Computer Science Comprehensive Exam—Fall 2009 Compiler Construction (with some answers)

Instructions: Do *not* put your name on the exam, please answer all the questions directly on the exam itself. You may need scratch paper. Answer **all** the questions. Explain answers as fully as possible, give examples or define terms, if appropriate.

- 1. In general terms, what are the major steps of the typical compiler for an imperative language? Answer:
- 2. What is the formal definition of the FIRST(N) for some nonterminal N of a grammar? Answer:
- 3. Consider the algorithm to compute CLOSE[I] for the set I of LR(1) items for some grammar. Suppose the grammar contains the production $X \rightarrow \gamma$ where X is some non-terminal and γ is some string of terminals and non-terminals. Answer the following questions assuming A is some non-terminal, α and β are strings of terminals and non-terminals, and y and z are terminal symbols.
 - (a) If $A \to \alpha \bullet X$, z is in I, which item or items (if any) would be added to CLOSE[I]? Answer: Add $X \to \bullet \gamma$, z to CLOSE[I].
 - (b) If $A \to \alpha \bullet Xy$, z is in I, which item or items (if any) would be added to CLOSE[I]? Answer: Add $X \to \bullet \gamma$, y to CLOSE[I].
 - (c) If $A \to \alpha \bullet X\beta$, z is in I, which item or items (if any) would be added to CLOSE[I]? Answer: For any $w \in \text{FIRST}[\beta z]$, add $X \to \bullet \gamma$, w to CLOSE[I].
- 4. (Appel, exercise 3.5.) Consider the following grammar.

$$1 \quad S \rightarrow$$

$$2 \quad S \rightarrow XS$$

$$3 \quad B \rightarrow / \text{begin} \{ \text{word} \}$$

$$4 \quad E \rightarrow / \text{end} \{ \text{word} \}$$

$$5 \quad X \rightarrow BSE$$

$$6 \quad X \rightarrow \{ S \}$$

$$7 \quad X \rightarrow \text{word}$$

$$8 \quad X \rightarrow \text{begin}$$

$$9 \quad X \rightarrow \text{end}$$

$$10 \quad X \rightarrow / \text{word}$$

	nullable	FIRST	FOLLOW
S	yes	$/, \{, \mathbf{word}, \mathbf{begin}, \mathbf{end}$	
В	no	/	
E	no	a, c	b, \$
X	no	С	b, \$

(a) Compute nullable, FIRST, and FOLLOW for all nonterminals of the grammar.

(b) Fill in the LL(1) parse table below for the indicated terminals.

	word	/	{	}	begin	end
S			2			
В		6				
E		4				
X		3 & 10	6		8	9

Answer:

- (c) Is the grammar LL(1)? Answer: No.
- 5. (Appel, exercise 3.11.) Construct the LR(0) parsing table for the following grammar. And, is the grammar SLR? Explain.

6. (Appel, exercise 3.14.) Construct the LR(1) parsing table for the following grammar.