
Ways of Maintaining Arc Consistency in

Search using the Cartesian Representation

Marius-Călin Silaghi, Djamila Sam-Haroud, and Boi Faltings

Artificial Intelligence Lab
Swiss Institute of Technology Lausanne

Lausanne, Switzerland
{silaghi,djamila,faltings}@lia.di.epfl.ch

Abstract. The search space of constraint satisfaction problems (CSPs)
can be reduced by using value interchangeability. This notion consists of
aggregating subsets of values that behave similarly on the future branches
of the search. BT-CPR [8], is a typical backtracking algorithm using
value interchangeability. It uses the Cartesian product representation of
the search space (CPR) which aggregates partial solutions and proves
particularly useful for finding and representing all solutions of a CSP.
It is assessed that maintaining arc-consistency (MAC) is the most effi-
cient general algorithm for solving hard problems. A few work on com-
bining MAC with CPR exists. In this paper we study comparatively two
other possible alternatives of MAC-CPR.

1 Introduction

A lot of real world problems can be cast as Constraint Satisfaction Problems
(CSP). A CSP, (V,C,D), is classically defined as a set V of variables x1, x2, ..., xn,
taking their values respectively in a set D of domains D1, D2, ..., Dn and con-
strained by a set of constraints C = {C1, ..., Cm}. If a constraint Ci links the
variables xi1 , xi2 , ..., xi

ki
then it is defined as a subset of the Cartesian product

Di1 ×Di2 × ...×Di
ki
. ki gives the arity of the constraint Ci. Two variables are

neighbors if there is a constraint linking them. A tuple t satisfies a constraint
Ci if the projection of t on the variables linked by Ci belongs to Ci. A tuple
with values for all variables in V is a solution for (V,C,D) if it satisfies all the
constraints in C.

Depending on the original problem we may need one, several, or all possible
solutions. The task of extracting such solutions is NP-complete in general. An
intuitive way around this complexity barrier is to structure the search space so
that the exploration algorithm operates on aggregated subsets of data rather
than on individual possible instantiations. This is the idea behind the Cartesian
product representation (CPR) which aggregates partial solutions during back-
tracking. The use of CPR was shown to bring improvements, especially to the
problem of finding all solutions.

MAC is one of the most powerful general search algorithms. It consists of
interleaving backtracking with a notion of local consistency called Arc Consis-
tency (AC). In [7] is presented an algorithm called backtrackingdp that combines



MAC with CPR. In that case the aggregations were computed statically prior
to search and without guarantees of maximality. In this paper we study two
variants of MAC-CPR that incorporate the dynamical computation of maximal
aggregations.

The rest of the paper is structured as follows. We first recall the necessary
background. Then we present the existing work on backtracking using CPR,
as well as the two alternatives of MAC-CPR we study. The two variants are
compared both theoretically and experimentally. In Section 5 we discuss our
results and suggest a possible improvement of backtrackingdp.

2 Background

The search algorithms for CSPs are generally classified either as intelligent
backtrackers that learn from the past, or lookahead techniques that use local
consistency in order to reduce the number of future alternatives. Typical in-
telligent backtrackers are the Constraint-Based Back-jumping (CBJ), the Back-
Marking [9], the Dynamic Backtracking [6] and the Partial Order Dynamic Back-
tracking [3].

The most popular lookahead strategies are Forward Checking (FC) and Main-
taining Arc-Consistency (MAC) [11]. The latter has proven to outperform most
existing search algorithms in practice. Once a value has been instantiated, FC
prunes from the domains of its uninstantiated neighbors (future variables) the
values that are inconsistent with the value chosen for the current variable. MAC
enforces a form a local consistency called Arc Consistency on all the future
variables.

Arc Consistency

AC has been the subject of intensive prospection. Several versions were devel-
oped, each of which stresses a particular property. Some AC algorithms deal
with special cases (e.g. ACdp [7]). The ones that are useful for the general case
are named ACx where x stands for a number. AC3 is often the best in compu-
tational time. AC7 [1] seems to be the best in the number of constraint checks
while AC6 provides a good compromise with AC3. AC7 uses the bidirectionality
of the constraints in order to reduce the number of checks and its enforcement
within MAC is presented as promising.

