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Abstract

Dynamic reordering of variables is known to be impor-
tant for solving constraint satisfaction problems (CSPs).
Efforts to apply this principle for improving polynomial
space asynchronous backtracking (ABT) started with [1],
using a solution based on synchronization points. [17]
shows how to asynchronously enable reordering heuristics
in ABT and proposes a general protocol called Asyn-
chronous Backtracking with Reordering (ABTR).

In this work we introduce a first framework for model-
ing heuristics possible with asynchronous backtracking. We
also show that ABTR enables heuristics that displace even
the agent requesting the reordering, as in the reordering
of Dynamic Backtracking. They have not been illustrated
in [17]. The most efficient self-reordering heuristic that we
introduce and experiment, approx-AWC1, is inspired from
Asynchronous Weak-Commitment [21] and brings small but
significant improvements, comparable to the results in [1].
We also report that min-domain dynamic ordering heuris-
tics for ABTR are worse than no reordering and better than
max-domain (in experiments that also use maintenance of
arc consistency).

1 Introduction

Distributed Constraint Satisfaction (DisCSP) is a power-
ful framework for modeling distributed combinatorial prob-
lems. A DisCSP is defined in [21, 4] as: a set of agents
A = {A1, ..., An} where each agent Ai controls exactly
one distinct variable xi, and each agent knows all constraint
predicates relevant to its variable. This is an acceptable sim-
plification since the case with more variables in an agent can
be easily obtained from it. The case when an agent does not
know all constraints relevant to its variables has impact on
some details, as mentioned in the following on a case by
case basis. Asynchronous Backtracking (ABT) [21, 11] is
the first complete and asynchronous search algorithm for
DisCSPs. ABT can be run with polynomial space com-

plexity. It uses a total priority order on variables. In ABT,
agents propose assignments for their variables using ok?
messages. No reply is provided for an accepted assignment.
When rejecting an assignment, an explanation is provided
using a nogood message that lists conflicting assignments
having higher priority.

1.1 ABT and the Reordering Problem

The completeness of ABT is ensured with help of a static
order imposed on agents. ABT is a slow algorithm and [21]
introduces a faster algorithm called Asynchronous Weak
Commitment (AWC). AWC allows for reordering agents
asynchronously by decreasing their position when they are
over-constrained. AWC has proved to be more efficient than
ABT but its requirement for an exponential space could not
be eliminated without losing completeness.

ABT with dynamic re-ordering (ABTR) [17] is an ex-
tension of ABT that allows the agents to asynchronously
and concurrently propose changes to their order. ABTR
was defined as a simple family of algorithms that can be
parametrized with any complex dynamic ordering heuris-
tic that respects certain simple guidelines. At its introduc-
tion [17], ABTR was exemplified with toy heuristics simi-
lar to min-domain, but a heuristic in ABTR is actually de-
fined by a very general framework, that here we reformulate
in a more compact and easier to manage formal structure,
namely as a tuple (K,S,M,P,H):

K: a knowledge domain of interest for the heuristic (e.g.,
current domain sizes, existence of a current domain
wipe-out, positions of agents).

S: a set of integers. Only its intersection with [0..(n−2)]
is typically relevant.

M: a policy dynamically mapping a set of counters,
{Cr

k|k ∈ S}, to the n agents as function of K (e.g.,
the counter Cr

k goes to the agent on position k).

P: an ordering policy for each agent that holds a counter
Cr

k . It proposes a given ordering of the last n−k agents
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as function of K. This reordering (new K), when pro-
jected through M, should impact only the mapping of
counters {Cr

i |i ≥ k}.
H: a set of rules specifying when an agent that holds a

counter Cr
k may use (or be told) new data from K for

proposing a new order.

ABTR’s proof guarantees that any heuristic that can be
described with this general framework and that respects a
small set of additional constraints on its H leads to a sound,
complete and terminating asynchronous distributed algo-
rithm for solving DisCSPs. We say about a heuristic re-
specting ABTR’s guidelines that it is ABTR compliant.

