

Florida Institute of Technology

Department of Computer Sciences

Comprehensive Exam (Fall 2005)

SOFTWARE ENGINEERING

Friday, October 28th, 2005; 10:00am – 11:30am

Instructions

� Write the last four digits of your student identification number in the space below.

� This exam consists of 16 pages (including this cover).

� Answer any four (4) of the following seven (7) questions. Each question is of
equal value (25%). Circle the questions that you want graded:

1 2 3 4 5 6 7

(If you leave this blank, questions 1 through 4 will be graded.)

� Use a pen to write your answers in the space provided.

� When a question asks you to “describe,” “discuss,” or “explain” something, it
means you must provide a convincing, clear, and reasonable answer; simply
stating a fact without any supporting argument is insufficient.

� No study aids (notes, books, etc.) are permitted during the exam.

Good luck!

ID Number:

Florida Tech Comprehensive Exam (Fall 2005) – Software Engineering

2 of 16

For Grading Use Only

Question Worth Grade

1. Requirements 25

2. Design 25

3. Construction 25

4. Testing 25

5. Maintenance & Evolution 25

6. Management 25

7. Process 25

 Total 100

Florida Tech Comprehensive Exam (Fall 2005) – Software Engineering

3 of 16

1. Requirements (25%)

Stating software requirements precisely is notoriously difficult. One of the main problems
is getting everyone to agree on the exact meaning of the requirements statements. In other
words, we want to develop requirements in such a way that, upon completion of the
system, both the software engineer and the client can agree on whether or not a specific
requirement has been met.

Problem: Examine the following five requirements. If there are problems with the
requirement, identify the problems and give an example of how the requirement should
be stated. Analyze each requirement independently—not as a group.

Grading: 3% for identifying the problem (if any) (15%); 2% for each example (if
needed) (10%).

Note: Use the blank sheet of paper on the next page as needed.

(a) The system should be secure. We don’t want it hacked!

(b) The user interface has to be easy to use; we’ve been getting a lot of complaints

from our beta testers on the new version. But we can’t remove any of the new
functionality either.

Florida Tech Comprehensive Exam (Fall 2005) – Software Engineering

4 of 16

(c) The new system needs to be interoperable with our other systems and those of our
partners as well. Our competitors too I suppose.

(d) During emergency conditions, the system shall suspend all non-critical functions.

(e) Our developers tell us the program needs to be maintainable.

Florida Tech Comprehensive Exam (Fall 2005) – Software Engineering

5 of 16

2. Design (25%)

Design is a key component of the overall software lifecycle. Good design contributes to
the construction of elegant and bug-free software. There are several timeless guidelines
that have been used by software designers over the years, including:

1. Iterative enhancement

2. Stepwise refinement

3. Information hiding

Problem:

(a) Describe software design by placing it in context of the overall software lifecycle.
Your answer should include a discussion of issues such as the different types of
design (e.g., high-level versus low-level), different design paradigms (e.g., object-
oriented), and different design representations (e.g., UML).

(b) Explain the three timeless software design guidelines shown above.

Grading: (a) Description: 10%; (b) Guidelines: 15%.

Note: Use the blank sheet of paper on the next page as needed.

Florida Tech Comprehensive Exam (Fall 2005) – Software Engineering

6 of 16

Florida Tech Comprehensive Exam (Fall 2005) – Software Engineering

7 of 16

3. Construction (25%)

The uniq program on UNIX removes duplicate lines from sorted data. Suppose, however,
you need to remove duplicate lines from a data file (which might not be sorted), but that
you wish to preserve the line ordering. A good example of this might be a shell history
file. The history file keeps a copy of all the commands you have entered, and it is not
unusual to repeat a command several times in a row, or several times per session.
Occasionally you might wish to compact the history file by removing duplicate entries.
Yet it is desirable to maintain the order of the original commands.

Problem: Construct an elegant and efficient C++ or Java program that implements this
enhanced functionality. Document how your solution works, and the rationale behind
your selection of algorithm(s) and data structure(s).

Input : A text file containing the shell commands. Each line is terminated by the newline
character (‘\n’). Assume that the number of characters per line is usually less than 256.
Assume that the number of lines in the input is usually less than 1,000. Assume that there
are no blank lines in the input.