CPR

Interchangeability [5] provides a principled approach to simplifying the search
space. Values are interchangeable if exchanging one for one another in any so-
lution produces another solution. BT-CPR [8] is one of the first search algo-
rithms using interchangeabilities. It uses a limited form of interchangeability
called neighborhood interchangeability (NI) to aggregate partial solutions in the
search space. A combination of CPR with FC (FC-CPR) was also described



in [8]. Two values, a and b of a variable xi in the CSP (V,C,D) are neighborhood
interchangeable iff for any constraint Cl ∈ C linking xi and xlj , the two sets
of values from xlj that satisfy Cl with a, respectively with b are identical. Two
values a and b are partially neighborhood interchangeable (PNI) against a set of
constraints S ⊂ C iff they are neighborhood interchangeable in the CSP (V,S,D).
We will also say that two values a and b are partially neighborhood interchange-
able against a set of variables N ⊂ V iff they are neighborhood interchangeable
in the CSP (N,C’,D) where C ′ is the subset of C linking only variables from N .

FC-CPR maintains at each node a partial solution represented as a Cartesian
product. For example, a partial solution involving variables a and b will be rep-
resented by a Cartesian product like (A := {1, 2})× (B := {3, 5, 8}). The values
of the future variables that are compatible with the current partial solution are
also structured as Cartesian products. FC-CPR prunes (FC) the domains of the
future variables for each possible value of the current one. Based on the obtained
active domains for the future variables, it builds a structure called the discrim-
ination tree (DT) [5] that enables a cheap merging of the result into maximal
Cartesian products. These Cartesian products correspond to partial neighbor-
hood interchangeable sets of the current variable against all future variables. The
children nodes in the search tree are obtained by expanding the current partial
solution with any of the obtained interchangeable sets.

We recall that the DT is a tree structure having the values in some of the
nodes. The insertion of a new value is performed by following a path from the root
of the tree, where each node corresponds to the next feasible tuple containing
the value, in the ordered relations of the current variable. If the corresponding
node did not previously exist, a new branch (set) is created. The value is placed
in the set found in the node at the end of this path. The enumeration of the
feasible tuples is not an overhead if it can be reused in the search process, for
example when all solutions are looked for.

Backtrackingdp

In [7], a possible extension from FC to MAC-CPR was mentioned where the
interchangeabilities were used not only for inferring partial solutions, but also
to infer information during the propagation of arc consistency. For doing so, a
specialized version of AC, called ACdp, was introduced. However, the algorithm
proposed uses only static neighborhood interchangeabilities detected before the
search starts. The interchangeabilities that appear dynamically, because of prun-
ing, were disregarded. In that version, the further computation of fully dynamic
interchangeabilities can be expensive since ACdp needs them for all variables.

In the backtrackingdp of [7], the partial neighborhood interchangeability sets
between each pair of variables are precomputed statically before search. At each
step of the search process, the neighborhood interchangeabilities between the cur-
rent variable and the future ones are obtained by intersecting the precomputed
sets. Note that the precomputed sets are no longer maximal in general. This is
because of the pruning induced on the future variables by the current instanti-
ations. This pruning is obtained either by forward checking or Arc Consistency.



x2

x1

x0

Future 
variables

FC

x2

x1

x0

Future 
variables

FC

PNI

MAC

a) b)

Fig. 1. a) FC-CPR: Full FC is performed on all future variables for all values in x0

in order to compute a DT. b) MAC-CPR: Full FC performed on all future variables
for all values in x0 to build a DT, then AC is enforced on all future variables for the
chosen PNI set.

No attempt of further merging is performed on the result, which means that the
aggregations obtained are not minimal in number. A weakness of backtrackingdp

is the fact that it computes several times the same intersections between inter-
changeable sets. We will show that these operations can be avoided.

In FC-CPR [8] the partial neighborhood interchangeabilities are computed in
a fully dynamic way. The possible aggregations for each node (current variable)
are computed from scratch on the basis of the previous instantiations. FC-CPR
does not incorporate any form of AC.

