Operating Systems Comprehensive Exam

Spring 2011

Student ID # _____

2/17/2011

You must complete all of Section I

You must complete two of the problems in Section II

If you need more space to answer a question, use the back of a page and indicate which question is being answered.

Section I: You must complete all problems in this section.

1. When an I/O request is being handled for a user's process, which term refers to the policy of returning control to the user process before the I/O is completed?

synchronous I/O	asynchronous I/O	delayed I/O	none of these
-----------------	------------------	-------------	---------------

2. Which of the following process scheduling algorithms can potentially result in starvation?

	First-Come, First-Served	d Round Robin	Short	test Job Next	none of	these
3.	Given the following segm	ent table:				
			ſ	Segment	Base	Length
	Calculate the correct phys			0	450	170
	following logical addresses [segment, offset],			1	240	110
	indicate any addressing er	rors that occur.		2	350	100
				3	620	180
	a) [3, 150] physical a	uddress?				
	b) [2, 105] physical a	address?				
Ma	atching: choose the best	answer for each question t	from the	list below:		
4.	The term	refers to a software-g	generated i	interrupt.		
5.	If a page's	is set, the page mu	st be writt	en to disk before	e it is replaced	1.
6.	provide a	programming interface to the	services p	provided by the	OS.	
7.	proces	sses can affect or be affected b	by the exec	cution of another	· process.	
8.	When a process uses a process gets the message.	send to delive	er a messa	ge, it must wait	until the recei	ving
9.	The module give	ives control of the CPU to the	process se	elected by the sh	ort-term sche	duler.
	A. mutex	B. job scheduler	С. со	operating		
	D. limit register	E. kernel mode		vivileged instruction	ctions	
	G. blocking	H. atomic	-	spatcher		
	8			-		
	K. system calls	L. invalid bit		ndependent		
	N. dirty bit	O. asynchronous	P. tr	ар		

10.	The working set n	nodel for paging is based	upon the assumption of		·	
	locality	fragmentation	static linking	none of the	ese	
11.	If a system is in an	unsafe state, it is guaran	teed that a deadlock will	occur.	True	False

Briefly explain your choice, i.e., why is your answer correct?

12. a) Does the following pair of operations correctly implement a *Semaphore* (assume that S is initially 1)?

<pre>wait(S) {</pre>	signal(S) {
<pre>while(S < 0);</pre>	S++;
S;	}
}	

Yes

No

If not, briefly explain the error:

b) Assuming that the above Semaphore is either correct, or has been corrected, briefly explain two potential problems with (or disadvantages of) using this Semaphore to control access to a critical section.

13. A file handle (or file descriptor) is a pointer into the ______.

open file table	file control block	directory	file allocation table

14. List the three requirements that must be satisfied to implement a valid critical section:

15. a) Briefly explain the difference between internal and external fragmentation

b) give one example of a file allocation approach that can suffer from internal fragmentation and one example of a file allocation approach that can suffer from external fragmentation

16. Briefly explain the difference between deadlock avoidance and deadlock prevention:

Section II: You must complete two of the following three problems (A, B and C). If you complete more than two problems, clearly indicate which two problems you want graded. Otherwise, only the first two attempted problems will be graded.

A. Consider the following list of disk access requests, in arrival order. For each disk scheduling algorithm, calculate the number of tracks that the read/write head crosses without stopping. The disk drive has 200 tracks, from 0 to 199, and the read/write head has a starting location of track **45**.

You must show your work to receive partial credit, without it an incorrect answer gets zero points.

65, 128, 150, 87, 79, 126, 51, 33

(a) First-Come, First-Served

(b) Shortest Seek Time First

Consider a paging system with the page table stored in memory.

(a) If a memory reference takes 10 microseconds, what is the effective memory access time (with no TLB)?

_____ microseconds

_____ microseconds

⁽b) We add a TLB where the time needed to find a page reference in the TLB is 4 microseconds. If the TLB contains 75% of the page references (assume that all TLB misses are still in memory), what is the effective memory access time?

B. Suppose that the following processes arrive for execution at the sequence P1, P2, then P3. Each process will run for the amount of time listed. In answering the questions below, use non-preemptive scheduling, and base all the decisions on the information you have at the time the decision must be made. Assume that all three processes are available at the start.

======= Process	Burst Time
P1	5
P2	2
P3	4

Justify your answer by drawing the corresponding Gantt chart for each case.

(a) What is the average waiting time for these processes using the FCFS scheduling algorithm?

(b) What is the average waiting time for these processes using the SJF scheduling algorithm?

(c) How many context switches will take place in total when using a Round-robin scheduling with quantum = 2?

C. a) Describe Belady's anomaly for page replacement.

b) Given the following list of page references, in execution order:

1, 2, 3, 4, 1, 3, 4, 5, 2, 1, 4, 3

Trace the LRU page replacement algorithm with only 3 frames available for pages (All pages are initially empty.) You must **show your work** to receive full credit.

Trace the LRU page replacement algorithm with only 4 frames available for pages (All pages are initially empty.) You must **show your work** to receive full credit.