

Algorithms Fall 2005 Graduate Comprehensive Exam

1. Set up the recurrence equation for asymptotic time complexity of the following
algorithm and solve it for the usual theta function. [Ignore the purpose of the algorithm.]

Algorithm Little (int array A[], int start, int end)
begin
if end = = start do

return start;
else

int x = start +1; // constant time operation
Little (A, x, end);
Little (A, start, end-1);

end algorithm.

2a. Explain in a line or two the time complexity of the following algorithm-fragment in
terms of n.
(1) For i =1 through n do
(2) For j = 3 through i do
(3) -constant number of steps-
 end for loops;

The following is a directed weighted graph. Draw it first. [Usual presumption of
adjacency list representation of the graphs holds for all graph theoretic questions.]
V={a, b, c, d, e}, E={(a, b, 2), (a, d, 8), (b, c, 3), (c, d, 2), (c, e, 5), (d, e, 1), (e, b, 2)}.
2b. After running the following algorithm fragment on this graph show the output for the
variable count. Explain your answer in a line or two.
(0) int count := 0;
(1) For each node v in V do
(2) for each edge (u, w, d) in E do
(3) count++;
 end for loops;
(4) print count;

3a. For the following algorithm find out what the value for count is. Explain your answer
in a line or two. [Use graph from question 2b.]
(0) int count := 0;
(1) For each node v in V do
(2) for each edge (u, w, d) in E do
(3) if v = = u then count++;
 end for loops;
(4) print count;

3b. For the following algorithm find out what the output from line 4 would be. [Use
graph from question 2b.]
(0) int count := 0;
(1) enqueue all arcs in Q;
(2) while Q not empty do
(3) (v, w, d) = pop(Q);
(4) print (v, w, d);
(5) d = d –5;
(6) if d >= 0 then push (v, w, d) on Q;
 end while loop;

4. Write a dynamic programming algorithm for computing C(1,n) from the following
formula. Analyze the complexity for your algorithm.
Input to the algorithm: a matrix of integers pij, 1≤ i ≤ n, 1≤ j ≤ n, for problem size n.
C(i, j) = 0, for all 1 ≤ j < i ≤n.
C(i, j) = min{ C(i+k1, j) + pij, C(i, j-k2) – pij

 | for all k1, k2 with 1≤k1≤n-i, 1≤k2≤j},
for all 1 ≤ i ≤≤≤≤ j ≤ n

5. Answer true/false for the following sentences (answer on the question paper):
a. Sets of NP-hard problems and NP-complete problems have null intersection.
b. The set of P-class problems is a subset of the NP-class of problems.
c. NP-complete problems cannot have polynomial algorithms is a conjecture.
d. In order to prove a problem X to be NP-hard one needs to develop a polynomial
transformation from X to a known NP-hard problem.
e. 4-SAT (where each clause in a Boolean Satisfiability problem has four literals) is an
NP-hard problem.

