraints, the number of messages
for finding all solutions with secure techniques similar to the one in [HCN+01] is given
by (c − 1)Θ multiplications of shared secrets (n(n−1) messages for each such mul-
tiplication). For the desk-mates problem modeled with the new framework, Θ=mm
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First Order Logic Sentence Equivalent Arithmetic Circuit

P P

∀i ∈ [1..n], P (i)
Qn
i=1 P (i)

∀a ∈ S, P (a)
Qn
i=1 P (ai)

∃i ∈ [1..n], P (i)
Pn
i=1[P (i)

Qi−1
j=1(1− P (j))]

∃a ∈ S, P (a)
Pn
i=1[P (ai)

Qi−1
j=1(1− P (aj))]

P ∧Q P ∗Q
P ∨Q P + (1− P )Q

P ⇒ Q 1− P (1−Q)

¬P 1− P
f = k, (f, k ∈ [1..n])

(i.e. test if f equals k, where they are in [1..n])
1

(k−1)!(n−k)!

Qk−1
i=1 (f − i)Qn

i=k+1(i− f)

f = ak, (f ∈ S, k ∈ [1..n])

(i.e. test if f equals the kth element of S)

Q
ai∈S,i6=k(f−ai)Q
ai∈S,i6=k(ak−ai)

min
P (i),i∈[1..n]

i

(i.e., smallest i s.t. P (i) holds)

Pn
i=1[iP (i)

Qi−1
j=1(1− P (j))]

Table 1. Equivalences between first order logic constructs and arithmetic circuits. P and Q are
predicates and P and Q are their equivalent arithmetic circuits. S = {a1, ..., an}.

and c=1 for the version with a single global constraint, or c=m2/2 for the version
with binary constraints. For the case with binary constraints, it yields a complexity of
O(mm+2). As mentioned before, the preprocessing has complexity O(m4) multiplica-
tions between shared secrets, resulting in a total complexity O(m2(mm +m2)).

Solving the same problem with the same algorithm but modeled with the old
DisCSP framework with private constraints, Θ = mm2m

3

and c = m, for one global
constraint from each agent. There is no preprocessing, but the total complexity is
O(mm+12m

3

). The new framework behaves better since m << 2m
3

. The compar-
ison is similar for other secure algorithms, like MPC-DisCSP1 (see [Sil03b]) whose
complexity is given by O(dm(c+m)Θ) multiplications between shared secrets.

Similar improvements can be achieved by applying this new framework to other
known problems like incentive auctions and stable marriages problems [Sil04b].

7 Conclusions

DisCSPs [BMM01,SGM96,LV97,Ham99,MR99,ZWW02,BD97,FBKG02,MTSY04]
are a very active research area. Privacy has been recently stressed
in [MJ00,FMW01,WF02,FMG02,YSH02b] as an important goal in designing
algorithms for solving DisCSPs.

In this article we have investigated how versions of old and famous problems, stable
matchings problems, can be solved such that the privacy of the participants is guaran-
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teed except for what is leaked by the selected solution. Our approach uses secure simu-
lations of arithmetic circuit evaluations and is therefore robust whenever no majority of
the participants colludes to find the secret of the others, and when all agents follow the
protocol.

We note that the desk-mates problems cannot be efficiently modeled (at least not in
an obvious way) with existing distributed constraint satisfaction frameworks. We have
therefore introduced a new distributed constraint satisfaction framework that can model
such problems with the same search space size as the classic centralized CSP models.
We have shown how some techniques for the existing frameworks can be adapted to
problems modeled with the new DisCSPs, and we exemplify the model with the desk-
mates problems. For m participants in the desk-mates problem, the size of the search
space in the DisCSP model achieved with the new framework is O(mm) while the
previous framework with private constraints yields DisCSP instances with a size of the
search space of O(mm2m

3

). In existing secure algorithms for solving DisCSPs, the
number of exchanged messages is fix and directly proportional to the search space size,
making this property of a problem instance particularly relevant.
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