A variant of FC-CPR is proposed in [10]. It allows for cheaply getting certain
additional solutions once the first one has been obtained. However that algorithm
is not optimal when we need an arbitrary number of additional solutions. The
original FC-CPR offers a more general alternative in that case.

In [4] it was shown that the partial interchangeable sets against subsets of
the future variables can be organized in a hierarchy of a tree. This proves helpful
in one of the algorithms we present later.

3 MAC and CPR

We now present two other possible ways of interleaving backtracking on CPR
with arc-consistency. Their main characteristics are that they:

– compute the Cartesian products in a fully dynamic way,
– guarantee that the Cartesian products obtained at each step are minimal in

number

Figures 1 and 2, illustrate the main differences between the two studied variants.

3.1 MAC-CPR

It is obvious that the enhancement of FC-CPR with AC should not be done by
using AC to prune the future variables for each value of the current variable. The
propagations performed by AC will be identical for all the members of a partially



x2

x1

x0

Future 
variables

FC

PNI

MAC

Fig. 2. QMAC-CPR: FC is performed for all values in x0 considering only one of the
future neighbor variables (here x1) to build a DT, then AC is enforced for the chosen
PNI set on all current and future variables (less the constraints already scanned in
order to build the DTs). These two steps are iterated considering one by one, all the
future neighbor variables.

neighborhood interchangeable set, and the work would just be replicated. The
simplest way to accomplish the task is therefore to enforce AC at each node, i.e.
for each interchangeable set computed. The interchangeable sets are computed
dynamically as in FC-CPR. MAC-CPR is obtained by simply performing an
AC propagation for each node of FC-CPR before forward check and merging.
Once the interchangeable values are obtained, the Arc-Consistent domains of
the future variables with any value of an interchangeable set, are consistent with
all the other values of that set.

Here we have to specify that during MAC, each time that AC is reinforced
there exists an ordering of the AC queue such that a prefix of the process is
identical to FC. What we do in MAC-CPR is to first perform separately this
prefix for all values, detecting sets of PNI values. We then perform the rest of
the AC with any chosen queue ordering only once for a PNI set.

It is worth mentioning that it may be useful to merge the next levels of
nodes immediately after AC is applied to all of them since the pruning can
reveal stronger interchangeabilities.

3.2 QMAC-CPR

In this version our goal is still to compute maximal neighborhood interchange-
able sets at each node in order to optimize the aggregations. We have however
observed that performing a full forward checking on all future variables at each
node, as in MAC-CPR, is not necessarily the best choice. If we only look for the
first solution, a lot of useless work will be done at each node for pruning irrele-
vant parts of the search tree (i.e. for all the values of the current variable that will
never be chosen). Performing a full FC may also entangle eventual benefits from
early reductions, via Arc-Consistency, of the domains of the future variables.
Such propagation can indeed reach domain wipe-outs or detect inconsistencies
before the whole FC is done. A similar argument is presented in [1] where it is
argued that AC can be improved by performing the propagation immediately
after a value is deleted. This was presented as an AC queue ordering heuristic.



In the new algorithm we propose, we have come up with a compromise that
fulfills the criteria of: building stronger aggregations at each step, early propagat-
ing AC and FC deletions and avoiding useless FC checks on postponed branches.

The idea is to enforce AC on the future variables immediately after the do-
main of any single future variable is pruned. This is done after the corresponding
partial interchangeable sets Iij is built (i.e. the one concerning only the current
variable i and the pruned future variable j). AC is maintained after any such set
Ik
ij ∈ Iij is chosen (figure 2). The early propagation of deletions obtained that
way can also prune values from other future variables that are neighbors with
the current variable. When this occurs, an additional gain, proportional with
the domain size is obtained. In effect, no value in the current interchangeable
set will have to be checked against the pruned value.

Moreover, the cost of finding the first solution may decrease. Performing FC

on the other future variables for the values in partial interchangeable sets I
l(l 6=k)
ij

that are different from the one actually chosen is postponed until a backtracking
occurs, with no additional cost. The gain may not appear if the difference in
merging throws us on a worse branch first.