1.2 Intuition of our new self-reordering
heuristics (aka retroactive heuristics)

A typical use of reordering is for efficiency, but it is not
obvious to find time-efficient reordering heuristics for DisC-
SPs, specially since min-domain heuristics alone seem not
to work very well. The reordering heuristic of AWC has
proved to be cheap and efficient for distributed algorithms
but it cannot be directly used in ABTR. Here we introduce
a reordering heuristic approximating AWC, called approx-
AWC1, which moves the agent discovering a nogood in
front of the agent that receives the nogood (but not as much
in front as in AWC). Understanding these kind of heuristics
requires more discussions and in [17] we skipped illustrat-
ing how to model such heuristics with ABTR’s framework
(so far they appeared in the technical report [19]). Here we
show how to model such heuristics with the framework of
ABTR and how to prove that they comply with the guide-
lines of ABTR for correct heuristics. We also show how one
can obtain a reordering heuristic with identical behavior as
the one in Dynamic Backtracking (DB).

Heuristics introduced here, such as the exact reordering
heuristic of DB and the approximation of AWC that we de-
note approx-AWC1 (aka retroactive), are depicted in Fig-
ure 1. The scenario in Figure 1 illustrates the reorderings
requested by an agent Bob upon receiving a nogood mes-
sage from agent Eve when the previous ordering was: Al-
ice, Bob, Carol, Dave, Eve, Fred. With the exact reordering
heuristic of Dynamic Backtracking (b) it is Bob, the owner
of the culprit variable, that is moved on the position after
the owner of the variable discovering the nogood, here Eve.
Like in AWC, in approx-AWC1, Eve is moved in front of
Bob. We show that these two heuristics have very similar
models in the framework of heuristics for ABTR, and do
not differ in features that are subject to ABTR’s constraints
for correct complete and terminating heuristics. Therefore
the proof that any one of them conforms to the guidelines
of ABTR also proves that the other heuristic is ABTR com-
pliant, illustrating the power of the framework of ABTR.

Alic Bob Carol Dave Eve Fred

Alic BobDave Eve FredCarol

1 (7 2 (4 3 (1 4 (2 5 (0 6 (0

1 (7 2 (5 3 (0 4 (0 5 (0 6 (0

nogood
reorder

Bob reorders himself after Eve, request signed wit

b)Exact Dynamic Backtracking’s reordering, introduce

Alic Bob Carol Dave Eve Fred

Alic Bob DaveEve FredCarol

1 (7 2 (4 3 (1 4 (2 5 (0 6 (0

1 (7 3 (0 5 (02 (5 4 (0 6 (0

nogood
reorder

Bob reorders himself, Carol and Dave after Eve, sign

a)Steps of approx-AWC1 introduced here 
- Bob increments his counter before using it to sign
- Counters of subsequent agents are set to 0 in Bob’
- Each receipient of the reordering request sets its
  reads in Bob’s signature as being associated to it

Figure 1. Receiving a nogood: a) approx-
AWC1 and b) the exact heuristic of Dynamic
Backtracking. Below each agent is written
its current position and, in parentheses, the
value of its current reordering counter.

ABTR’s ordering coherence is enabled by having re-
ordering counters distributed among the agents and tagging
messages with the vector-clock [13] induced by these coun-
ters. We show that counters function smoothly with the new
reordering heuristics since, at reordering, the reordering
counter of Carol (that will replace Bob) is set to the value
of the counter of Bob in Bob’s signature of the request for
reordering (Figure 1.b). This feature provided by ABTR,
besides being compatible with min-domain-like heuristics,
is shown to enable additional heuristics not yet explored.
Namely, one can associate any dynamic variable reorder-
ing heuristic with a complex policy M of dynamic changes
to the mapping of reordering counters to agents (enabling
complex heuristics).

