Analysis of Algorithms Comprehensive Examination, Fall 2001

Sign the exam with your student number - not your name

Answer all questions to the best of your ability.

1. (30 pts) The function addodds() receives a start index (min), an end index (max), and
a data array (ele) and sums up all odd numbers in the array between the start and end
indices. The function returns the resulting sum. Provide a time complexity analysis of
the addodds () algorithm and a big-O approximation of its asymptotic growth. Assume
the initial call is: addodds (0, n-1, ele); and that n = 2P for some power p.

1 (Add Odds 1)=
int addodds(int min,int max,int *ele) {

int x,y;

if (min==max) { /*Base casex*/
if ((1==elelminl%2)) { /*Checking for odd number */

return ele[min]; /*Return oddsx/

}
else { return 0; } /*¥Return 0’s if evenx/

else { /*Recursive casex/
x=addodds (min, (min+max)/2,ele) ; /*Recursive call 1st halfx/
y=addodds (1+(min+max)/2,max,ele); /* 2nd halfx*/
return x+y; /*Return the sum*/

}

1of4



2. (30 pts) Here’s a snipet of code from Knuth’s Stanford GraphBase:

(Knuth Snipet 2)=
nn[0]=nn[1]=1;
for (k=2;k<=n;k++) { nn[k]=0; }
for (j=2;j<=max_height;j++) {
for (k=n-1;k>0;k-—-) {
for (s=0,i=k;i>=0;i--) { s+=nn[i]l*nn[k-il; } /* overflow impossible */
nnl[k+1]=s;
}
}

nverts=nn[n];

Express the time complexity of the code as a function of n and max_height.

2 of 4



3. (30 pts) Solve the recurrence relation

T(n)=T(n—1)+2"+n+1 T(0)=0.

3of4



4. (10 pts) Suppose an array X|[0..n — 1] has been sprinkled with random real numbers
chosen uniformly over the range [0, 1], and consider the code fragment:

(average case analysis 4)=
float max = X[1];
for (int i = 2; i < n; i++) {
if (max < X[i]) {
max = X[i];
}
}

What is the expected number of times that the variable max will be re-set? That is, what
is the average time complexity of the statement max = X[i] that is inside the for loop?

4 of 4



