Computer Science Comprehensive Exam—Fall 2000 Compiler Construction

Instructions: Please answer all the questions directly on the exam itself. Answer **all** the questions. Explain answers as fully as possible, give examples if appropriate, define terms.

1.	Give a regular expressions for comments in Ada. Comments in Ada begin with two dashes — and continue until the end of the line.
2.	How are variant records typically allocated at runtime?
3.	What is the relationship between the set of languages recognized by $LL(1)$ parsers and the set of languages recognized by $LR(1)$ parser?

4. Consider the following grammar:

$$S \rightarrow uBDz$$

$$B \rightarrow B v$$

$$B \rightarrow w$$

$$D \rightarrow EF$$

$$E \rightarrow y$$

$$E \rightarrow \epsilon$$

$$F \rightarrow x$$

$$F \rightarrow \epsilon$$

(a) Compute nullable, FIRST and FOLLOW for all nonterminals.

	nullable	FIRST	FOLLOW
S			
B			
D			
E			
F			

(b) Compute the FIRST of the right-hand side of all productions.

α	$FIRST(\alpha)$
$1 S \rightarrow u B D z$	
$2 B \rightarrow B v$	
$3 B \rightarrow w$	
$4 D \rightarrow EF$	
$5 E \rightarrow y$	
$6 E \rightarrow \epsilon$	
$7 F \rightarrow x$	
$8 F \rightarrow \epsilon$	

(c) Fill in the LL(1) parse table for the grammar. Explain clearly why the grammar is not LL(1).

	w	u	v	x	y	z
S						
B						
D						
E						
F						

5. Consider the following grammar and its associated LR(0) parsing table.

					action			goto			
				state	()	\mathbf{x}	,	\$	S	L
				1	s3		s2			g4	
1	S'	\rightarrow	S \$	2	r3	r3	r3	r3	r3		
2	S	\rightarrow	(L)	3	s3		s2			g7	g5
3	S	\rightarrow	` /	4					acc		
	τ		S	5		s6		s8			
4	L			6	r2	r2	r2	r2	r2		
5	L	\rightarrow	L, S	7	r4	r4		r4	r4		
				8	s3		s2			g9	
				9	r5	r5	r5	r5	r5		

Show the parsing steps of the string ((x),x) by completing all the remaining steps in the diagram on the next page.

stack	input	action
(1) 1	((x),x) \$	shift 3
(2) 1 (3	(x),x) \$	
(3) 1 (3 (3	x),x) \$	shift 2
(4) 1 (3 (3 x 2		reduce by $S \to \mathbf{x}$
(5)		
(6)		
(7)		
(7)		
(8)		
(9)		
(10)		
(11)		
(12)		
(13)		
(14)		

6. Consider the following augmented grammar.

$$S' \rightarrow S$$

$$S \rightarrow V = E$$

$$S \rightarrow E$$

$$E \rightarrow V$$

$$V \rightarrow \mathbf{x}$$

$$V \rightarrow \mathbf{*}E$$

Begin (do not complete) the LR(1) item set construction for the grammar. What is the initial state? What is the next state, if you choose the transition for the terminal *?