1.3 Basic description of ABTR with mo-
tivations

Now we intuitively introduce ABTR by example (details
and proof are presented later). For the simple case of min-
domain dynamic ordering we take (K0, S0, M0, P0, H0).
K0 contains domain sizes and current orderings. S0 =
[0..n] [20]. M0 states that each agent on position k, holds
reordering counter Cr

k . The first agent also holds Cr
0 .

Each reordering request is tagged with a signatures vector-
clock [13, 17, 23] listing all values of these counters known
to the sender, here |c0, ..., cn|. ck is the value of Cr

k known
to the sender. Note that the original ABTR would represent
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signature |5, 2, 0, 0, 0| in Figure 2 as |0:5|1:2|, namely a se-
quence of pairs position-k:value-Cr

k [17, 15, 23]. An agent
holding counter Cr

k can request a reordering of the agents on
positions k + 1 through n, and increments Cr

k whenever he
proposes such a reordering. An example of a reordering for
this case is shown in Figure 2. P0 specifies that (e.g.), A1,
predicting that his proposal x1=2 will reduce the domain
of x3 (described in K0), reorders A3 before A2. Counter
values for Cr

j , j>k, are set to 0 in A1’s signature, since A1

does not know their newer values. We describe H0 after
introducing some notations.

A1 A2 A3 A4

ok? (x1=2), order A1,A3,A2,A4|5,2,0,0,0|

Cr
1=(1)

Cr
1=(2)

Cr
2=(4) Cr

3=(0) Cr
4=(0)

Cr
4=(0)

x2=x4
x1>x3 

x3>x4

x2=x4 

x3>x4
x1>x3

A1 A3 A2 A4

Cr
1=(2) Cr

2=(0) Cr
3=(0)

Cr
0=(5)

Cr
0=(5)

Figure 2. Each new assignment proposal by
the agent Ai holding a counter Cr

k can be
associated with proposing a new order on
agents with position higher than k. Here
S = {0, 1, 2, 3, 4}.

1.3.1 Some notations

An ordering on agents is defined by a permutation of the
set of agents. The agent on position k in an ordering o is
denoted Ak(o). A synonym of Ak(o) is Ak

i (o) which also
tells that the agent on position k in ordering o is Ai. A sim-
ilar notation is introduced for variables. xk

i (o) tells that the
variable of the agent on position k in ordering o is xi. xk(o)
denotes the variable of the agent on position k. The agent
maintaining Cr

k in order o is denoted Rk(o). Sometimes
the ordering o is missing from the previous notations in the
context of a procedure of some agent Aj , and then the use
of the current ordering known by Aj is implied.

1.3.2 Private constraints or arc consistency

For the case where an agent does not know all constraints
on his variable (e.g., assume that in Figure 2, A1 does not
know the constraint between x1 and x3), that agent may
not be able to predict how his assignments modify the do-
mains of future variables, and min-domain heuristics cannot
be implemented with the above protocol. Even when agents
know all constraints on their variable, if arc consistency is

A1 A2 A3 A4

x2=x4
x1>x3 

x3>x4

x2=x4 

x3>x4
x1>x3

Cr
1=(1) Cr

2=(4) Cr
3=(0) Cr

4=(0)

Cr
4=(0)Cr

3=(0)

heuristic: domain_size(x4)=2 when (x1=2)

reorder: order A1,A4,A3,A2|3,0,0,0|Cr
1=(3)

Cr
1=(2)

A1 A3 A2

A1 A4 A3 A2

Cr
1=(3) Cr

2=(0) Cr
3=(0) Cr

4=(0)

tr

reasoning, arc-consistency, etc...

A4

delay to reorder

Cr
2=(0)

Cr
2=(2)

ok? (x1=2), order A1,A3,A2,A4|2,0,0,0|

th

t

Cr
1=(2)

Figure 3. The agent proposing reordering
does not have the whole knowledge for ef-
ficient decisions. He can be informed with
heuristic messages, if it can be proven that the
delay th needed to generate such messages
is finite (shown th is since A1 sends the ok?
message to when A4 replies to the owner of
Cr

1 , which here is A1). Message travel time τ
and time to compute P, tr, are assumed finite.

maintained then agents cannot foresee the effect of their as-
signments on domains of lower priority agents.

