

Florida Institute of Technology

Department of Computer Sciences

Comprehensive Exam (Spring 2006)

SOFTWARE ENGINEERING

Friday, March 17th, 2006; 10:00am – 11:30am

Instructions

� Write the last four digits of your student identification number in the space below.

� This exam consists of 16 pages (including this cover).

� Answer any four (4) of the following seven (7) questions. Each question is of
equal value (25%). Circle the questions that you want graded:

1 2 3 4 5 6 7

(If you leave this blank, questions 1 through 4 will be graded.)

� Use a pen to write your answers in the space provided.

� When a question asks you to “describe,” “discuss,” or “explain” something, it
means you must provide a convincing, clear, and reasonable answer; simply
stating a fact without any supporting argument is insufficient.

� No study aids (notes, books, etc.) are permitted during the exam.

Good luck!

ID Number:

Florida Tech Comprehensive Exam (Spring 2006) – Software Engineering

2 of 16

For Grading Use Only

Question Worth Grade

1. Requirements 25

2. Design 25

3. Construction 25

4. Testing 25

5. Maintenance & Evolution 25

6. Management 25

7. Process 25

 Total 100

Florida Tech Comprehensive Exam (Spring 2006) – Software Engineering

3 of 16

1. Requirements (25%)

Stating software requirements precisely is notoriously difficult. One of the main problems
is getting everyone to agree on the exact meaning of the requirements statements. A very
common way of expressing functional requirements is to use prose, with each
requirement expressed as a simple sentence describing an action or behavior expected of
the system. Such sentences are typically referred to as the “shalls,” as in “The system
shall process Web server log files.”

To improve the chances that a requirement will not be misinterpreted, good practice
states that each requirements statement should be accompanied by:

• The rationale for the requirement;

• The source of the requirement;

• The acceptance criteria for ensuring the final product satisfies the requirement;

• Potential conflicts with other requirements; and

• Traceability back to a higher level specification (e.g., Use Case, Business Event).

Problem: For each of these 5 accompanying components:

(a) Explain how each component aids understanding of the requirements statement.

(b) Provide a specific example of how a problem could occur if the component were
omitted from the requirements statement (5 problems in all).

Grading: (a) 3% for each clear explanation (15%); (b) 2% for each example (10%).

Note: Use the blank sheet of paper on the next page as needed.

Florida Tech Comprehensive Exam (Spring 2006) – Software Engineering

4 of 16

Florida Tech Comprehensive Exam (Spring 2006) – Software Engineering

5 of 16

2. Design (25%)

Design is a key component of the overall software lifecycle. Good design contributes to
the construction of elegant and bug-free software. During high-level design, once the
overall system organization has been chosen, one needs to make a decision on the
approach to be used in decomposing sub-systems into modules. Sub-systems are
composed of modules and have defined interfaces, which are used for communication
with other subs-systems. A module is a lower-level artifact than a sub-system that is
composed from a number of other simpler system components.

Problem:

(a) Describe object-oriented decomposition. Clearly identify the advantages and
disadvantages of this approach to sub-system decomposition. Given an example
of object-oriented decomposition for a hypothetical system’s design.

(b) Describe function-oriented pipelining. Clearly identify the advantages and
disadvantages of this approach to sub-system decomposition. Given an example
of function-oriented pipelining for a hypothetical system’s design.

(c) Discuss the applicability of the Unified Modeling Language (UML) as a design
aid for each of these two sub-system decomposition techniques.

Grading: (a) 10%; (b) 10%; (c) 5%.

Note: Use the blank sheet of paper on the next page as needed.

Florida Tech Comprehensive Exam (Spring 2006) – Software Engineering

6 of 16

Florida Tech Comprehensive Exam (Spring 2006) – Software Engineering

7 of 16

3. Construction (25%)

Trees are one of the essential data structures used in software construction.

Problem: Consider a binary tree with integer values in its nodes.

