Computer Graphics
 (Fall 2005).

1. Determine the point(s) of intersection of the line $\mathbf{p}(t)=\mathbf{p}_{0}+\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) t$ with the following quadrics:
Sphere: $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2}$ where $\left(x_{0}, y_{0}, z_{0}\right)$ is the center of the sphere and r is its radius.
Paraboloid: $\frac{\left(x-x_{0}\right)^{2}}{\alpha^{2}}+\frac{\left(y-y_{0}\right)^{2}}{\beta^{2}}-z+n=0$ where α and β are the semi-axes. $\left(x_{0}, y_{0}, z_{0}\right)$ is the center of the quadric.
2. Determine the equation of a 3-D line between the points \mathbf{p}_{0} and \mathbf{p}_{1} such that \mathbf{p}_{1} is rotated of an angle θ about the x -axis. The rotation matrix in homogeneous coordinates is given by:

$$
R_{x}(\theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{1}\\
0 & \cos \theta & \sin \theta & 0 \\
0 & -\sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3. Show that perspective projection preserves lines. Show that perspective projection projects circles onto ellipses. The perspective projection is given by:

$$
\begin{equation*}
x=\frac{f X}{Z} \quad y=\frac{f Y}{Z} \tag{2}
\end{equation*}
$$

where f is the focal distance, (x, y) represent image coordinates and (X, Y, Z) are world coordinates.
4. Describe Gourand Shading and Phong Shading.
5. Write the pseudo-code of the z-buffer algorithm.