To enable min-domain heuristics in such cases ABTR al-
lows lower priority agents to inform others about features in
K, of interest to the reordering (such as new domain sizes),
using heuristic messages specified by the H part of the
heuristic. Based on this information, agents can renew the
reordering proposed with a previous assignment (see Fig-
ure 3). This is shown later to lead to correct and termi-
nating protocols for the heuristics where it can be proven
separately that H complies with the following requirement:

Rule 1 (delay to reorder) The delay between the moment
the last ok? message was sent by agents Ak, k≤i, (or from
start) and any subsequent reordering request sent by the
owner of Cr

i , (delay to reorder in Figure 3) must be finite.

One can use th instead of the delay to reorder (see Fig-
ure 3). An equivalent formulation is: For a given ok? mes-
sage sent by Ai or predecessors, the owner of Cr

i may pro-
pose any finite number of ordering requests. Additionally,
any finite number of reorderings may be requested after
start. H0 for min-domain literally repeats this rule.
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ok? (x2=3), order A1,A2,A3,A4|3,4,0,0|

Cr
3=(0)

A1 A2 A3 A4

ok? (x2=2), order A1,A3,A2,A4|3,5,0,0|

Cr
0=(3)

Cr
1=(5)

Cr
1=(4) Cr

2=(7) Cr
3=(0)

x2=x4
x1>x3 

x3>x4

x2=x4 

x3>x4
x1>x3

A1 A3 A2 A4

Cr
0=(3) Cr

1=(5) Cr
2=(0)

nogood: x2=3,x1=1 order A1,A2|3,4|

th

tr

delay to
reorder

Figure 4. To obtain DB’s heuristic, the re-
ordering counter of an agent on a position k
will count the reordering events of the sets
of agents monitored in previous versions of
ABTR by Cr

k−1, and initializes it from signa-
tures of received messages. S = {0, 1, 2, 3}.
The counter Cr

0 tags the reorderings of the
first agent. On receiving the nogood, A2 im-
plicitly and instantaneously delivers to itself
a heuristic message. Similar to DB’s termina-
tion proof we show that the time th is finite,
implying as for previous ABTR heuristics that
this algorithm is correct and terminates.

1.3.3 Modeling DB’s and approx-AWC1 heuristics

The first instance of ABTR, implemented for obtaining min-
domain heuristics in our system [18, 20, 16], is as follows:
Upon receiving a reordering request ’o’ with signatures
vector-clock (e.g., |c0, ..., cn|) stronger than any other re-
quest received before, an agent Aj , j>1, requested by ’o’
to move to another position k will reset its new reordering
counter Cr

k to zero.
Note that a vector-clock h1 is stronger than h2 of h1 fol-

lows h2 in lexicographic order. However, the correspond-
ing counters rule of the ABTR description [17], provided
to also support the heuristics described here is:
Upon receiving a reordering request ’o’ with signatures
vector-clock (e.g., |c0, ..., cn|) stronger than any other re-
quest received before, an agent Aj requested by ’o’ to move
to another position, k, will initialize its new reordering
counter Cr

k with ck.
Note that this changes nothing for heuristics like min-

domain, since in them the corresponding values of ck are
zero (because the sender does not have any opportunity to
learn about changes to counters in lower priority agents).

The counters rule, if coupled with a policy M to have
each agent Ak hold the counter Cr

k−1 is shown here to be

sufficient for modeling approx-AWC1 and Dynamic Back-
tracking’s reordering heuristic. Namely, holding the counter
Cr

k−1 gives Ak the right to reorder itself (according to the
above definition of P), while the counters rule ensure con-
tinuity in the value of Cr

k−1 when the agent on position k
and holding Cr

k−1 is moved because of its own decision (see
Figure 4).

