Impact Analysis: Bug - Re-adding Torrent Corruption

Bug: If the user removes a torrent and then adds the same torrent back, the torrent resumes
as if the data was in the state before its removal. This is an issue when the user completes a
torrent, removes it, then adds the same torrent with incomplete data (causing an empty file to
be considered complete). This also causes an issue with substituting a incomplete torrent with
completed data, causing the file to be overridden with the same data. It is inconclusive
whether a false positive torrent could corrupt others issues by seeding bad data, but seeding
does take place with falsely incomplete data.

Possible Cause: Validate the data file for its progress and resume from there instead of
where last left off. Possibly caused by properties files called s_ files. One s_ file exists for
each torrent added.

Tests:
1. New torrent : Download torrent and complete
2. Complete torrent with s_ file : shown as complete
3. Complete torrent without s_ file : shown as complete
4. Incomplete torrent without s_ file : shown as incomplete
5. Incomplete torrent with completed s_ file : shown as complete
6. Complete torrent with incompleted s_ file : shown as incomplete and downloads
Estimated impact:
SnarkManager.java
Snark.java

Estimated impact: 2 Files

Actual Impact: We learned that the cause of the bug is from residual ‘sP’ files. These files
store the state of the torrent and are not removed when the torrent is removed. By swapping
in and out these files (some that say the torrent is complete, others saying it is not), we can
trick I2PSnark into believing the torrent is in a false state. For example, using an empty data
file with a s_file that says it's 128mb complete will trick I2PSnark to resume the torrent on the
remaining data, ignoring the 128mb that was listed as downloaded. The solution likely
includes removing the s_ files when a torrent is removed, or always making a new s_ file
overwriting any incorrect s_.

Solution: We found that the remove commands function properly in Snark.java and
SnarkManager. This lead us to I2PSnarkServlet.java which calls functions based on the
user’s gui. When the gui action is “remove” or “delete” for a torrent, the code checks if the
meta does not exist and removes the magnet-torrent and continues. This is an issue when the
torrent is not a magnet file, which does get removed. We discovered this bug is present in two
locations where a magnet is removed without considering the torrent if the metadata exists.
We fixed this bug by adding a condition checking if there is metadata associated with the
torrent and calls the removeTorrentStatus method on the SnarkManager, removing the



metadata. This solution redirects the tests provided earlier by eliminating conditions that
would lead to tests 2, 5 and 6.