The corresponding technique is described in the algorithm 1. The function
Solve will recursively search the solution. The parameter currCP represents the
Cartesian product of the current labels of the instantiated variables. varCrt is
the current variable. The currently active values in its domain are in currCP as
well. The parameter varFut points to the neighbor future variable to be analyzed
in this iteration, if any. If there is no neighbor future variable to analyze, then
varFut is nil. currFD is the Cartesian product of the currently active values in
the domains of the future variables. At the beginning, AC is initialized (we have
used AC6 and AC7) and the obtained AC domain for the variable i is noted D0

i .
getF irstFutV ar(v) returns the first future neighbor variable of v if any exists,
otherwise nil. Then Solve is called with Solve(D0

0, 0, getF irstFutV ar(0), D0
1 ×

...×D0
n). dt represents a discrimination tree computed with the function DT () at

line 1.2. The algorithm used is the same with the one in [7]. The iterator next(dt)
returns a structure containing a pair of consistent interchangeable sets in varCrt

and varFut. intersectCP (currCP, dts, varCrt) computes the Cartesian product
obtained from the partial solution received in currCP when the domain of the
current variable varCrt in dts is intersected with the one in currCP .

At each node of the search, we first compute (line 1.2) the partial neighbor-
hood interchangeable sets. The stuctures of AC6, respectively AC7 are used to
improve the computation of the discrimination tree. The vectors last are used
in order to avoid checking tuples already tested during the propagation of AC.
Afterwards, we iterate for each set (line 1.3) the actualization of the new current
partial solution (line 1.4) and that of the future active domains (line 1.5). The
propagation of the pruning of the future domains is done using AC. It occurs if
any domain was changed. If one more future neighbor variable exists (line 1.6),
we create for it a child node in the search tree at line 1.7. Otherwise, we choose
a new variable from the future ones and we add its domain to the Cartesian



product of the actual partial solution (line 1.8), before the corresponding child
node is built.

As desired, at line 1.5 we propagate the Arc-Consistency earlier than if it
is done after forward checking all the future variables. That would be required
in order to built the discrimination trees for the partial neighborhood inter-
changeability against all future variables at once. However, the result was shown
in [4] to be identical, since the hierarchy of partial interchangeabilities is a tree.
Moreover, the computation of the interchangeable sets is performed in a more
depth-first fashion than in [8]. Therefore, if we would not propagate AC, but
just perform FC, we already obtain a version of FC-CPR that is improved for
finding the first solution.

A drawback of the previously presented algorithm may be that the stack with
the structures needed by AC increases in size for graphs of constraints of high
density, especially if versions of AC requiring many structures are used (AC7,
AC6). However, since many of the nodes show to not change the domains of the
variables, the corresponding stack do not need to be used for those nodes. Most
often, only the first variables from a set of future neighbors change the domains,
therefore we could say that we perform AC after the first rather than after the
last of the future neighbor variables was used for partitioning. In practice it
happened sometimes that we needed similar AC structures on the stack with
QMAC-CPR as with MAC-CPR, even if the technique was included in MAC-
CPR as well. However, if one decides not to use the AC7 queue heuristic of [1],
than he can implement the propagation as described in the section 5.1.

4 Comparing QMAC-CPR and

MAC-CPR

In this section we will show that QMAC-CPR is theoretically better that MAC-
CPR in term of power of aggregation. While MAC-CPR guarantees maximal
partial neighborhood interchangeable sets, QMAC-CPR produces maximal ag-
gregations based on a more global form of interchangeability. As the experiments
will show, this does not mean that in practice, the difference of efficiency is sig-
nificant. To give an intuition of the theoretical superiority of QMAC-CPR, we
start by presenting an illustrative example. We will then give a theoretical proof
before presenting a preliminary experimental evaluation.

