\qquad
Answer all questions on the exam. You may use the back for additional space. Total: 100 points. Good Luck.

1. (25 pts) Search:
(a) For some search algorithms, the solution found might not be the global minimum (with respect to a cost function).
i. Name and describe one such algorithm.
ii. Discuss with an example why the algorithm might yield a local minimum.
iii. Discuss a remedy to reduce the chance for the algorithm to reach a local minimum.
(b) Consider the problem of solving the 8-puzzle:

$8\|7\| 4$		$1\|2\| 3$
-----		-----
$6\|3\| 5$	$->$	$4\|\mid 5$
-----		----
$2\|1\|$		$6\|7\| 8$

i. For A^{*} to be optimal, discuss the necessary property for the h function.
ii. Describe how to measure cost in this problem.
iii. Describe an h function that satisfies the property for A^{*} to be optimal.
2. (25 pts) Given the following state of a Tic-Tac-Toe game (where X moves next):
| |X

Ol |X
0110

Trace the recursive function int alphaBetaPruning(state, alpha, beta) that implements the Alpha-beta Pruning Algorithm and list:

- the parameters and
- the return value
of each call.

3. (25 pts) CSP
(a) Describe the elements of a Constraint Satisfaction Problem (CSP).
(b) Describe an algorithm for solving CSPs.
(c) The graph coloring problem is to assign a color to each vertex of a graph such that no adjacent vertices (linked by an edge) have the same color. Trace the solver you proposed in (b) for the problem of coloring using three colors a graph having a vertex in each corner of a square, and an edge for each side and for ONE diagonal.
(d) Can you use A* to solve a CSP? Explain.
4. (25 pts) Resolution inference rule
(a) What does sound and complete (for an inference rule) mean?
(b) What is the resolution inference rule?
(c) Consider:

- $\forall x, y, z \operatorname{Parent}(x, y) \wedge$ Father $(y, z) \Rightarrow \operatorname{Grandfather}(x, z)$
- $\forall x, y, z \operatorname{Parent}(x, y) \wedge \operatorname{Mother}(y, z) \Rightarrow \operatorname{Grandmother}(x, z)$
- $\forall x, y \operatorname{Parent}(x, y) \wedge \operatorname{Male}(y) \Rightarrow \operatorname{Father}(x, y)$
- $\forall x, y \operatorname{Parent}(x, y) \wedge \operatorname{Female}(y) \Rightarrow \operatorname{Mother}(x, y)$
- Male(Charles)
- Female(Mary)
- Female(Jane)
- Parent(Mary, Jane)
- Parent(Jane, Charles)
i. convert each sentence into a conjunctive normal form
ii. apply resolution (and show your steps) to prove: Grandfather(Mary, Charles)