(a) Write the C/C++ class/struct(s) that implement(s) such a binary tree.

(b) Construct an elegant and efficient recursive C/C++ function that takes such a
binary tree and returns the number of nodes with integer values that are even.

Notes:

• Make sure your solution is constructed clearly and idiomatically, so that it adheres
to the commonly accepted definition of good coding style.

• Be sure to properly comment your program; explain how the solution works and
why you selected particular algorithm(s) and data structure(s).

• Include defensive programming techniques in your solution.

• Use the other side of the paper as needed.

Grading: Correctness: 15%; Documentation: 5%; Style: 5%

Florida Tech Comprehensive Exam (Spring 2006) – Software Engineering

8 of 16

Florida Tech Comprehensive Exam (Spring 2006) – Software Engineering

9 of 16

4. Testing (25%)

Software testing plays a key role in ensuring overall product quality and effectiveness.
One of the difficulties in testing is knowing when to stop. While one would like as
complete a testing procedure as possible, like all software engineering activities, testing
must take place within a realistic context of limited resources.

Problem:

(a) Explain the definition of “coverage” in software testing.

(b) Describe three different types of coverage that can be measured. For each one,
describe a type of bug that you would be certain to find with this type of coverage
and describe a type of bug that you might miss even if you achieved 100% of this
type of coverage.

Grading: (a) 7%; (b) 6% for each description (18%).

Note: Use the blank sheet of paper on the next page as needed.

Florida Tech Comprehensive Exam (Spring 2006) – Software Engineering

10 of 16

Florida Tech Comprehensive Exam (Spring 2006) – Software Engineering

11 of 16

5. Maintenance & Evolution (25%)

Maintenance is the act of modifying a program after system deployment. Following good
software practice doesn’t negate the need for maintenance—just its severity. In fact,
maintenance is the most common form of evolution.

Problem:

(a) Describe the three most common types of software maintenance. Be sure to
provide examples of each type of maintenance using realistic scenarios.

(b) Discuss how software maintenance differs from software development.

Grading: (a) 5% for each description; (b) 10% for a clear discussion of the main issues.

Note: Use the blank sheet of paper on the next page as needed.

Florida Tech Comprehensive Exam (Spring 2006) – Software Engineering

12 of 16

Florida Tech Comprehensive Exam (Spring 2006) – Software Engineering

13 of 16

6. Management (25%)

Estimating the cost and effort required for a particular task in a software project is an
important management activity.

Problem:

(a) Describe two classes of productivity measures that are commonly used to aid cost
and effort estimation. Note that in this context, a class refers to a generic category
of productivity measure, not to a specific type.

(b) Give specific examples of each class of productivity measure that are commonly
used in practice.

(c) Comment on the advantages and disadvantages of each example.

Grading: (a) 5% for each class description (15%); (b) 5% for each example (10%); (c)
5% for a discussion of the relative advantages and disadvantages of each example.

Note: Use the blank sheet of paper on the next page as needed.

Florida Tech Comprehensive Exam (Spring 2006) – Software Engineering

14 of 16

Florida Tech Comprehensive Exam (Spring 2006) – Software Engineering

15 of 16

7. Process (25%)

Process models are useful instruments to help software engineers manage large-scale
projects. For example, the models can provide guidance in the context of improving
software quality. Three of the software engineering process models commonly discussed
are the waterfall model, the evolutionary model, and the spiral model.

Problem:

(a) Clearly explain each of these three process models. Draw diagrams of their
phases. Describe the relative advantages and disadvantages of each model.

(b) Under which circumstances would one choose the waterfall model over the other
models? Clearly explain why. Provide a realistic example to support your answer.

Grading: (a) 5% for each process model (including diagrams and discussion); (b) 10%

Note: Use the blank sheet of paper on the next page as needed.

Florida Tech Comprehensive Exam (Spring 2006) – Software Engineering

16 of 16

