Florida Institute of Technology

Department of Computer Sciences

Comprehensive Exam (Spring 2009)

SOFTWARE ENGINEERING

Tuesday. March 24™, 2009: 10:00am — 11:30am

Instructions

o Write your student identification number in the space below.
a This exam consists of 17 pages (including this cover).
o The exam consists of two parts:

* You must answer Questions 1, 2, 3,4 and 5.

* Answer any one (1) of Questions 6, 7, or 8

=» Circle the one question that you want graded:
6 7 8

(If you leave this blank, Question 6 will be graded.)

a Use a pen to write your answers in the space provided.

0 When a question asks you to “describe,” “discuss,” or “explain” something, it
means you must provide a convincing, clear, and reasonable answer; simply
stating a fact without any supporting argument is insufficient.

0 No study aids (notes, books, etc.) are permitted during the exam.

Good luck!

ID Number:

Florida Tech Comprehensive Exam (Spring 2009) — Software Engineering

~ For Grading Use Only
_Question

1. General Knowledge 10
2. General Knowledge 5

3. Requirements 20
4. Design 20
5. Construction 20
6. Testing 25
7. Maintenance & Evolution 25
8. Process 25

Total | 100

20f17

Florida Tech Comprehensive Exam (Spring 2009) — Software Engineering

1. General Knowledge - True/False (10%)

Grading: 1% for each correct answer; total 10 questions.

Note: Circle either T (true) or F (false) for each question. Circling both T and F will
result in 0 points for that question.

Software engineering is only concerned with the technical
(a) | activities of the software life cycle, such as requirement, T F
design, construction, testing, and maintenance & evolution.

(b) It is generally accepted that one cannot have weak software T F
processes and still create high-quality software products.

The use of assertions in source code is an effective means of
(c) |. . . T F
implementing black-box testing.

Functional requirements are more important than non-
(d) | functional requirements. As long as functional requirements T F
are met, meeting non-functional requirements are optional.

(e) | One can overload whitespace as an operator in C++. T F

0 In UML diagrams, use-case actors always refer to people; T F
they can never be hardware devices.

Requirements Specification refers to a complete list of what

(g) | the customer expects the system to do, from the user’s point T F
of view.

(h) | Linked lists can be implemented using arrays. T F
The three most common types of software maintenance are T F

() contemplative, adaptive, and perfective.

Extreme Programming (XP) is a heavyweight software T F
process model.

0

3of 17

Florida Tech Comprehensive Exam (Spring 2009) — Software Engineering

2. General Knowledge - Multiple Choice (5%)

Grading: 1% for each correct answer; total 5 questions.

Note: For each question, please sclect only ome answer that best suits the question.
Selecting no answer or more than one answer will result in 0 points for that question.

1. Software deteriorates rather than wears out because:
(a) Software suffers from exposure to hostile natural environments
(b) Defects are more likely to arise after software has been used often
(c) Multiple change requests introduce errors in component interactions
(d) Software spare parts become harder to order
(e) All of the above

2. If a specification statement is to be testable then one of the properties it must have is:
(a) Tenacity
(b) Probability
(¢) Usability
(d) Traceability
(e) None of the above

3. A common solution used in real-world situations by knowledgeable programmers to
deal with a component that encounters an error during processing is to:

(a) Return an error value to the callee
(b) Throw an exception

(c) Set a status flag

(d) All of the above

(e) None of the above

4 of 17

Florida Tech Comprehensive Exam (Spring 2009) — Software Engineering

4. A common metric for estimating the effort to develop a software product is:
(a) Function Points (FP)
(b) Lines of Comments (LOC)
(c) COCOMO
(d) Bytes
(e) None of the abov

5. Use-case diagrams:
(a) Describe what the system should do
(b) Display object interactions arranged in a time sequence
(c) Are collections of objects with the same characteristics
(d) All of the above
(e) None of the above

50f 17

Florida Tech Comprehensive Exam (Spring 2009) — Software Engineering

3. Requirements (20%)

Getting software requirements right is notoriously difficult. One of the main problems is
getting everyone to agree to the same thing. In other words, developing a common
understanding of the problem, from both a user (requirements definition) and an
engineering (requirements specification) perspective.

Problem:
(a) Describe three techniques for representing requirements specifications.
(b) What is requirements traceability and why is it important?

Grading: (a) 5% for each clear explanation (15%); (b) 5%.

Note: Use the blank sheet of paper on the next page as needed.