4.1 Illustrative example

In figure 3 we present an example where QMAC-CPR gives a better aggregation
that MAC-CPR. In the figure is presented the status when the xk is the current
variable. In the domain of xk we have the active values vk(l−1)

, vkl
and vk(l+1)

.
The active values for xk+1 are v(k+1)(j−1)

, v(k+1)j
and for xk+2, v(k+2)i

and
v(k+2)(i+1)

. The arrows show values that are eliminated when the value at the
starting point of the vectors are chosen for the corresponding variable. We see
that the current problem is AC. In the next description, due to space, we will



xk+2
¨
§

¥
¦f

v(k+2)(i+1)

f
v(k+2)i

xk+1
¨
§

¥
¦f

v(k+1)j

f
v(k+1)(j−1)

xk

¨
§

¥
¦f

vk(l+1)

f
vkl

f
vk(l−1)

¢
¢
¢
¢
¢
¢
¢̧6

6

@
@

@@I

Fig. 3. Snapshot at current variable xk.

disregard the branches where the value vk(l−1)
is chosen alone for the instantiation

of the variable xk. We refer to the pairs (currCP,currFD) as pairs of Cartesian
products,

In the presented situation, MAC-CPR will first create the pairs of Cartesian
products

({vk(l−1)
}, {v(k+1)(j−1)

, v(k+1)j
} × {v(k+2)i

, v(k+2)(i+1)}),

({vkl
}, {v(k+1)j

} × {v(k+2)i
}),

({vk(l+1)
}, {v(k+1)j

} × {v(k+2)i
, v(k+2)(i+1)}),

and only after the third pair is chosen and AC is enforced, will it become
({vk(l+1)

}, {v(k+1)j
} × {v(k+2)i

}). But in that moment the branch induced by
the second pair will already have been solved, the solution lost, and there is no
mean to infer the solution of this new branch.

When faced with the same situation, QMAC-CPR will first consider the xk+1

as future variable. In that step it obtains the pairs of Cartesian products

({vk(l−1)
}, {v(k+1)(j−1)

, v(k+1)j
} × {v(k+2)i

, v(k+2)(i+1)}),

({vkl
, vk(l+1)

}, {v(k+1)j
} × {v(k+2)i

, v(k+2)(i+1)}).

We consider now the moment when the branch for the second pair is chosen.
The MAC that is performed at this moment will prune the value v(k+2)(i+1)

from xk+2. Therefore, at the next step, the new Cartesian product pair found
will be:

({vkl
, vk(l+1)

}, {v(k+1)j
} × {v(k+2)i

}).

This pair aggregates the second and the third branch of the algorithm MAC-
CPR.



4.2 Theoretical results

Theorem 1. Any two values that are aggregated at a step of MAC-CPR will
also be aggregated (or both rejected) during the corresponding set of steps of
QMAC-CPR.

Proof. Two values vki
and vkj

of variable xk are aggregated by MAC-CPR
only if they are neighborhood interchangeable with all the future variables given
their currently active domains. We will note the future neighbor variables of the
variable xk with {xk0

, xk1
, ..., xkl

...}. With QMAC-CPR, when the first future
neighbor variable xk0

is considered, the two values vki
and vkj

will also be
aggregated because they needed to be neighborhood interchangeable with xk0

in
order to be aggregated by MAC-CPR.

By induction after the order of the considered future neighbor variable, if
the values vki

and vkj
were aggregated when the variable xkl

considered, then
we show that they will be also aggregated when the variable xkl+1

is considered
as future neighbor of variable xk. Indeed, both of them will behave identically
against all the values that were active in the domain of variable xkl+1

before xk0

was considered with xk, from hypothesis. During all the process since that mo-
ment, the values of the domain of variable xkl+1

may have been only deactivated.
Therefore the behavior of vki

and vkj
against the values still active in xkl+1

could
have remained only identical and the two values will be again aggregated. Of
course, if all the supports in xkl+1

were already deactivated for the two variables,
then both of them will be simultaneously rejected.

Corollary 1. With QMAC-CPR we obtain at least the same aggregations ob-
tained with MAC-CPR. Any distinct Cartesian product obtained with MAC-CPR
will be found with QMAC-CPR, eventually merged with other Cartesian prod-
ucts.

