Computer Science Comprehensive Exam—Spring 2000 Compiler Construction

Instructions: Please answer all the questions directly on the exam itself. Answer **all** the questions. Explain answers as fully as possible, give examples if appropriate, define terms.

1. Describe how a compiler translates new, dynamic memory allocation, with reference to the runtime organization of the program.

2. Describe how to implement non-local variable access in typical block-structured, statically-scoped programming languages.

3. Consider the following augmented grammar:

$$E' \rightarrow E \$$$

$$E \rightarrow -E$$

$$E \rightarrow (E)$$

$$E \rightarrow VT$$

$$T \rightarrow -E$$

$$T \rightarrow \epsilon$$

$$V \rightarrow \operatorname{id} L$$

$$L \rightarrow (E)$$

$$L \rightarrow \epsilon$$

(a) Compute the FIRST and FOLLOW for all nonterminals.

	FIRST	FOLLOW
E		
T		
V		
L		

(b) Compute the FIRST of the right-hand side of all productions.

			α	$FIRST(\alpha)$
1	E	\rightarrow	-E	
2	E	\rightarrow	(E)	
3	E	\rightarrow	VT	
4	T	\rightarrow	-E	
5	T	\rightarrow	ϵ	
6	V	\rightarrow	$\mathbf{id}L$	
7	L	\rightarrow	(E)	
8	L	\rightarrow	ϵ	

(c) Complete the first row (and only the first row) of the LL(1) parse table below.

	-	()	\mathbf{id}	\$
E					
T	$T \to -E$		$T \to \epsilon$		$T \to \epsilon$
V				$V\to \operatorname{id} L$	
L	$L \to \epsilon$	$L \to (E)$	$L \to \epsilon$		$L \to \epsilon$

4. Consider the following grammar.

$$\begin{array}{ccccc} 1 & N & \rightarrow & ND \\ 2 & N & \rightarrow & D \\ 3 & D & \rightarrow & \mathbf{a} \\ 4 & D & \rightarrow & \mathbf{b} \end{array}$$

Using the given LR parsing table, show the parsing steps of the string aab by filling in the next two steps of the diagram.

	action			goto	
state	a	b	\$	N	D
0	s3	s4		1	2
1	s3	s4	acc		5
2	r2	r2	r2		
3	r3	r3	r3		
4	r4	r4	r4		
5	r1	r1	r1		

stack	input	action
(1) 0	aab \$	shift 3
(2) 0 a 3	ab \$	reduce by $D \to \mathbf{a}$
$(3) \ 0 \ D \ 2$	ab \$	
(4)		
(5)		

5. Consider the following augmented grammar.

$$\begin{array}{ccc} S' & \rightarrow & S\$ \\ S & \rightarrow & C \, C \\ C & \rightarrow & \mathbf{c} \, C \\ C & \rightarrow & \mathbf{d} \end{array}$$

Begin the LR(1) item set construction for the grammar. What is the initial state? What is the next state, if you choose the transition C?