
 
Algorithms Fall 2005 Graduate Comprehensive Exam  
 
 
1. Set up the recurrence equation for asymptotic time complexity of the following 
algorithm and solve it for the usual theta function. [Ignore the purpose of the algorithm.] 
 
Algorithm Little (int array A[], int start, int end) 
begin 
if end = = start do   

return start; 
else  

int x = start +1;  // constant time operation 
Little (A, x, end); 
Little (A, start, end-1); 

end algorithm. 
 
 
2a. Explain in a line or two the time complexity of the following algorithm-fragment in 
terms of n.        
(1) For i =1 through n do 
(2)  For j = 3 through i do 
(3)  -constant number of steps- 
      end for loops; 
 
The following is a directed weighted graph. Draw it first. [Usual presumption of 
adjacency list representation of the graphs holds for all graph theoretic questions.] 
V={a, b, c, d, e}, E={(a, b, 2), (a, d, 8), (b, c, 3), (c, d, 2), (c, e, 5), (d, e, 1), (e, b, 2)}. 
2b. After running the following algorithm fragment on this graph show the output for the 
variable count. Explain your answer in a line or two.  
(0) int count := 0; 
(1) For each node v in V do 
(2) for each edge (u, w, d) in E do 
(3)  count++; 
       end for loops; 
(4) print count; 
 
 
3a. For the following algorithm find out what the value for count is. Explain your answer 
in a line or two.  [Use graph from question 2b.]      
(0) int count := 0; 
(1) For each node v in V do 
(2) for each edge (u, w, d) in E do 
(3)  if v = = u then count++; 
       end for loops; 
(4) print count; 



 
3b. For the following algorithm find out what the output from line 4 would be.  [Use 
graph from question 2b.]          
(0) int count := 0; 
(1) enqueue all arcs in Q; 
(2) while Q not empty do 
(3) (v, w, d) = pop(Q); 
(4) print (v, w, d); 
(5) d = d –5; 
(6) if d >= 0 then push (v, w, d) on Q; 
       end while loop; 
 
 
4. Write a dynamic programming algorithm for computing C(1,n) from the following 
formula. Analyze the complexity for your algorithm. 
Input to the algorithm: a matrix of integers pij, 1≤ i ≤ n, 1≤ j ≤ n, for problem size n. 
C(i, j) = 0, for all 1 ≤ j < i ≤n. 
C(i, j) = min{ C(i+k1, j) + pij, C(i, j-k2) – pij 

 | for all k1, k2 with 1≤k1≤n-i, 1≤k2≤j},  
for all 1 ≤ i ≤≤≤≤ j ≤ n 

 
 
5. Answer true/false for the following sentences (answer on the question paper):   
a. Sets of NP-hard problems and NP-complete problems have null intersection.   
b. The set of P-class problems is a subset of the NP-class of problems.  
c. NP-complete problems cannot have polynomial algorithms is a conjecture.  
d. In order to prove a problem X to be NP-hard one needs to develop a polynomial 
transformation from X to a known NP-hard problem.  
e. 4-SAT (where each clause in a Boolean Satisfiability problem has four literals) is an 
NP-hard problem.  
 
 


