Sign the exam with your student number - not your name

Answer all three questions to the best of your ability.

1. (40 pts) Provide a time and space analysis of the shaker sort algorithm below. (author Jason Harrison@cs.ubc.ca, with modifications by wds@cs.fit.edu 11/7/00)

```
\langle Shaker\ Sort\ 1\rangle \equiv
1
        void shakerSort(int a[]) throws Exception {
             int i = 0; int k = a.length-1;
             while (i < k) {
                int min = i; int max = i; int j;
                for (j = i + 1; j \le k; j++) \{
                     if (a[j] < a[min]) { min = j; }</pre>
                     if (a[j] > a[max]) \{ max = j; \}
                }
                int T = a[min]; a[min] = a[i]; a[i] = T;
                if (max == i) {
                   T = a[min]; a[min] = a[k]; a[k] = T;
                } else {
                   T = a[max]; a[max] = a[k]; a[k] = T;
                i++; k--;
            }
        }
```

2. (40 pts) Consider the following algorithm that finds the maximum element in an array  $A[0 \dots n-1]$ . Find a recurrence relation (and initial condition) that characterizes the running time complexity of the algorithm. Solve the recurrence you found.

```
⟨Maximum Element in Array 2⟩

public int maximum(int[] A, int lo, int hi) {
   if (hi - lo <= 1) {
      return (A[x] < A[y]) ? A[y] : A[x];
   }

   else {
      int max1 = maximum(A, lo, (lo + hi)/2);
      int max2 = maximum(A, (lo + hi)/2 + 1, hi);
      return (max1 < max2) ? max2 : max1;
   }
}
</pre>
```

- 3. (20 pts) A little problem: "Rotate an array of N elements left by I positions." For example, with N=8 and I=3, the array ABCDEFGH is rotated to DEFGHABC.
  - (a) Write a simple program (in the language of your choice) to do the job.
  - (b) What is the time and space complexity of your solution?
  - (c) Can you show how to rotate the array in time proportional to N in constants space?