1.3.4 Further generalization:

ABTR provides for a scenario not used in min-domain or in
mentioned self-reordering heuristics, namely where the re-
ordering counters Cr

k have a dynamic mapping M to agents,
including the possibility that a reordering request can ex-
plicitly specify how to move lower priority counters to other
agents. The corresponding general counters rule of ABTR
supporting this case is: Upon receiving a reordering request
’o’ with signatures vector-clock (e.g., |c0, ..., cn|) stronger
than any other request received before, an agent Aj re-
quested by ’o’ to start maintaining a reordering counter
Cr

k will initialize his new reordering counter Cr
k with ck.

This generalization is proved directly in [17] since its
proof applies to all aforementioned specializations. This
scenario allows all previous heuristics and new ones. No
overhead in message sizes occurs if the new mapping of
reordering counters to agents associated with a new order-
ing ’o’ does not need to be explicitly transmitted but can
be inferred from ’o’ using some predefined convention (as
happens in the min-domain ABTR scenario where we know
that Cr

k is mapped to the agent on position k).

2 Related Work

General frameworks for comprehensive description of
possible dynamic ordering heuristics for centralized CSP
solvers were provided mainly in connection with Dynamic
Backtracking [9]. They describe supported heuristics in
terms of the set of reorderings allowed at each step. The first
complete asynchronous search algorithm for DisCSPs is
the Asynchronous Backtracking (ABT) [21]. The approach
in [21, 4, 14] considers that each agent maintains only one
distinct variable. Other definitions of DisCSPs have con-
sidered the case where constraints are distributed among
agents [22, 8, 6]. The order on variables in distributed
search was so far addressed in [5, 21, 10, 1, 17, 7, 23], show-
ing the interest and strong impact it has on the solving algo-
rithms. [1] is the first to evaluate the impact of reordering
in asynchronous backtracking, by introducing synchroniza-
tion points that separate short asynchronous epochs, and re-
port up to 30% improvement for different ordering heuris-
tics over random ordering.

The first description of ABTR is provided in [20] and fo-
cuses on introducing min-domain dynamic ordering in gen-
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eralizations of ABT that include consistency maintenance
and generalized nogoods [2]. A short but complete descrip-
tion of ABTR, with examples based on min-domain-like toy
heuristics in ABT, is introduced in [17]. The framework for
describing heuristics for ABTR is presented there in a less
systematic formalism than here. The description in [17]
mentions no motivation or example for several important
features, such as the ones supporting the self-reordering
heuristics introduced here. Finally, these examples, moti-
vations and experimentation appeared in the technical re-
port [19] which served as the basis of the current article.

A number of ulterior publications [7, 23, 24] describe in-
dependently developed reordering techniques. These tech-
niques were proposed with their own proof, but are shown
in Section 4 to be instances of ABTR for certain ABTR-
compliant heuristics.

3 Protocol Details

Let us consider two different orderings, o1 and o2, with
their signatures h1 and h2: O1 = 〈o1, h1〉, O2 = 〈o2, h2〉.

Definition 1 (Reorder position) The reorder position of
h1 and h2, R(h1,h2), is the position of the highest prior-
ity agent reordered between the generation of the signatures
h1 and h2. If u is the lowest element in S where signatures
vector-clocks h1 and h2 differ then R(h1, h2)=u+1.

New (optional) messages for ABTR with a heuristic
(K, S, M, P, H) are:

• heuristic messages for heuristic dependent data K,
specified by H (e.g. announcing changes of a vari-
able’s domain size to higher priority agents), and

• reorder messages requesting a new ordering o (de-
fined by P and M) and tagged with signatures vector-
clock h, 〈o, h〉.

An agent Ri announces its requested order, o, by sending
reorder messages to successor agents Si = {Ak(o) | k >
i}, and to all agents Rk(o), k>i, not in Si. Each agent
Ai stores its known order denoted Ocrt(Ai). For allowing
asynchronous reordering, each ok? and nogood message
receives as additional parameter an order and its signature
(see Algorithm 1). The ok? messages hold the strongest
known order of the sender. Each nogood message sent from
Aj to Ai is tagged with an order consisting of the prefix of
i agents in the Ocrt(Aj) and the prefix of i counters in the
signatures vector-clock of Ocrt(Aj).