The eventual additional aggregations were illustrated in figure 3. Of course,
if we would decide to first perform at each MAC-CPR node the AC enforcement
for all pairs of Cartesian products, and then to try again to merge the partitions,
all these before any child node is visited, even stronger aggregations might be
obtained. However, that may give much overhead for finding the first solution.
This alternative is subject to further research.

4.3 Experiments

The most usual ways of measuring the efficiency of an algorithm searching for
solutions in CSPs are by counting the number of constraint checks and by mea-
suring the time needed for solving sets of real problems. The first measure is
based on the consideration that the time needed for maintaining the data struc-
tures is more or less fixed while the time needed for checking constraints is the
one that should be taken into account if such checks, with a complexity depen-
dent on the problem, become expensive. That is the case if checking a constraint



reduces to solving a problem or handling a device. If the cost of a constraint check
is low, then the other costs will prevail and the time measurement gives the most
important information. However, the time measurement is implementation and
platform dependent.

A third way of measuring the efficiency of a backtracking, counts the number
of expanded nodes in the search tree, the tree that would represent the states of
the run. Even if intuitively correct, such measurements will be in certain cases
cheated by algorithms that cluster several nodes into one, without reducing the
overall cost. It is seldom that the work done at one node with different algorithms
is identical.

variables QChecks/Checks First Solution DT

20 611/624 115/116 738/762
30 508/523 211/215 764/791
40 847/851 524/543 119/123
50 120/122 720/790 107/121
60 120/123 335/354 202/209
70 397/410 139/151 571/574
80 183/185 167/179 144/147

Table 1. QMAC-CPR vs. MAC-CPR

Even if the number of expanded nodes in the QMAC-CPR algorithm is clearly
higher than the one of MAC-CPR, the cost of each node is expected to be at
least proportionally lower.

We perform our tests on binary constraints. The experiments were performed
in a Unix environment under usual load. Therefore the comparison of running
time is not relevant. We will however give an idea of time results. We have chosen
to measure the performance in term of the number of checks.

We have implemented FC-CPR and MAC-CPR where we maintain AC at
each step using AC6 and AC7.

As suggested before, the difference between MAC-CPR and the algorithm
described in [7] is that MAC-CPR computes the interchangeabilities dynami-
cally, but it does not use the statically computed ones during AC or for the
discrimination tree. We have also implemented the QMAC-CPR algorithm us-
ing AC6 and AC7. We have generated random problems with 20 to 80 variables.
Each variable participates to 3 binary constraints in average. Each variable had
a domain of size 8 and each constraint a tightness of 35. Those parameters were
chosen to generate the problems close to the peak of difficulty.

In table 1 we present the results obtained by comparing the algorithms on 50
examples of each type. The second column presents the ratio between the number
of constraint checks needed to find all solutions with QMAC-CPR respectively
with MAC-CPR. The third column presents the same ratio when only the first
solution was looked for.



55 65 70 75 

15

12.5

160

140

2750

2450

450

500

MAC-CPR

MAC

MAC-CPR (first solution)

MAC (first solution)

tightness

checks (103 checks)

Fig. 4. The average number of constraint checks for MAC7 and MAC-CPR. The num-
ber of checks for finding only the first solution is shown with dashed lines.

The structure of QMAC-CPR reduces also the number of comparisons needed
in order to built the discrimination trees during the search for all solutions. The
ratio of their number for QMAC-CPR and MAC-CPR was given in the fourth
column and suggests a very small improvement that would be brought to FC-
CPR in the search for all solutions. We have also verified that both versions
of MAC-CPR bring strong improvements compared with FC-CPR. This is very
clear in the corresponding tests, but it does not make the subject of this paper.
Preliminary comparisons of the two new algorithms versus MAC6 and MAC7
were also performed for 800 random problems with 40 variables, density of 30%
and 8 values per domain. The improvements for either finding all solutions or
for finding that no solution exists was of up to 20% in average for both time and
number of constraints checks, as shown in figure 4. The first solution for loosely
constraint problems continues to be found quicker with MAC.