Output : A printout of the compressed history file in this format:

command # count

where command is the shell command, count is the number of times the command
appeared in history file, and the ‘#’ character separates the two (with a single space on
either side of the ‘#’). Line ordering is important – it must be the same as the input.

Example: Given the following history file data as input:

ls
cat foo
date
ls
ls
cd
cd
ls
cd /tmp; ls
cd cs10/as1
g++ -Wall a2q2.cc -o a2q2
echo darn compiler
cd cs10/as1
cd cs10/as1
cd ~/cs10/a1
g++ -Wall a2q2.cc -o a2q2
a2q2
cd
cd
cd

Florida Tech Comprehensive Exam (Fall 2005) – Software Engineering

8 of 16

Your program will produce exactly the following output:

ls # 4
cat foo # 1
date # 1
cd # 5
cd /tmp; ls # 1
cd cs10/as1 # 3
g++ -Wall a2q2.cc -o a2q2 # 2
echo darn compiler # 1
cd ~/cs10/a1 # 1
a2q2 # 1

Notes:
• Make sure your solution is constructed clearly and idiomatically, so that it adheres

to the commonly accepted definition of good coding style.

• Be sure to properly comment your program; explain how the solution works and
why you selected particular algorithm(s) and data structure(s).

• Provide citations to references you may have used in constructing your solution.

• Input to the program will come from standard input. Output must be to standard
output. Do not prompt for input, nor produce spurious output.

• Use the other side of the paper as needed.

Grading: Correctness: 15%; Documentation: 5%; Style: 5%

Florida Tech Comprehensive Exam (Fall 2005) – Software Engineering

9 of 16

Florida Tech Comprehensive Exam (Fall 2005) – Software Engineering

10 of 16

4. Testing (25%)

There are many different types of strategies commonly used for software testing.
However, the strategies can be broadly classified into two distinct categories: “Black
Box” testing and “White Box” (aka “Glass Box”) testing.

Problem:

(a) Describe “Black Box” testing and “White Box” testing. Include in your
description an explanation of the difference(s) between the two categories, and the
advantages and disadvantages of each. (20%)

(b) Comment on who should do “Black Box” testing: the developer or someone else.

Grading: (a) Description of each software testing category: 10% each; (b) 10% for well-
written discussion.

Note: Use the blank sheet of paper on the next page as needed.

Florida Tech Comprehensive Exam (Fall 2005) – Software Engineering

11 of 16

Florida Tech Comprehensive Exam (Fall 2005) – Software Engineering

12 of 16

5. Maintenance & Evolution (25%)

Maintenance is the act of modifying a program after system deployment. Following good
software practice doesn’t negate the need for maintenance—just its severity. In fact,
maintenance is the most common form of evolution.

Problem:

(a) Describe the three most common types of software maintenance. Be sure to
provide examples of each type of maintenance using realistic scenarios.

(b) Discuss how software maintenance differs from software development.

Grading: (a) 5% for each description; (b) 10% for a clear discussion of the main issues.

Note: Use the blank sheet of paper on the next page as needed.

Florida Tech Comprehensive Exam (Fall 2005) – Software Engineering

13 of 16

Florida Tech Comprehensive Exam (Fall 2005) – Software Engineering

14 of 16

6. Management (25%)

There is a lot of jargon associated with software engineering. This is particularly true for
software engineering project management. Nevertheless, understanding such terms is
important for properly managing a software project, for instance in terms of scheduling.

Problem: Explain the terms shown below in the context of project management.

Grading: 5% for each clear explanation.

(a) Output

(b) Outcome

(c) Milestone

(d) Deliverable

(e) Critical Path

Florida Tech Comprehensive Exam (Fall 2005) – Software Engineering

15 of 16

7. Process (25%)

Process models are useful instruments to help software engineers manage large-scale
projects. For example, the models can provide guidance in the context of improving
software quality. Three of the software engineering process models commonly discussed
are the waterfall model, the evolutionary model, and the spiral model.

Problem:

(a) Clearly explain each of these three process models. Draw diagrams of their
phases. Describe the relative advantages and disadvantages of each model.

(b) Under which circumstances would one choose the waterfall model over the other
models? Clearly explain why. Provide a realistic example to support your answer.

Grading: (a) 5% for each process model (including diagrams and discussion); (b) 10%

Note: Use the blank sheet of paper on the next page as needed.

Florida Tech Comprehensive Exam (Fall 2005) – Software Engineering

16 of 16

