Operating Systems Comprehensive Exam

Fall 2005

Student ID # _____

10/27/2005

You must complete all of part I (60%)

You must complete two of the three sections in part II (20% each)

Part I: You must complete all of this section.

1.	linked libraries can support shared library code, allowing one copy of a library routine to be used by several different processes.								
	absolute	relative	static	dynamic	none of	these is correct			
2.	When it is not known at compile time where a process will reside in memory,								
	logical	physical	abso	olute	relocatal	ble			
3.	A UNIX proces	ss calls fork()	to create a chil	d process as sł	nown:pid = 1	fork();			
	a) What value	will be assigned to	pid in the pa	arent process b	y the call to fo	rk()?			
	the parent's	s process id	the child's j	process id	zero	none of these			
	b) What value	will be assigned to	pid in the ch	nild process by	the call to for	k()?			
	the parent's	s process id	the child's]	process id	zero	none of these			
4.	Memory compa	action can be used	to minimize th	e effects of		fragmentation.			
	inte	ernal	external	ne	either answer is	s correct			
5.	The Banker's al	gorithm is used fo	r deadlock		·				
	denial	prevention	avoi	idance	recovery				
6.	Belady's anoma	ly can affect the p	erformance of	the	p	age replacement algorithm.			
	FIF	O LRU	opti	imal S.	IF				
7.	records in no pa		es are made of	fixed length r	ecords that allo	w programs to read and write			
	sequential	direc	t logi	cal no	one of these is c	correct			
8.	When an I/O request is being handled for a user's process, which term refers to the policy of returning control to the user process before the I/O is completed?								
	synchronous I/	/O async	hronous I/O	de	elayed I/O	none of these			
9.	Which multithr	eading model requ	uires that a new	kernel thread	be created for e	each new user thread?			
	many-to-one	one-t	o-one	many-to-	many noi	ne of these is correct			
10.	A process that o	does not affect, an	d is not affecte	d by, another	process is referr	red to as:			

static

independent

cooperating

ng

dynamic

unbounded

11. _____ File allocation method that stores all file block pointers in one block. Situation that occurs when a process spends more time paging than executing. 12. _____ File allocation method that has each disk block point to the next block in the file. 13. _____ 14. A synchronization tool used to control access to critical sections. The main advantage of using a layered OS design. 15. _____ Α. binding в. linked allocation C. increased modularity D. external deadlock indexed allocation Ε. F. contiguous allocation semaphore G. н.

Matching: choose the best answer for each question from the list below:

I.

thrashing

16.		is the separation of a user's log	ical memory f	rom physical memory and is commonly
17.		implemented by		
18.		To reduce the number of entries	s in a file alloc	cation table, file blocks are grouped into these
19.		Allows I/O devices to transfer of	lata to memor	y without passing it through the CPU.
20.		Occurs when attempting to acce	ess a page that	is not in memory.
	C. E. G.	threads fragmentation	D. F. H. K.	device driver limit register virtual memory deadlock direct memory addressing compaction

Κ.

improved performance

21. Briefly explain what happens during the context switch between the execution of two processes?

Matching: choose the best answer for each question from the list below:

22. For the following, indicate which type of fragmentation is possible (circle one):

(a) Memory paging:	Internal	External	Both are possible
(b) Memory segmentation:	Internal	External	Both are possible
(c) Linked file allocation:	Internal	External	Both are possible
(d) Contiguous file allocation:	Internal	External	Both are possible

23. Name the four necessary conditions for a deadlock:

24. List two of the criteria used for comparing CPU scheduling algorithms and explain what they measure:

25. A solution to the critical section problem must satisfy three requirements, name **two** of them:

II. You must complete two of the following three sections. If you complete more than two sections, clearly indicate which two sections that you want graded. Otherwise, the first two sections will be graded and the third ignored.

A. Given the following set of processes, answer the questions below. Assume that each new process arrives after the interrupted process has been returned to the ready queue. If two processes arrive at the same time, or have the same remaining burst time, schedule them in process number order.

Process Id	Burst Time	Arrival Time
1	5	0
2	3	1
3	6	3
4	4	4

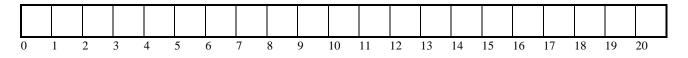
Fill in the following Gantt charts as specified and answer the questions associated with each part. Write the <u>process number</u> of the executing process in the cell for each time unit.

1) **First-Come-First-Served** (non-preemptive):

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Average waiting time =

Which process had the longest response time _____


2) **Shortest-job-first** (preemptive):

Average waiting time =

What was the turnaround time for process 1 _____

3) **Round Robin** (time slice (quantum) is 2 time units):

Average waiting time =

What was the turnaround time for process 4 _____

B. Given the following list of page references, in execution order:

5, 1, 3, 4, 5, 2, 3, 2, 5, 1, 4, 2

Given the number of available frames shown in the table below, how many page faults will occur for each of the following page replacement algorithms? (All pages are initially empty.)

You must show your work to receive partial credit, otherwise only your answers will count.

Algorithm	# of page faults
FIFO with 4 frames	
LRU with 3 frames	
Optimal with 3 frames	

C. Assume that $X_{i,j}$ is a semaphore synchronizing processes i and j, and that all $X_{i,j}$ are initialized to 0. Let S_i represent the statements defining process P_i . On the right of the page, construct a precedence graph showing the order in which the processes will execute. Represent the process P_i with a circle and show a precedence relationship between 2 processes with an arrow.

P ₁ :	<pre>{ wait(X_{5,1}); wait(X_{6,1}); S₁; }</pre>	Example:	(P ₁)	P ₂
P ₂ :	<pre>{ wait(X_{3,2}); signal(X_{2,5}); S₂; wait(X_{6,2}); }</pre>			
P ₃ :	{ S ₃ ; signal(X _{3,2}); signal(X _{3,6}); }			
P ₄ :	{ wait(X _{6,4}); signal(X _{4,5}); S ₄ ; }			
P ₅ :	{ wait(X _{2,5}); S ₅ ; wait(X _{4,5}); signal(X _{5,1}); }			
P ₆ :	<pre>{ wait(X_{3,6}); S₆; signal(X_{6,1}); signal(X_{6,2}); signal(X_{6,4}); }</pre>			