The number of the Cartesian products used to represent all solutions was
sometimes different for the two algorithms. This was due to the additional in-
terchangeabilities that appear by maintaining AC after each future variable is
pruned. The QMAC-CPR may need less Cartesian products than MAC-CPR
as it succeeds to merge some of them. The inverse is never possible. However,
the averaged reduction has reveled to be seldom above one percent. Concerning
the time comparisons, we mention that the ratio of the averaged observed time
oscillated of a few percents around 1. Certain single cases were at maximum one
order of magnitude better in time with one algorithm than with the other.

5 Discussions

We have presented and evaluated two possible variants of backtracking on CPR
using AC. MAC-CPR is a straightforward extension. QMAC-CPR is more elab-
orated and exhibit better features in theory. The empirical evaluation shows
almost similar performances on random problems. The empirical comparison



against MAC7 shows some advantage of the new algorithms for over-constrained
problems.

CPR infers from the partial solution obtained for one value, partial results
for other values of the same variable. From this point of view, CPR belongs to
the class of intelligent backtrackers. Several researchers have tried to combine
lookahead strategies with some learning techniques. While CBJ [9] brings some
improvements to FC, it seems to alter MAC [2]. The explanation can be that
CBJ brings pruning at an average cost superior to the average efficiency of
MAC. But CPR offers high gains at low cost and therefore, integrating it with
lookahead strategies like MAC can be more successful than it was for the other
learning techniques.

Note also that a version of FC-CPR improved for finding the first solution is
obtained by eliminating the AC propagations from QMAC-CPR.

5.1 EMAC-CPR

We present a possible improvement of backtrackingdp that incorporates features
of QMAC-CPR. This algorithm has not been implemented.

We note with K the number of future neighbors of the current variable and
with d the maximum size of a currently active domain. As previously mentioned,
the algorithm presented in [7] can be enhanced by using the structure of the new
algorithm QMAC-CPR. Indeed, even if AC is maintained only after pruning
all the future neighbors of the current variable, that could be done with the
procedure described in algorithm Extended MAC-CPR (EMAC-CPR) presented
in algorithm 2. Doing like QMAC-CPR, the cost of computing the intersection
of the partial interchangeable sets is reduced from the combinatorial worst case
when all tuples of sets from all partial interchangeable sets are considered, KnK ,
to nK by maintaining on the stack the partial intersection of several such sets.
In the presented algorithm, we propose to try to merge the statically computed
partially interchangeable sets. That can be accomplished using a discrimination
tree algorithm (DTenhanced) over only one representative value of each of the
precomputed sets.

The algorithm DTenhanced is the same as the one described in [5] with the
only difference that the substitutability that was obtained statically, like in [7], is
recursively used to obtain a dynamically computed one, as previously mentioned.
It is obvious that if two values belonging to two different neighborhood inter-
changeable sets can be merged (are interchangeable), than the two sets can be
merged. getFD will prune from the active domain of the future variable implied
in dts the values deactivated in dts. The changes to domains are recorded when-
ever done (at lines 2.2,2.3) and they can launch an AC maintenance (at line 2.4).
The other functions of EMAC-CPR are the same with those in QMAC-CPR.

6 Conclusion

Two variants of MAC with CPR, called MAC-CPR and QMAC-CPR, were devel-
oped and presented in this paper. The corresponding advantages and drawbacks



as well as their sources were discussed. QMAC is theoretically better but shows
no significant gains on random problems. The result of the theoretical analysis
remains interesting.

QMAC can be seen simultaneously as both primal and dual space oriented.
Indeed, the search is performed variable after variable, and in the same time
it is performed constraint after constraint. For example, in the case of binary
constraints, considering a pair of variables as QMAC-CPR does with the current
and a future neighbor variable, reduces to considering the constraint linking
them. This can help in the understanding of the two streams of approaches. By
studying it, further algorithms could be transferred in an improved way from
one of them to the other one. An example of such an application is suggested in
section 5.1.

7 Acknowledgments

This work was performed at the Artificial Intelligence Laboratory of the Swiss
Federal Institute of Technology in Lausanne and was sponsored by the Swiss
National Science Foundation under project number 21-52462.97.