When Ai receives a message which contains an order
with a signature h that is newer than the signature h∗ of
Ocrt(Ai), the assignments known by Ai for the variables
xk, k ≥ R(h, h∗), are invalidated.

Due to the delay-to-reorder rule, heuristic messages
may be sent to Rk only in response to a new assignment
for xj , j≤k, or at start (the maximum possible delay be-
tween the generation of such an assignment and sending the
heuristic message is denoted th, see Figure 3). An agent
Rk generating or receiving an assignment for some vari-
able xj , j≤k, or a nogood, may implicitly deliver to itself
a heuristic message with knowledge from K. This conven-
tion unifies the framework with the cases where no explicit
heuristic messages are needed. We can say that the recep-
tion of an assignment (and the start), are “enabling events”
for sending a corresponding heuristic message.

when received (ok?,〈xj, dj〉,〈o, h〉) do
getOrder(〈o, h〉); if(old) return;
add(xj ,dj) to agent view; clean nogoods;
check agent view; send optional heuristic messages;

end do.
when received (nogood,Aj,¬N ,〈o, h〉) do

getOrder(〈o, h〉); if I am not enforcing ¬N return;
if ((〈xi, d〉c∈N and I have better nogood for xi=d or
(if ¬N contains invalid assignments)) then

discard ¬N ;
else

when unconnected 〈xk, dk〉 is contained in ¬N
send add-link to Ak;
add 〈xk, dk〉 to agent view; clean nogoods;

put ¬N in nogood-list for xi=d;
add other new assignments to agent view;
clean nogoods;

old value← current value; check agent view;
when old value = current value and

if Aj has lower priority than Ai

1.1 send (ok?,〈xi, current value〉,Ocrt) to Aj ;
send heuristic messages according to used heuristic;

end do.
when received heuristic(level, data) do

if not holding Cr
level then return;

Cr
level++; use data to generate new order O′;

send (reorder,O′) to Rj , j > level; getOrder(O′);
end do.
function getOrder(〈o, h〉)→ bool

when not newer h than Ocrt then return true;
I ← reorder position for h and the signature of Ocrt;
invalidate assignments for xj , j ≥ I; 〈o, h〉 → Ocrt;

1.2 send (ok?,〈xi, some value〉 ,Ocrt) to all lower prior-
ity agents in outgoing links;
return true;

end.

Algorithm 1: Procedures of Ai for receiving messages in
ABTR. check agent view and backtrack are the corre-
sponding procedures of ABT [21] where sent messages are
tagged with the current order.
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Theorem 1 (ABTR [17]) ABTR is correct, complete and
terminates for any heuristics where the local computation
times th of Ai reacting with heuristic messages to an
ok? message can separately be proven finite after Aj , j<i,
reach quiescence. (Messages travel times τ is assumed fi-
nite, i.e. no message loss, and the time tr of answering with
reorder messages to a heuristic message is also assumed
finite.)

For proof see [17].

Remark 1 Note that the Theorem 1 does not prove that
approx-AWC1, Dynamic Backtracking’s heuristic (or some
other named heuristic) would lead to a correct and termi-
nating ABTR. It only proves that any heuristic and dynamic
mapping policy respecting the rules mentioned so far leads
to a correct and terminating protocol with ABTR. As we do
next, one has to prove separately for each proposed heuris-
tic the fact that it respects the conditions set so far (in par-
ticular the finiteness of local computation time th from re-
ceiving an assignment or from start, to the moment of send-
ing corresponding heuristic messages).

Let us not formally define approx-AWC1 as
(K1, S1, M1, P1, H1), and the heuristic of Dynamic
Backtracking as (K1, S1, M1, Pdb, H1):

S1 [0..(n−1)].

M1 maps each counter Cr
k to the agent on position k−1.

K1 contains information about current orderings and about
wipe-outs for domains of variables, namely events
where an agent did not find for its variable any value
consistent with higher priority assignments.

