
Analysis of Algorithms Comprehensive Examination, Fall 2002

Sign the exam with your student number - not your name

Answer the following questions to the best of your ability.

1. (30 pts) Give big-O estimates on the size of the following sums.

• ∑n
i=1 1

• ∑n
i=1 i

• ∑n
i=0 2i

• ∑n
i=1

1
i

• ∑n
i=1 lg i

• ∑n
i=1 i lg i

1 of 4

2. (20 pts) What is the time and space complexity of the algorithm given below.

longestCommonSubsequence(String X, String Y) {

int m = X.length();

int n = Y.length();

int C[m][n];

int B[m][n];

for (int i = 0; i < m; i++) { C[i][0] = 0; }

for (int j = 0; j < n; j++) { C[0][j] = 0; }

for (int i = 1; i < m; i++) {

for (int j = 1; j < n; j++) {

if (X.charAt(i) == Y.charAt(j)) {

C[i][j] = C[i-1][j-1]+1;

B[i][j] = 0;

}

else if (c[i-1][j] >= c[i][j-1]) {

C[i][j] = C[i-1][j];

B[i][j] = 1;

}

else {

C[i][j] = C[i][j-1];

B[i][j] = 2;

}

}

}

}

2 of 4

3. (20 pts) The algorithm given below solves the matrix chain multiplication problem:
given a multiplication chain A1A2 · · ·An of matrices specify the order of multiplications
to minimize the scalar multiplications. This minimum number is returned as m[1][n],
and the array p[] holds the orders of the matrices (A1 is p0 × p1, A2 is p1 × p2, . . .An

is pn−1 × pn).

#define INFINITY MAX_VALUE // 2147483647

matrix-chain(int[] p, int} i, int j) {

if (i == j) { return 0;}

m[i][j] = INFINITY;

for (k=i; k < j; k++) {

q = matrix-chain(p, i, k) + matrix-chain(p, k+1, j) + p[i-1]*p[k]*[j];

if (q < m[i][j]) { m[i][j]=q;}

}

return m[i][j];

}

Let T (n) denote the time to compute m[1][n] by the call matrixChain(p, 1, n).
Pretend T (1) = 1.

• Write a recurrence relation that expresses T (n) in terms of a sum of T (1), . . . , T (n−
1) (and any other needed terms or factors).

• Use your formula with mathematical induction to prove that T (n) ≥ 2n−1.

3 of 4

4. (30 pts) This question asks you to analyze 2 algorithms that compute Fibonacci num-
bers. Pretend the cost of adding, subtracting, or multiplying two numbers is O(1),
independent of the size of the numbers.

a) One algorithm to evaluate Fibonacci numbers is given in the code below.

int Fibonacci(int n) {

if ((0==n) || (1==n)) { return n; }

else { return Fibonacci(n-1) + Fibonacci(n-2); }

}

i) What is the time complexity of the algorithm?

ii) Is the algorithm efficient or not? Give reasons for you answer.

2) Another algorithm for evaluating Fibonacci numbers is:

int Fibonacci(int n) {

int F1=1, F0=0;

for (int i=1; i <= n; i++) {

F0=F1 + F0;

F1=F0-F1;

}

return F0;

}

i) What is the time complexity of the algorithm?

ii) Is the algorithm efficient or not? Give reasons for you answer.

4 of 4