6 of 17

Florida Tech Comprehensive Exam (Spring 2009) — Software Engineering

7 of 17

Florida Tech Comprehensive Exam (Spring 2009) — Software Engineering

4. Design (20%)

Design is a key component of the overall software lifecycle. Good design contributes to
the construction of elegant and bug-free software. During high-level design, once the
overall system organization has been chosen, one needs to make a decision on the
approach to be used in decomposing sub-systems into modules. Sub-systems are
composed of modules and have defined interfaces, which are used for communication
with other subs-systems. A module is a lower-level artifact than a sub-system that is
composed from a number of other simpler system components.

Problem:

(a) Describe object-oriented decomposition. Clearly identify the advantages and
disadvantages of this approach to sub-system decomposition. Given an example
of object-oriented decomposition for a hypothetical system’s design.

(b) Describe function-oriented pipelining. Clearly identify the advantages and
disadvantages of this approach to sub-system decomposition. Given an example
of function-oriented pipelining for a hypothetical system’s design.

Grading: (a) 10%; (b) 10%;

Note: Use the blank sheet of paper on the next page as needed.

8 of 17

Florida Tech Comprehensive Exam (Spring 2009) — Software Engineering

9of 17

Florida Tech Comprehensive Exam (Spring 2009) — Software Engineering

5. Construction (20%)

Trees are one of the essential data structures used in software construction.

Problem: Consider a binary search tree with integer data values in its nodes:

struct Node {

int value;

Node *left, *right;
}s

(a) Construct an elegant and efficient recursive C/C++ function that takes such a
binary tree and returns the number of nodes with integer values that are odd.

(b) What is the runtime performance of your recursive solution from part (a) in O(n)
notation? Be sure to explain your answer. Document all assumptions.

(c) Redo part (a) but make your C/C++ function iterative.

Notes:

* Make sure your solution is constructed clearly and idiomatically, so that it adheres
to the commonly accepted definition of good coding style.

* Your solution cannot make use of the Standard Template Library (STL).

* Be sure to properly comment your program; explain how the solution works and
why you selected particular algorithm(s) and data structure(s).

* Include defensive programming techniques in your solution.
* Use the other side of the paper as needed.

Grading: (a): 10%; (b): 5%; (c): 5%

10 of 17

Florida Tech Comprehensive Exam (Spring 2009) — Software Engineering

110f 17

Florida Tech Comprehensive Exam (Spring 2009) — Software Engineering

6. Testing (25%)

There are many different types of strategies commonly used for software testing.
However, the strategies can be broadly classified into two distinct categories: “Black
Box” testing and “White Box” (aka “Glass Box”) testing.

Problem:
(a) Describe “Black Box” testing and “White Box” testing. Include in your

description an explanation of the difference(s) between the two categories, and the
advantages and disadvantages of each.

(b) Comment on who should do “Black Box™ testing: the developer or someone else.

Grading: (a) Description of each software testing category: 10% each; (b) 5%.

Note: Use the blank sheet of paper on the next page as needed.

12 of 17

Florida Tech Comprehensive Exam (Spring 2009) — Software Engineering

13 of 17

Florida Tech Comprehensive Exam (Spring 2009) — Software Engineering

7. Maintenance & Evolution (25%)

Evolution is an important activity of the software lifecycle. In the 1980s, Lehman and
Belady examined the growth and evolution of a number of large software systems. Based
on their measurements from these studies, they proposed a set of five hypotheses, known
as “Lehman’s Laws,” concerning system change. They claim that these “laws” are

invariant and widely applicable.

Problem: Describe all five of Lehman’s Laws. Include commentary on the validity of
each of these laws as applied to today’s software-intensive systems.

Grading: 5% for each description and commentary.

Note: Use the blank sheet of paper on the next page as needed.

14 of 17

Florida Tech Comprehensive Exam (Spring 2009) — Software Engineering

150f 17

Florida Tech Comprehensive Exam (Spring 2009) — Software Engineering

8. Process (25%)

Of the various software process models that have appeared in the literature, it can be
argued that the Software Engineering Institute’s “Capability Maturity Model for
Software” (SEI SW-CMM®) has had the most impact for large organizations.

Problem:
(a) Describe the SW-CMM. Explain each level. Provide a diagram.

(b) Discuss the advantages and disadvantages of this process improvement model.
Grading: (a) 15%; (b) 10%.

Note: Use the blank sheet of paper on the next page as needed.

16 of 17

Florida Tech Comprehensive Exam (Spring 2009) — Software Engineering

17 of 17