P1 specifies that the owner Ai of the kth counter, k>0,
should reorder the first agent whose domain wipe-out
was due to Ai immediately, before itself.

Pdb specifies that the owner Ai of the kth counter, k>0,
should reorder itself immediately after the first agent
whose domain wipe-out is due to Ai’s current assign-
ment.

H1 specifies that information about K is never transmit-
ted via explicit heuristic messages but may be learned
from incoming valid nogoods and orderings.

As mentioned in Introduction, the two heuristics differ
only in P. Next we prove that the exact heuristic of DB as
well as approx-AWC1 are ABTR compliant (Rule 1). The
obtained instances are called ABTR-db respectively ABTR-
wc.

Theorem 2 Valid nogoods can be received by agent Ai

in ABTR-db/ABTR-wc only in finite time after the agents
Aj , j<i, have reached quiescence (i.e., terminate).

Proof. Each valid nogood received by Ai eliminates a
value. Each value eliminated by such a nogood after all pre-
decessors Aj , j<i, reach quiescence, will never be available
again since the nogoods eliminating them use fixed assign-
ments of quiescent agents and cannot be invalidated. There
are maximum d such values. All agents learn a new assign-
ments within time nτ from its proposal. Therefore, all valid
nogoods are received in finite time.

Corollary 1 There exists a finite th such that any valid is
received by Rk−1 (i.e., Ak) in a time bounded by th after
the quiescence of the agents Al, l < k. Q.E.D.

4 Generality of new framework

Reordering by the first agent (restarts): Experiments
with dynamic ordering in ABT are described in [7], focus-
ing on detailed analysis of the case where only the first agent
reorders all other agents. While that technique was devel-
oped independently, it can be easily shown that it is an in-
stance of ABTR, e.g. for a heuristic (Kr, {1}, Mr, Pr, Hr):

Mr maps counter Cr
1 to the agent on the first position.

Kr is empty since no knowledge is needed for reordering.

Pr specifies that the first agent, holding counter Cr
1 , re-

quests at certain time intervals a random dynamic or-
dering on the rest of the agents. It stops requesting
reordering after a timeout th.

Hr specifies that agents do not need to announce any
knowledge to the first agent.

This heuristic is in a straightforward observance to “the
letter” of Rule 1. Experimental improvements of approx-
imately 5% were mentioned for this heuristic in [7].

ABT DO: The ABT DO algorithm developed and intro-
duced in [23] is shown now to be an instance of ABTR, for
an ABTR compliant heuristic that we will denote approx-
AWC2. For the scenario introduced in Figure 1, with the
approx-AWC2 heuristic used in ABT DO [23], it is the
agents/variables after Bob, namely Carol and Dave, that
are moved beyond Eve. This is different from our approx-
AWC1 where, like in AWC, Bob is also moved beyond
Eve. A model of approx-AWC2 in ABTR’s framework is
(K1, S2, M1, P2, H1), where K1, M1, and H1 are as for
approx-AWC1, and:

S2 S2 = [1..n].

P2 specifies that the owner Ai of the kth counter, k>0,
should reorder the last agent whose domain wipe-out
was due to Ai immediately after itself.
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The proof that approx-AW2, i.e., (K1, S2, M1, P2, H1),
is ABTR compliant is the same as the one for approx-AWC1
and for the exact heuristic of Dynamic Backtracking, since
only S and P components differ and they were not involved
in approx-AWC’s correctness proof. While the differences
between approx-AWC1 and approx-AWC2 seem small, the
authors of ABT DO describe differences of orders of mag-
nitude in efficiency. Another recent development by the au-
thors of approx-AWC2 consists of the suggestion that mix-
ing approx-AWC1 with min-domain also results in large im-
provements.

The ABTR model for the min-domain heuristics in [23]
(that cannot reorder the first agent) differs from the min-
domain heuristic (K0, S0, M0, P0, H0) we proposed in [20]
(see Introduction), only in the usage of the counter Cr

0

(which is absent in ABT DO). Their other experiments with
min-domain heuristics correlate with our previous results.

