
Algorithms Fall 2004 Graduate Comprehensive Exam

1. Set up the recurrence equation for asymptotic time complexity of the following
algorithm and solve it for the usual theta function.

Algorithm Little (int array A[], int start, int end)
begin
if end = = start do

return // null
else Little (A, start+1, end);

end algorithm.

2. The following is an example of a 0-1 Knapsack problem where the profit has to be
maximized by picking up the unbreakable objects in a knapsack with limited capacity:
Objects {(2 lbs, $10), (4 lbs, $2), (2 lbs, $5), (3 lbs, $6)}, Knapsack limit 10 lbs. A
Dynamic Programming algorithm utilizes the following formula for computing the
optimal profit:
P(I, m) = P(I-1, m) when wI >m, and
P(I, m) = max{P(I-1, m), P(I-1, m – wI)+ pI } when wI ≤m
P(I, m) is the optimal profit for the first I objects with variable knapsack limit m≤10 lbs,
wI and pI are the respective weight and profit of the I-th object.
For all m and I values, P(I, 0) = P(0, m) = 0.

Briefly describe the dynamic programming algorithm.

3. The following algorithm takes any sorted array of integers (both the non-decreasing
and non-increasing arrays) as its input. What is its output in each case of non-decreasing
and non-increasing sorted list? What is the algorithm’s asymptotic time complexity?

Algorithm Unknown(int [] a)
{
 int I=1, j=a.length; // the array is from 1 through a.length
 while (I<j) {

if (a[I] < a[j])
 { int temp=a[I]; a[I]=a[j]; a[j]=temp;};
I++;
j--;

 };
}

4. There are three columns in a variable-length page and the following articles are to be
placed in the columns such that the page length is minimal. Articles have no pre-assigned
ordering for placement on the page, and they may not be split across the columns. The list
of the lengths of the articles in inches is {3, 5, 1, 7, 10, 6, 2, 3}. Mention which greedy
algorithm would you run for the problem? Step through that algorithm over the above
list. [Hint: some scheduling algorithm.]

5. Answer true/false for the following sentences (answer on the question paper):
All NP-hard problems are NP-complete problems.
The set of NP-complete problems is a subset of the NP-class of problems.
It has been proved that NP-complete problems cannot have polynomial algorithms.
In order to prove a problem X to be NP-hard one needs to develop a polynomial
transformation from X to a known NP-hard problem.
2-SAT is an NP-hard problem.

