

Florida Institute of Technology

Department of Computer Sciences

Comprehensive Exam (Spring 2004)

SOFTWARE ENGINEERING

Friday, March 12th, 2004; 10:00am – 11:30am

Instructions

� Write the last four digits of your student identification number in the space below.

� This exam consists of 10 pages (including this cover).

� Answer any four (4) of the following six (6) questions. Each question is of equal
value (25%). Circle the questions that you want graded:

1 2 3 4 5 6

(If you leave this blank, questions 1 through 4 will be graded.)

� Use a pen to write your answers in the space provided.

� When a question asks you to “describe,” “discuss,” or “explain” something, it
means you must provide a convincing, lucid, and reasonable answer; simply
stating a fact without any supporting argument is insufficient.

� No study aids (notes, books, etc.) are permitted during the exam.

Good luck!

ID Number:

Florida Tech Comprehensive Exam (Spring 2004) – Software Engineering

2 of 10

For Grading Use Only

Question Worth Grade

1. The Software Lifecycle 25

2. Software Requirements Analysis 25

3. Software Testing 25

4. Design & Implementation of Software 25

5. Software Project Estimation & Planning 25

6. Software Quality Assurance 25

 Total 100

Florida Tech Comprehensive Exam (Spring 2004) – Software Engineering

3 of 10

1. The Software Lifecycle (25%)

A basic software engineering lifecycle model consists of the phases Requirements,
Design, Construction (Implementation), Testing, and Maintenance.

Problem: Which of these phases is the most EXPENSIVE phase – justify your answer.

Grading: 5% for identifying correct phase; 20% for justification.

Florida Tech Comprehensive Exam (Spring 2004) – Software Engineering

4 of 10

2. Software Requirements Analysis (25%)

Getting software requirements right is notoriously difficult. One of the main problems is
getting everyone to agree to the same thing. In other words, developing a common
understanding of the problem, from both a user (requirements definition) and an
engineering (requirements specification) perspective.

Problem: Describe three techniques for representing requirements specifications. Give an
example of two of the three techniques for the same hypothetical system.

Grading: 5% for each clear explanation (15%); 5% for each example (10%).

Florida Tech Comprehensive Exam (Spring 2004) – Software Engineering

5 of 10

3. Software Testing (25%)

Software is often made from independent modules of code that have to be integrated
together to form a complete application.

Problem: Describe “Top-Down Software Integration and Testing” and “Bottom-Up
Software Integration and Testing.” Outline the principals of each approach (including any
additional requirements to assist with testing) as well some strengths and weakness of
each approach.

Grading: 10% for Top-Down description; 10% for Bottom-Up description; 5% for
strengths and weaknesses.

Florida Tech Comprehensive Exam (Spring 2004) – Software Engineering

6 of 10

4. Design & Implementation of Software (25%)

Imagine that for some reason that the <stack> container adapter was not available in the
Standard Template Library (STL). You has been tasked with creating a simplified version
of <stack> matching the following C++ interface:

template <class Item>
class Stack {

 private:
 // implementation-dependent code

 public:
 Stack(int);
 int empty() const; // 1 = empty, 0 otherwise
 void push(Item);
 void pop();
 Item top() const;
};

Problem: Implement a version of <stack> matching this interface using native C++
arrays as the underlying data structure.

Notes:

� Your code must not rely on any aspect of the STL.

� The argument to the Stack constructor specifies the maximum size of the stack.

� If an error is detected, call the predefined routine error(char *). This routine
will print the error message to standard error and terminate the program.

� Make sure your solution is constructed clearly and idiomatically, so that it adheres
to the commonly accepted definition of good coding style.

� Use the other side of the paper as needed.

•

Grading: Correctness: 20%; Style: 5%

Florida Tech Comprehensive Exam (Spring 2004) – Software Engineering

7 of 10

Florida Tech Comprehensive Exam (Spring 2004) – Software Engineering

8 of 10

5. Software Project Estimation & Planning (25%)

Project management and scheduling is an important part of delivering software in a
timely manner.

Problem: Describe the following terms: Milestone, Dependencies, Critical path, Slack
(or slippage) time. Discuss one potential problem of project scheduling.

Grading: Description of each term: 5% each; Discussion of problem: 5%.

Florida Tech Comprehensive Exam (Spring 2004) – Software Engineering

9 of 10

6. Software Quality Assurance (25%)

Of the various software process models that have appeared in the literature, it can be
argued that the Software Engineering Institute’s “Capability Maturity Model for
Software” (SEI SW-CMM®) has had the most impact for large organizations.

Problem: Describe the SW-CMM. Explain each level. Discuss the advantages and
disadvantages of this software process improvement model.

Grading: Description (15%); Advantages & Disadvantages (10%).

Note: Use the blank sheet of paper on the next page as needed.

Florida Tech Comprehensive Exam (Spring 2004) – Software Engineering

10 of 10