5 Experimentation

We have run tests on random problems with 20 agents
with a really distributed implementation of ABT and of
three versions of ABTR-wc. ABTR-wc-a reuses the cur-
rent order on agents with lower priority. ABTR-wc-b is like
ABTR-wc-a, but exchanges more information on the cur-
rent ordering of future agents (with each message). The
agents were placed on distinct computers of our lab. We
have generated problems of variable tightness for a density
of 27% where each variable has 3 values.

We chose our metric as close as possible to the most
used metric in multi-party computations and asynchronous
distributed CSPs solvers, namely the number of rounds [3,
14, 21]. However, this metric cannot be directly computed
as such in a real asynchronous implementation (which has
nothing like rounds), and therefore we chose the most sim-
ilar measure that we could find and that, if the system
and the measurement would be run on a simulator, would
be expected to return the same value as the number-of-
rounds. Therefore, the chosen metric is the length of the
longest causal chain of messages, effectively measured as
the longest chain of sequential messages using the algo-
rithm in [12]. On a simulator this measure would be equal
to the number of rounds. Theoretically, this measure is the
only important cost when agents are placed remotely on
Internet and the local problems are not hard. Each point
in Figure 5 is averaged over 100 random problems and
shows the average length of the longest causal chain of mes-
sages required to solve the problem. The experiments show
that ABTR-wc-b performed clearly better in average than
ABT and performed better than other versions of ABTR-
wc. For under-constrained problems (tightness under 15%)
where solutions are found without resorting to many no-
good messages, few reorderings are proposed by ABTR-wc

ABTR-wc

ABT

ABTR-wc-a
ABTR-wc-b

55 50 45 40 35 30 25 20 15

5

30

20

10

50

2327

avg. length causal
chain of messages

tightness

Figure 5. Experiments

and therefore the new algorithms perform quite similarly to
ABT.

Experiments using min-domain dynamic ordering with
maintenance of arc consistency [20]) (20 agents, 15 vari-
ables, 8 values, density 20%, tightness 68%, 500 instances)
reveal that no-reordering is 30% better than dynamic min-
domain ordering, while min-domain is 3 times better than
max-domain. This correlates with the prediction in [1], and
is confirmed in [23].

Large numbers of new heuristics were enabled here. We
no longer have access to a sufficiently large network of com-
puters, but other researchers completed recently new exten-
sive experimentation [7, 23, 24] with our heuristics as well
as with new heuristics enabled by ABTR, such as approx-
AWC2, and reduced versions of min-domain, proving the
importance of this contribution. The implementation used
for the experiments reported here is available for free down-
load on our web-site [16] and can be used for further re-
search by whoever owns a sufficiently large network.

6 Conclusions

Reordering is a major issue in constraint satisfaction and
is the main strength of Asynchronous Weak-Commitment
(AWC). Here we introduce a general and systematic formal-
ism for describing heuristics that are correct with ABTR.
We also describe and experiment, approx-AWC1 (inspired
from AWC), the first self-reordering heuristic for poly-
nomial space and complete asynchronous backtracking,
namely where an agent decreases its own priority (such
heuristics are renamed retroactive in [24]). These define the
first experimentally efficient dynamic reordering heuristics
for ABTR. Our contribution is inspiring others, and inde-
pendent works show that extensions of approx-AWC1 (e.g.,
with min-domain [24]) as well as slightly modified ver-
sions (approx-AWC2 [23]), lead to even more impressing
improvements.

We show that new algorithms are instances of ABTR and
show that ABTR remains more general than all new spec-
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ifications, e.g. by supporting min-domain that reorders the
first agent. Additional types of reordering heuristics leading
to complete solvers are explained with our framework, and
the task of exploring them for useful heuristics define many
opportunities and directions for future work. Our really dis-
tributed implementation is available for download [16] and
further research to whoever owns corresponding resources.
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