Grad. Comp. Exam: Artificial Intelligence (Fall 2009)

Student ID: _

Answer all questions on the exam. You may use the back for additional space. Total: 100 points. Good Luck.

1. (25 pts) Search:

- (a) For some search algorithms, the solution found might not be the global minimum (with respect to a cost function).
 - i. Name and describe one such algorithm.
 - ii. Discuss with an example why the algorithm might yield a local minimum.
 - iii. Discuss a remedy to reduce the chance for the algorithm to reach a local minimum.
- (b) Consider the problem of solving the 8-puzzle:

8 7 4		1 2 3	
6 3 5	->	4	5
2 1		6 7 8	

- i. For A^* to be optimal, discuss the necessary property for the h function.
- ii. Describe how to measure cost in this problem.
- iii. Describe an h function that satisfies the property for A^* to be optimal.

2. (25 pts) Given the following state of a Tic-Tac-Toe game (where X moves next):

| |X _____ 0| |X _____

Trace the recursive function int alphaBetaPruning(state, alpha, beta) that implements the Alpha-beta Pruning Algorithm and list:

- the parameters and
- the return value

of each call.

- 3. (25 pts) CSP
 - (a) Describe the elements of a Constraint Satisfaction Problem (CSP).
 - (b) Describe an algorithm for solving CSPs.
 - (c) The graph coloring problem is to assign a color to each vertex of a graph such that no adjacent vertices (linked by an edge) have the same color. Trace the solver you proposed in (b) for the problem of coloring using three colors a graph having a vertex in each corner of a square, and an edge for each side and for ONE diagonal.
 - (d) Can you use A^* to solve a CSP? Explain.

- 4. (25 pts) Resolution inference rule
 - (a) What does sound and complete (for an inference rule) mean?
 - (b) What is the resolution inference rule?
 - (c) Consider:
 - $\forall x, y, zParent(x, y) \land Father(y, z) \Rightarrow Grandfather(x, z)$
 - $\forall x, y, zParent(x, y) \land Mother(y, z) \Rightarrow Grandmother(x, z)$
 - $\forall x, yParent(x, y) \land Male(y) \Rightarrow Father(x, y)$
 - $\forall x, yParent(x, y) \land Female(y) \Rightarrow Mother(x, y)$
 - $\bullet \ Male(Charles)$
 - Female(Mary)
 - Female(Jane)
 - $\bullet \ Parent(Mary, Jane)$
 - $\bullet \ Parent(Jane, Charles)$
 - i. convert each sentence into a conjunctive normal form
 - ii. apply resolution (and show your steps) to prove: Grandfather(Mary, Charles)