Sign the exam with your student number - not your name

Answer all questions to the best of your ability.

1. (30 pts) The function addodds() receives a start index (min), an end index (max), and a data array (ele) and sums up all odd numbers in the array between the start and end indices. The function returns the resulting sum. Provide a time complexity analysis of the addodds() algorithm and a big-O approximation of its asymptotic growth. Assume the initial call is: addodds(0, n-1, ele); and that $n = 2^p$ for some power p.

```
\langle Add \ Odds \ 1 \rangle \equiv
1
      int addodds(int min,int max,int *ele) {
         int x,y;
         if (min==max) {
                                                 /*Base case*/
             if ((1==ele[min]%2)) {
                                                 /*Checking for odd number */
                return ele[min];
                                                  /*Return odds*/
              else { return 0; }
                                                 /*Return 0's if even*/
         else {
                                                  /*Recursive case*/
             x=addodds(min,(min+max)/2,ele);
                                                   /*Recursive call 1st half*/
             y=addodds(1+(min+max)/2,max,ele);
                                                   /* 2nd half*/
                                                   /*Return the sum*/
             return x+y;
        }
      }
```

2. (30 pts) Here's a snipet of code from Knuth's Stanford GraphBase:

Express the time complexity of the code as a function of n and max_height.

3. (30 pts) Solve the recurrence relation

$$T(n) = T(n-1) + 2^n + n + 1$$
 $T(0) = 0$.

4. (10 pts) Suppose an array X[0..n-1] has been sprinkled with random real numbers chosen uniformly over the range [0, 1], and consider the code fragment:

```
4     ⟨average case analysis 4⟩≡
          float max = X[1];
          for (int i = 2; i < n; i++) {
                if (max < X[i]) {
                     max = X[i];
                }
           }
}</pre>
```

What is the expected number of times that the variable max will be re-set? That is, what is the average time complexity of the statement max = X[i] that is inside the for loop?