References

1. Bessière C., Freuder E.C., and Régin J.-C.: Using constraint metaknowledge to
reduce arc consistency computation. AI, (107):125–148, 99

2. Bessière C. and Régin J.-C.: MAC and combined heuristics: Two reasons to forsake
FC(and CBJ?) on hard problems. In CP96, pages 61–75. CP, 96

3. Bliek C.: Generalizing partial order and dynamic backtracking. In AAAI-98 Pro-
ceedings, pages 319–325, Madison,Wisconsin, July 98. AAAI

4. Choueiry B.Y. and Noubir G.: On the computation of local interchangeability in
discrete constraint satisfaction problems. Technical Report KSL-98-24, Standford,
98

5. Freuder E.C.: Eliminating interchangeable values in constraint satisfaction prob-
lems. In Proceedings of AAAI’91, pages 227–233, 91

6. Ginsberg M. and McAllester D.: Gsat and dynamic backtracking. In J.Doyle, edi-
tor, Proceedings of the 4th IC on PKRR, pages 226–237. KR, 94

7. Haselböck A.: Exploiting interchangeabilities in constraint satisfaction problems.
In Proceedings of IJCAI’93, pages 282–287, 93

8. Hubbe P.D. and Freuder E.C.: An efficient cross product representation of the
constraint satisfaction problem search space. In Proc. of AAAI-92, pages 421–427,
July 92

9. Kondrak G.: A theoretical evaluation of selected backtracking algorithms. Master’s
thesis, Univ. of Alberta, 94

10. Lesaint D.: Maximal Sets of Solutions for Constraint Satisfaction Problems. In
A. Cohn, editor, Proceedings of ECAI’94, pages 110–114. John Wiley & Sons,Ltd,
94

11. Sabin D. and Freuder E.C.: Contradicting conventional wisdom in constraint sat-
isfaction. In Proceedings ECAI-94, pages 125–129, 94



procedure Solve(currCP, varCrt, varFut, currFD)
if (varFut==nil) then

if (existsNextVar(varCrt)) then

v=getNextVar(varCrt)
1.1 add(currCP,domain(v))

newFD=project(currFD,v)
solve(currCP,v,getFirstFutVar(v),newFD)

else

ReportSolution(currCP)

end

return
end

1.2 dt=DT(varCrt, varFut, currFD)
while (!empty(dt)) do

1.3 dts=next(dt)
1.4 newCP=intersectCP(currCP, dts, varCrt)

if (modifies(dts,currCP,currFD)) then

1.5 newFD=propagate(currFD,dts,varFut)
if empty(newFD) then

continue
end

else

newFD=currFD
end

1.6 if (existFutureVariable(varCrt, varFut)) then

newFutureVar=getNextFutVar(varCrt,varFut)
1.7 solve(newCP,varCrt,newFutureVar,newFD)

else

v=getNextVar(varCrt)
1.8 add(newCP,domain(v))

newFD=project(newFD,v)
solve(newCP,v,getFirstFutVar(v),newFD)

end

end

end.

Algorithm 1: QMAC-CPR



procedure Solve(currCP,varCrt, varFut, currFD)
if (varFut==nil) then

if (existsNextVar(varCrt)) then

v=getNextVar(varCrt)
2.1 add(currCP,domain(v))

newFD=project(currFD,v)
solve(currCP,v,getFirstFutVar(v),newFD)

else

ReportSolution(currCP)

end

return
end

dt=DTenhanced(varCrt, varFut, currFD)
while (!empty(dt)) do

dts=next(dt)
2.2 newCP=intersectCP(currCP,dts,varCrt)
2.3 newFD=getFD(currFD,dts,varFut)

if (existFutureVariable(varCrt,varFut)) then

solve(newCP,varCrt,getNextFutVar(varCrt),newFD)

else

2.4 if (changesToDomains()) then

ACdp()
if (empty(newFD)) then

continue
end

end

v=getNextVar(varCrt)
add(newCP,domain(v))
newFD=project(currFD,v)
solve(newCP,v,getFirstFutVar(v),newFD)

end

end

end.

Algorithm 2: EMAC-CPR


